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SUMMARY

This paper focuses on the numerical simulation of strain softening mechanical problems. Two problems
arise: (1) the constitutive model has to be regular and (2) the numerical technique must be able to capture the
two scales of the problem (the macroscopic geometrical representation and the microscopic behaviour in the
localization bands). The Perzyna viscoplastic model is used in order to obtain a regularized softening model
allowing to simulate strain localization phenomena. This model is applied to quasistatic examples. The
viscous regularization of quasistatic processes is also discussed: in quasistatics, the internal length associated
with the obtained band width is no longer only a function of the material parameters but also depends on the
boundary value problem (geometry and loads, specially loading velocity).

An adaptive computation is applied to softening viscoplastic materials showing strain localization. As the
key ingredient of the adaptive strategy, a residual-type error estimator is generalized to deal with such highly
non-linear material model.

In several numerical examples the adaptive process is able to detect complex collapse modes that are not
captured by a first, even if fine, mesh. Consequently, adaptive strategies are found to be essential to detect the
collapse mechanism and to assess the optimal location of the elements in the mesh. '
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1. INTRODUCTION

Adaptive mesh refinement in strain softening problems has received important attention in the
last decade. The presence of two well-differentiated length scales in such problems seems to
indicate that adaptive remeshing strategies, in a general sense, are the natural approach. Recall
that the spatial interpolation of the primitive variables must describe both the macroscopic scale
associated to the solid geometry and the micro-scale related to the shear band. For instance,
Huerta and Pijaudier-Cabot [1] show for two different models, that in the localization area
element sizes must be one order of magnitude smaller than the internal length if errors under
5 percent are desired. Moreover, a priori knowledge of the location of the localization area is
sometimes not possible.

Adaptivity in finite element computations requires three main ingredients. The first one is an
algorithm for increasing/decreasing the richness of the interpolation in a particular area of the
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computational domain. For instance, a good mesh generator if hA-refinement [2, 3] is used.
Second, an error estimator or error indicator must be employed to locate where there is a need for
refinement/de-refinement. And, third, a remeshing criterion must be used to translate the output
of the error analysis into the input of the mesh generator, for instance, the distribution of desired
mesh sizes.

These three steps are fundamental in adaptivity. However, only the second one will be
discussed here because it is, probably, the critical one in softening problems. In fact, Ortiz and
Quigley IV [4] presented an excellent discussion on the difficulties that have deterred an extensive
application of adaptive methods in the context of strain localization: (1) path-dependent consti-
tutive equations, and (2) error estimation relying, in statics, on the ellipticity of the equations
which is lost at the inception of localization. Here, these two difficulties are overcome because:
(1) an error estimator mathematically sound for path-dependent constitutive equations is em-
ployed, and (2) a well-known regularized model which precludes the loss of ellipticity is used. The
main goal here, is to show that adaptive mesh refinement based on estimating the actual error is
now possible for regularized problems. Any model maintaining ellipticity after the inception of
the localization could be used. Moreover, the numerical examples show that adaptivity based on
the error estimation is essential for accurate computations and, in certain problems, for capturing
a realistic physical behaviour.

The study of localization in solids has received much attention and a number of different
approaches have been devised to overcome the difficulties encountered during its analysis.
A possible approach is to consider the limit problem and consequently, jumps in the displacement
field across surfaces (strong discontinuity approach). In fact, it emanates from classical perfect
plasticity where discontinuous displacements are understood in a distributional sense, see for
instance [5-7]. Another possible approach is to regularize the problem precluding any discon-
tinuity in the displacement field. These models bear the same fundamental property: an internal
length is introduced to limit the thickness of the localization band. Among these are the
micropolar constitutive models [8], non-local models [9, 10], gradient-dependent models
[11, 12], and rate-dependent models [13, 14]. The present study is developed in the context of
regularized models. Here, a simple rate-dependent model is employed [15] because the main
focus is on adaptivity.

The issue of a mathematically sound error estimator for path-dependent constitutive equations
is crucial in this study. Adaptivity in softening problems has been associated to error indicators
[16-18]. Error indicators are based on heuristic considerations while error estimators approxim-
ate a measure of the actual error in a given norm. In this work, a tool for assessing the error
measured in the energy norm is proposed. The obtained approximation to the error is asymp-
totically exact, that is, tends to the actual error if the element size tends to zero [19, 20]. In that
sense, this tool is an error estimator.

