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Abstract

We have used the stabilized spin-polarized jellium model to calculate the equilib-

rium sizes of metal clusters. Our self-consistent calculations in the local spin-density

approximation show that for an N -electron cluster, the equilibrium is achieved for

a configuration in which the difference in the numbers of up-spin and down-spin

electrons is zero or unity, depending on the total number of electrons. That is, a

configuration in which the spins are maximally compensated. This maximum spin-

compensation results in both the alternation in the average distance between the

nearest neighbor ions and the odd-even alternations in the ionization energies of al-

kali metal clusters, in a good agreement with the molecular dynamics findings and

the experiment. These suggest a realistic and more accurate method for calculating

the properties of metal clusters in the context of jellium model than previous jellium

model methods.
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1 Introduction

The simplest model used in theoretical study of the properties of simple metal clusters
is jellium model (JM) with spherical geometry. [1, 2, 3] In this model, the ions are
replaced by a uniform positive charge background sphere of density n = 3/4πr3s and
radius R = (zN)1/3rs where z, N and rs are the valence of the atom, the number of
constituent atoms of the cluster and the bulk value of the Wigner-Seitz (WS) radius of
the metal, respectively. This model can be useful only when the pseudopotentials of
the ions do not significantly affect the electronic structure. But, it is well-known that
the JM has some drawbacks. [4, 5] Keeping the simplicity of the JM, the stabilized
jellium model (SJM) of Perdew et al.[6] has lifted the essential deficiencies of the JM
and significantly improved the results of calculations. In the SJM, the bulk metal (which
is spin-unpolarized in the absence of external magnetic field) has been made stabilized
through the introduction of a pseudopotential and fixing its core radius by a value that
makes the pressure on the unpolarized bulk system to vanish. However, applying the SJM
in the framework of rigid jellium background [7] may be suitable for closed-shell clusters
of which the spin polarization of the valence electrons vanishes. It is well-known that,
for example, the bond-length of a diatomic molecule depends on the relative orientations
of the valence electrons. Hence, considering a metal cluster as a large molecule, or the
bulk metal as a huge molecule, one should take account of the volume change due to spin
polarization. We therefore, expect that the spherical jellium radius should be different for
an N -atom cluster with two different spin configurations. These facts led us to consider
a stabilized jellium model in which the spin degrees of freedom be present. Stabilizing
the jellium system with non-zero spin polarization, ζ , for the valence electrons resulted
in the stabilized spin-polarized jellium model (SSPJM).[8] Here ζ = (n↑ − n↓)/(n↑ + n↓)
and n↑, n↓ are the spin-up and spin-down electron densities, respectively. The SSPJM
can be applied to metal clusters in two different ways. The first method, which has been
used in Ref.[8], exploits the fact that the bulk metal expands as ζ increases. We call that
method as SSPJM1 throughout this paper. In that method, the jellium sphere radius is
taken as R(ζ) = (zN)1/3r̄s(ζ). For r̄s(ζ) we had taken r̄s(ζ) = r̄s(0) + ∆rs(ζ) in which
r̄s(0) was the observed value of the bulk WS radius of the metal and ∆rs was obtained
by the application of the local spin-density approximation (LSDA) to the infinite electron
gas system. However, in our phenomenological accounting of the volume change, the
core radius of the pseudo-potential for the electron-ion interaction has been considered
as a parameter, which becomes polarization dependent as we force the pressure of the
polarized bulk system to vanish. Using that scheme, we had calculated the energies of
different metal clusters, both neutral and singly ionized, for different spin configurations

2



and had shown that instead of Hund’s first rule for the ground state, the maximum spin-
compensation (MSC) rule was governing.[8] The MSC property which originates here from
the polarization dependence of the core radius, leads to the odd-even alternations in the
ionization energies that had been observed experimentally in the alkali metal clusters.[9]
On the other hand, if one assumes a fixed, polarization-independent form for the electron-
ion interaction, the MSC property will be realized only for non-spherical geometries of
the jellium background.

We have recently shown[10] that it is not always necessary for a finite spherical jellium
system to increase its size as the polarization, ζ , is increased. This can be explained by
considering the fact that for an open-shell cluster if one increases the spin polarization
from the possible minimum value consistent with the Pauli exclusion principle, one should
make a spin-flip in the last uncomplete shell. Because of high degeneracy for the spherical
geometry, this spin-flip in the last shell does not change appreciably the kinetic energy
contribution to the total energy but changes appreciably the exchange-correlation energy
which in turn gives rise to a deeper effective potential that makes the Kohn-Sham (KS)
[11] orbitals more localized and therefore a smaller size for the cluster. On the other
hand, although the SSPJM1 results in better ionization energies than the SJM [7] in that
it reproduces the odd-even alternation, it always predicts incorrect cluster sizes. That
is, in the SSPJM1, the equilibrium rs for a cluster is taken to be greater or equal to the
bulk value of rs ( see Fig. 3 of Ref. [8] ), so that it approaches the bulk value from the
above; whereas, the molecular dynamics (MD) results for the average distance between
the nearest neighbor atoms show that the equilibrium rs value of the neutral clusters are
less than the bulk value and it approaches the bulk value from the below [ see Fig 15(a)
of Ref. 13]. To incorporate this correct behavior into our SSPJM calculations, which is
the subject of this paper, we proceed parallel to the work of Perdew et al.[12] for the spin-
polarized case and call this method as SSPJM2. In the SSPJM2, for a given polarization,
we first obtain the value of the core radius of the pseudopotential that stabilizes the bulk
system, say rBc , and then, using this value of rBc in the energy functional of the cluster,
we change the radius of the jellium sphere until the minimum energy is achieved. Our
self-consistent calculations show that the absolute minimum energy corresponds to a spin
configuration with maximum compensation as in the SSPJM1 case. The equilibrium rs
values corresponding to these minima lie below the bulk value, reproducing the correct
behavior. These equilibrium rs values determine the equilibrium sizes of the clusters. If
we plot the equilibrium rs value as a function of the number of constituent atoms in an
alkali metal cluster, we see an alternating behavior, consistent with the MD results.[13]
In this paper we have found the equilibrium properties of neutral and singly ionized Cs,
Na and Al clusters of various sizes (2 ≤ N ≤ 42) using jellium with sharp boundaries. We
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have also repeated the SSPJM2 calculations using a jellium sphere with diffuse boundary.
For the sake of comparison, we have derived the results of the work by Perdew et al.[12]
which is denoted by SJM1. Comparing our SSPJM2 results with those of SSPJM1 show
that here, the average energies per electron and the ionization energies remain more or
less the same but here, our SSPJM2 calculations show an improvement over the SSPJM1
results for the equilibrium sizes of the clusters.

In section 2 the calculational schemes has been explained. Section 3 is devoted to the
results of our calculations and finally, we conclude this work in section 4.

2 Calculational Scheme

In the context of the SSPJM, the average energy per valence electron in the bulk with
density parameter rs and polarization ζ is given by[8]

ε(rs, ζ) = ts(rs, ζ) + εxc(rs, ζ) + w̄R(rs, rc) + εM(rs), (1)

where ts and εxc are noninteracting kinetic energy and exchange-correlation energies per
electron, respectively. w̄R is the average value (over the WS cell) of the repulsive part of
the Ashcroft empty core[14] pseudopotential,

w(r) = −2z

r
+ wR, wR = +

2z

r
θ(rc − r), (2)

and is given by w̄R = 3r2c/r
3
s . In Eq.(2), z is the valence of the atom, and θ(x) is the

ordinary step function which assumes the value of unity for positive arguments, and zero
for negative values. The core radius, rc, will be fixed by setting the pressure of the bulk
system equal to zero at equilibrium density n̄(ζ) = 3/4πr̄3s(ζ). In Eq.(1), εM is the average
Madelung energy, εM = −9z/5r0. Here, r0 is the radius of the WS sphere, r0 = z1/3rs,
and for monovalent metals z = 1, and for polyvalent metals we set z∗ = 1 (for details
see Ref.[6]). All equations throughout this paper are expressed in Rydberg atomic units.
The bulk stability is achieved when rc takes a value that makes the pressure of the system
with a given ζ to vanish at rs = r̄s(ζ):

∂

∂rs
ε(rs, ζ, rc)

∣

∣

∣

∣

∣

rs=r̄s(ζ)

= 0. (3)