Here, the assessment of the error associated with the finite element space discretization is the
goal of the study. The influence of time discretization is out of the scope of this paper.

2. PERZYNA VISCOPLASTICITY MODEL

As noted previously, the Perzyna viscoplastic model is used for regularization [15, 21]. Thus,
regularization is associated to viscous effects in the inelastic range. For clarity, this model is
briefly reviewed in this section.
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In small-strain viscoplasticity, the strain rate ¢ is decomposed into an elastic strain rate £° and
a viscoplastic strain rate £'P.

g=¢"4¢" (1)
and the stress rate & is obtained as
6=C:(¢ —£P) 2)

where C is the elastic moduli tensor. Equations (1) and (2) are very similar to those of
elastoplasticity, with plastic strain replaced by viscoplastic strain &',
An expression for £'P is needed. For associative flow, the Perzyna model [15] takes
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where y and N are the material parameters of the model, fis the Von Mises yield function which
depends on the yield stress ¢ [22]. This yield stress is assumed to be a linear function of the
equivalent viscoplastic strain x, according to

g ={ay+ hr) 4)

where &, is the initial yield stress and 4 is the hardening (for A > 0) or softening (for # < 0, used
here) parameter. The symbol { f > means that

foiff=0

<f>:{0 if f<0 ©)

In contrast to elastoplasticity, stress states outside the yield surface (i.e. with f > 0) are admissible
in viscoplasticity. Combining Equations (3) and (5) shows that the viscoplastic strain rate £ is, in
general, non-zero. On the other hand, for stress states inside or on the yield surface, £ = 0 and
the strain rate is purely elastic.

Figure 1 shows the one-dimensional rheologic scheme of the Perzyna model for the case N = 1
[21]. The viscous effect is represented by the damper in the right, with viscosity &4/y, and
softening is represented by the element on the left, which symbolizes the linear evolution of the
yield stress (Equation (4)).

The Perzyna viscoplastic model has been used as a regularization technique in transient
dynamic processes [21, 14]. Here, it will be employed to regularize a quasistatic problem, see [23]
for a discussion on dynamic and quasistatic analysis.

For dynamic analysis (i.e. inertia effects are considered) the width of the localization band can
be predicted a priori as a function of material parameters [21]. It is independent of the loading
velocity. The rationale is that the stress waves (those producing loading and unloading paths)
travel at a celerity which depends only on material parameters. Thus, in dynamic analysis, the
band width depends on the stress wave celerity and the viscous effects.

For quasistatic analysis processes (i.e. inertia terms are neglected) time does not appear
explicitly in the momentum balance. However, time is still an independent variable of the
problem because it is present in the constitutive relations (Equations (1)~(3)). Time has still its
physical meaning and it is not, as in rate-independent elastoplasticity, a loading parameter (i.e.
a pseudo-time). Note that for quasistatic problems the loading velocity has a crucial influence on
the material response, see Figure 2 for a simple compression example. Thus, from a physical point
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elastoplastic solution. In fact, for softening models, the steady-state limit (after zero loading
velocity is reached) of a viscoplastic analysis does not coincide with an elastoplastic solution.

Nevertheless, in quasistatics, the velocity governing the loading and unloading is no longer the
stress wave celerity but the external load velocity. Thus, the band width in quasistatics is not
governed exclusively by material parameters, it depends also on the load velocity. In fact, in
Reference [25] it is demonstrated that for one-dimensional problems the load velocity plays
a crucial role in the resulting band width.

Another difference between dynamic and quasistatic viscoplastic analysis is related with the
need and the influence of imperfections. It is well known that dynamic viscoplastic problems do
not need an imperfection to induce localization, reflecting or incoming stress waves are usually
employed to initiate localization. Quasistatic viscoplastic problems in simple domains, however,
do need an imperfection to induce localization. In any case, both in dynamics and quasistatics, if
an imperfection exists, the resulting band width may be affected by the imperfection in its vicinity,
see [21, 26] for dynamic cases and [27] or Section 4 for quasistatics.