The derivative is taken at fixed ζ and rc. Solution of the above equation gives the bulk
value of rc as a function of r̄s and ζ . Here, r̄s(ζ) is the equilibrium density parameter for
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the bulk system with given ζ and is evaluated by

r̄s(ζ) = r̄s(0) + ∆rEGs (ζ). (4)

Here, r̄s(0) takes the observed value for a metal and for Cs, Na, and Al it takes the
values of 5.63, 3.99, and 2.07, respectively. In the second term of the right hand side,
the superscript “EG” refers to the electron gas, and ∆rEGs (ζ) is evaluated by setting the
pressure of the electron gas system equal to zero (see Eq.(19) of Ref.[8]). The solution of
Eq.(3) at equilibrium density gives the bulk value of the core radius:

rBc (r̄s, ζ) =
r̄3/2s

3







−2ts(r̄s, ζ)− εx(r̄s, ζ) + r̄s

(

∂

∂r̄s

)

ζ

εc(r̄s, ζ)− εM(r̄s)







1/2

. (5)

Now, using rBc in the SSPJM energy functional of a cluster [ Eq.(20) of Ref.[8]], we obtain
the SSPJM2 energy as

ESSPJM2[n↑, n↓, n+] = EJM[n↑, n↓, n+] + (εM(rs) + w̄R(r
B
c , rs))

∫

dr n+(r)

+〈δv〉WS(r
B
c , rs)

∫

dr Θ(r)[n(r)− n+(r)], (6)

where

EJM[n↑, n↓, n+] = Ts[n↑, n↓] + Exc[n↑, n↓]

+
1

2

∫

dr φ([n, n+]; r)[n(r)− n+(r)] (7)

and

φ([n, n+]; r) = 2
∫

dr′
[n(r′)− n+(r

′)]

| r− r′ | . (8)

In Eq. (6), 〈δv〉WS is the average of the difference potential over the Wigner-Seitz cell
and the difference potential, δv, is defined as the difference between the pseudopotential
of a lattice of ions and the electrostatic potential of the jellium background.

The first and second terms in the right hand side of Eq.(7) are the non-interacting
kinetic energy and the exchange-correlation energy, and the last term is the Coulomb
interaction energy of the system. In our spherical JM, we have

n+(r) =
3

4πr3s
θ(R− r) (9)
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in which R = (zN)1/3rs is the radius of the jellium sphere, and n(r) denotes the electron
density at point r in space.

Applying the SSPJM2 to an N electron cluster with N↑ up-spin and N↓ down-spin
electrons (N = N↑ + N ↓) and polarization ζ = (N↑ − N↓)/(N↑ + N↓), the total energy
becomes a function of N , ζ , rs, and rBc where rs is the density parameter of the jellium
background and rBc is given by Eq.(5). The equilibrium density parameter, r̄s(N, ζ), for
a cluster is the solution of

∂

∂rs
E(N, ζ, rs, r

B
c )

∣

∣

∣

∣

∣

rs=r̄s(N,ζ)

= 0. (10)

Here again, the derivative is taken at fixed values of N , ζ , and rBc . For an N -electron
cluster, we have solved the KS equations[11] self-consistently for various spin configura-
tions and rs values and obtained the absolute minimum-energy spin configuration and its
corresponding density parameter.

3 Results

We have applied the SSPJM2 to calculate the equilibrium energies and sizes of different
metal clusters. In our calculations for an N electron cluster, we have solved the KS
equations for all possible spin configurations 0 ≤ ζ ≤ 1 and obtained the minimum
values of energies and corresponding rs values of each configuration. The self-consistent
calculations for Cs, Na, and Al with 2 ≤ N ≤ 42 show that the absolute minimum-
energy configuration obeys the MSC rule and the equilibrium rs value for the cluster,
r̄s(N, ζ), is less than the bulk value because, for small clusters the ratio of surface to
volume energies become comparable and the surface tension compresses the cluster. This
effect is known as self-compression.[12] In Fig. 1 we have compared the equilibrium rs
values of “generic clusters”, JM1 (see Ref. 10), with the SJM1 results which reproduce
correct trends.[12] To clarify the concept of the “generic cluster”, suppose that one solves
the self-consistent KS-LSDA equations for a spherical simple JM cluster with jellium
radius equal to R = N1/3rs and total number of electrons N . For a given N , these
calculations are performed for different rs values as well as different spin configurations
until the equilibrium rs value, r̄s(N, ζ), corresponding to the absolute minimum-energy
configuration is obtained ( See Fig. 4 of Ref.10 ). Since in the calculations one does not
use any specific parameter corresponding to a certain metal, the result does not simulate
any real cluster, and we call it an N -electron “generic cluster”. In the limit of N → ∞, the
infinite generic cluster tends to the electron gas system for which ζ → 0 and r̄s → 4.18. As
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is seen from the figure, the equilibrium rs value for the generic cluster approaches the bulk
value, 4.18, from the above which does not simulate the correct behavior for a real metal
cluster. It is seen that for the generic clusters the equilibrium values are greater than the
value rs = 4.18 whereas the SJM1 predicts values that are smaller than the bulk value
for Na (rs = 3.99) in agreement with the MD findings. This comparison clearly shows
that simple JM gives wrong molecular bond lengths. We have performed our calculations
based on Eq. (10) both for jellium with sharp boundary, SSPJM2, and diffuse jellium,
dif-SSPJM2. For our diffuse jellium calculations we have used the background density
with the radial dependence as[15]

n+(r) =

{

n{1− (R + t)e−R/t[sinh(r/t)]/r}, r ≤ R
n{1− ((R + t)/2R)(1− e−2R/t)}Re(R−r)/t/r, r > R,

(11)

where n = 3/4πr3s , R = N1/3rs, and t is a parameter related to the surface thickness.
We have chosen t = 1 in all our diffuse jellium calculations and then have varied the
value of rs until the minimum energy is achieved. Figure 2(a) compares the equilibrium
rs values of neutral cesium clusters for different sizes. It is seen that in most cases (rather
large clusters for which ζ << 1 ), the SSPJM2 and the SJM1 predict the same values
for the equilibrium rs; whereas for N = 3, 5, and 7 the SSPJM2 predicts larger values.
These larger values give rise to an alternation in the plot. The values obtained from the
dif-SSPJM2 lie below the values obtained from the SSPJM2 and the SJM1. Figure 2(b)
shows the results obtained for singly ionized cesium clusters. In this case, we see that
the alternations persist up to N=15 and have relatively large amplitudes. For N=3 i.e.,
singly ionized 4-atom cluster, the value obtained from the SSPJM2 has become larger
than the bulk value which is related to the rough evaluation of ∆rs. In Fig. 3(a) we have
shown the same quantities for neutral Na clusters. The behavior of SSPJM2 results is the
same as in Fig. 2(a) but, in the case of the dif-SSPJM2 the value for N=5 has become
nearly equal to that of N=6 and also, the value for N=3 is less than that of N=4 which
completely differs from the SSPJM2 results. Also, we could not find any finite value for
N=2 case in the dif-SSPJM2. That is, as much as we decrease the input rs value, the
total energy correspondingly decreases. This means that the surface tension dominates
the internal pressure and collapses the cluster. Of course, this is not the case in reality and
it is the consequence of the fact that here the surface thickness, t, has become comparable
to the cluster radius, R. Figure 3(b) compares the plots of average distance between the
nearest neighbors obtained from our SSPJM2 calculations and the MD calculations of
Röthlisberger and Andreoni.[13] In order to estimate the average distance between the
nearest neighbor ions in the cluster, we have assumed a bcc structure as in the bulk of
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Na. Then the shortest distance between the ions, d, is related to the lattice constant, a,
through d = a

√
3/2. But, in the bcc structure for Na, there are two electrons in a cell

and therefore, a = 2
√

π/3 rs. Combining these two relations results in d =
√
π rs. The

value rs = 3.99 is appropriate for room temperature (T = 300 K) which results in a value
of d = 7.07 bohrs whereas, for T = 0 K the appropriate value for rs is 3.93 which gives
rise to the value d = 6.96 bohrs. Therefore, our results should lie above the MD results
[ see Fig 15(a) of Ref. 13] because, the MD calculations have been performed for zero
temperature. In Fig. 3(c) we have shown the plots of equilibrium rs values for singly
ionized sodium clusters as functions of number of electrons, N . The behavior is more or
less the same as neutral one. Figure 4(a) compares the SSPJM2 results for neutral Al
clusters with the results obtained using the SJM1. Here, we have taken the effective value
of z∗ = 1. The diamonds and squares in the plot show the physical points. The main
difference between our results and the SJM1 is in the size of the jellium atom of Al. In
Fig. 4(b) we have compared the results for singly ionized Al clusters. The results show
some differences for values of N away from shell closings. Looking at the above-mentioned
figures, we note that in all the three cases of Cs, Na, and Al the SSPJM2 results in a larger
or equal values for the average distance than the SJM1, and in addition show alternations
for small clusters.