3. ERROR ESTIMATION AND ADAPTIVITY

As discussed in the introduction, an error estimator is a key feature in any adaptive procedure.
Many error estimators for linear standard problems have been introduced (see [28-30], for
reviews). However, the generalization of these estimators to general non-linear problems is
involved. This section is devoted to briefly describe a residual-type a posteriori error estimator
which can be used in general non-linear cases. This estimator is presented in Reference [31], its
mathematical foundation and nonlinear generalization may be found in Reference [32] and its
performance is analysed in Reference [33].

Using a mesh of characteristic size A, the finite element method provides a discrete equilibrium
equation where the unknown is the nodal displacement vector w,:

fint(u,) = £ (6)
int

where {,"(w,) is the vector of nodal internal forces associated with w, and f7*' is the discretized
external force term.

Once Equation (6) is solved, the solution wu, is affected by an error that has to be estimated.
Since the actual displacements are unknown, the actual error cannot be computed. However,
using a much finer mesh of characteristic size (7 < h), the finite element method gives a new
solution w; which is much more accurate than u, because the regularized model ensures that the
Finite Element Analysis converges as the element size goes to zero. This solution can be taken as
a reference solution and, consequently, the actual error can be fairly replaced by the reference
error e the difference between w; and w,,.

Nevertheless, the determination of wy (or e;) requires to solve an equation analogous to
Equation (6) but in the finer mesh:

£ (u) = £ w, + ) = £5° ™)

This problem is much more expensive than the original one and it is unaffordable from
a computational point of view.

In the remainder of this section a method for approximating e; by low-cost local computations
is presented. That is, instead of solving Equation (7), e; is approximated by solving a set of local
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them with the nodes of the mesh: each patch is associated with a node and includes a fourth of
every element where the node belongs (see Figure 5 for an illustration).

The idea is to use this new partition to define new local problems for the error and to solve
them. Local boundary conditions are imposed in the same fashion as in the previous phase
(interior estimate); that is, homogeneous Dirichlet boundary conditions on the whole boundary of
each patch. A new approximation to the error is obtained. This new approximation takes
non-zero values in the boundary of the elements, where the interior estimate ¢ vanishes. In
order to solve these problems each patch must be discretized by a patch submesh. The dis-
cretization of Equation (9) using this patch submesh leads to a system of equations analogous
to Equation (11). Since patches cover the edges of the elements, the restriction of the right-
hand-side residual term of Equation (9), accounts for the residual associated with the flux
jumps.

Using the patch estimate, local and global estimates can be computed following equations
analogous to (11) and (13). The patch estimate must be forced to verify an additional restriction in
order to be properly added to the previously computed interior estimates: it must be orthogonal
to the global interior estimate €. This is done to cancel the component of the patch estimate that
has already been included in the interior estimate, see [32, 33] for details. This orthogonality
condition can be easily implemented modifying the system of equations that gives the patch
estimate, using the Lagrange multiplier technique [37].

Thus, the interior estimate ¢ is completed and a new approximation to ej is found. Since it is
computed solving only local problems the new approximation is denoted by er.

3.2. Accounting for pollution errors

The two phases of the error estimator presented above are based on local computations.
However, the reference error e; has a global definition that takes into account the errors
propagating from one zone of the domain to another. These are called pollution errors: for
instance, corner singularities on the boundary pollute the solution in the whole domain introduc-
ing errors [38]. Therefore, the obtained estimate, as well as all the estimators based on local
computations, ignore the existence of pollution errors.

Summing up the contribution of the interior and patch estimate an approximation to the error,
e, based on local computations is found. But ep, # e; and the difference, eg:= e; — ey is a global
error that cannot be approximated using local computations. The problem is now how to
approximate eg by a low cost but global computation.