Finally, in Fig. 5(a) we have compared the plots of the total energies per electron in
the two schemes of the SSPJM2 and the SSPJM1 for Na clusters. It is seen that in the
SSPJM2 the energies are relatively lower than those of the SSPJM1 for smaller clusters
but the same for larger ones. We have also calculated the ionization energies of the clusters
using the dif-SSPJM2 and and compared with the dif-SSPJM1 and experimental values
in Fig. 5(b). Here also the odd-even alternations show up themselves in the SSPJM2 as
well as in the dif-SSPJM2 results and the values obtained are more or less the same as in
the dif-SSPJM1 [see Fig. 7(c) of Ref. 8]. Therefore, the SSPJM2 calculations for simple
metal clusters has improved the previous work, SSPJM1, in that it not only reproduces
the odd-even alternations in the ionization energies, but also it gives correct behavior for
the equilibrium sizes of the clusters.

4 Summary and Conclusion

In this work we have performed the SSPJM calculations as in the case of ab initiomolecular
structure calculations. That is, we have firstly calculated the stabilizing core radius of
the pseudopotential, rBc , for the bulk system with nonzero spin polarization. Then, using
this value in the energy functional of a cluster with given values of N and ζ , the energy
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becomes a function of the single variable rs, the density parameter of the uniform jellium
background. Minimizing this function with respect to rs gives us the equilibrium rs
value and energy of the cluster with that specified N and ζ . Our self-consistent KS-
LSDA calculations show that the equilibrium configuration is one in which the spins are
maximally compensated as in our previous findings.[8] This maximum spin compensation
gives rise to the odd-even alternations seen in the experimental ionization energy plot of
alkali metal clusters. Calculating the average distance between the nearest neighbors of
Na clusters, we find a good agreement between our SSPJM2 results and those obtained
from MD calculations. We have therefore improved our previous SSPJM1 results in that
the odd-even property is kept the same as before but here, the sizes of the smaller clusters
have been predicted correctly.
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Figure 1: The equilibrium rs values in atomic units as functions of the cluster size N .
The solid squares correspond to the “generic clusters” (JM1) defined in the text and the
large squares correspond to Na clusters using the method of Ref.12. The dashed and solid
lines correspond to the equilibrium rs value of the bulk (4.18) in simple JM and to the
bulk value of sodium (3.99), respectively.

Figure 2: (a) The equilibrium rs values in atomic units as functions of the cluster size for
cesium clusters obtained from using the three schems of SJM1, SSPJM2, and dif-SSPJM2.
The dashed line corresponds to the bulk value of rs for cesium (5.63). (b) Same as (a)
but for singly ionized cesium clusters.

Figure 3: (a) Same as Fig.2 for neutral Na clusters. The bulk value is 3.99. (b) The
average distance between nearest neighbors in atomic units for Na clusters. The squares
correspond to our findings through SSPJM2, appropriate for room temperature and the
diamonds correspond to the molecular dynamics results at zero temperature. The dotted
line correspond to the bulk value 7.07. (c) Same as (a) for singly ionized Na clusters.

Figure 4: (a) The equilibrium rs values in atomic units for neutral Al clusters (z∗ = 1,
rs = 2.07). The diamonds and squares show the physical points in SSPJM2 and SJM1
schemes, respectively. (b) Same as (a) for singly ionized Al clusters.

Figure 5: (a) The total energies per atom of Na clusters in electron volts for the SSPJM2
and the SSPJM1. The SSPJM2 results are somewhat lower than those of the SSPJM1
for smaller clusters. (b) The ionization energies in electron volts for Na clusters in the
dif-SSPJM2 and the dif-SSPJM1 are compared with the experimental values.[9]
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