The vector eg is discretized in the reference mesh of element size [ (because both e; and ep
are defined over the fine mesh). Thus, its computation is expensive (equal to the cost
of Equation (9). However, an approximation e§ can be obtained over the coarse mesh.
This approximation to the global error verifies the following system of equations
(see [32]):

Kyef = — ;" (er) (14)

The system of Equations (14) has the same matrix as the original Equation (6). Then, if a direct
method has been used to solve Equation (6), the matrix is already factorized and the cost of
solving Equation (14) is low. Note that, in order to compute the right-hand side term of Equation
(14), the integrals over elements of the coarse computational mesh which define each component
of fi™(e) require a function, e;, defined on the finer reference mesh.
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case, the previous idea is used and the estimation of the error is splitted in two steps. First,
elementary problems are solved with null error boundary conditions, and an interior estimate is
computed. Second, the restriction of Equation (16) to each one of the patches is solved. Moreover,
the estimation of the global (pollution) error can also be reproduced in this context. In fact, once
the error is set as the solution of the linear equation (16), the structure and the philosophy of the
linear estimator can be fully respected and, consequently, the non-linear generalization inherits
all the properties of the linear counterpart.

Recall that, even in this non-linear case, the energy of the solution may be measured using
a simple scalar product: | g||> = — efr¢. If the tangent approximation is used and the tangent
matrix is symmetric positive definite, this energetic quantity is the measure associated with the
tangent matrix and, consequently, has a precise physical meaning.

3.4. Adaptivity based on error estimation

Once the error is estimated, the adaptive procedure requires a remeshing criterion in order to
generate the input for the mesh generator. The error estimator furnishes local measures of
the error in each element, that is, |e;|, for k=1, .... This set of numbers describes the
spatial distribution of the error. The input of a mesh generator is a distribution of desired
element size in the computational domain. Generally, this is described by the desired element
size in each element of the current mesh, that is, flk for k = 1, ... . Thus, a remeshing criterion is
required to translate |ez |y into .

Different remeshing criteria have been defined [39-42] leading to quite different optimal
meshes. This is because the underlying optimality criteria are different. In fact, all these remeshing
criteria tend to equidistribute the error in some sense. The choice of the error function that has to
be uniform is related with the underlying optimality criterion. In the examples presented in
Section 4, two remeshing criteria are used and it is shown how the obtained meshes are very
different.

In the following, the quadrilateral mesh generator developed by Sarrate [43] is used. This mesh
generator supplies excellent unstructured meshes, both ensuring the prescribed element size and
the regularity of the elements.

4. NUMERICAL EXAMPLES

Two examples are presented in this section. Both of them reproduce the compression of a plane
strain rectangular specimen. In order to induce the strain localization in the specimen, some
imperfection must be introduced. Typically, these imperfections are introduced by either a weaker
element or a geometric imperfection [14, 217]. Here, geometric imperfections are used: circular
openings inside the material create a weaker zone in the specimen. The difference between the two
presented examples is the number and the location of these circular openings. In the first example
the specimen has one centred circular opening and, consequently, the two axes of symmetry allow
to study only one fourth of the specimen (see Figure 7). In the second example, the specimen has
two circular openings symmetric with respect to the centre. That allows to study only one-half of
the specimen (see Figure 8). In both examples the tests are driven by imposing the velocity at the
top of the specimen.
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a new failure mechanism. The solution given by the last mesh is obviously more accurate than the
original one because the energy of deformation (area under the force-displacement curve) is
lower. In fact, since the error is controlled in energy norm, one can be sure that the actual curve,
associated with the exact solution, is not too far from the obtained curve (the error in energy norm
is less than 1.5 per cent and, consequently the difference of the area under the curves is less than
1.5 per cent). The first meshes are not able to reproduce the behavior of the actual solution
because the elements along the later band (which develops in a further stage of the loading
process) are too large and, consequently, the discretization is too stiff. Then, the size of the
elements in this zone does not allow the inception of softening. On the contrary, once the
remeshing process introduces small enough elements along the second band, the second mecha-
nism can be captured.

Thus, this example demonstrates that adaptivity based on error estimation is an essential tool
for the determination of a priori unpredictable final solutions. Without this adaptive strategy, the
initial mesh (mesh 0 in Figure 18) and the resulting solution could be regarded as correct, and the
second mechanism would not be detected.

5. CONCLUDING REMARKS

The Perzyna viscoplastic model has been used in order to obtain a regularized softening model
allowing to simulate strain localization phenomena. This model has been applied to a quasistatic
examples, where inertia terms are negligible. The viscous regularization of quasistatic processes
has been discussed: the rate effects are still present and regularize the problem. However
a difference between the dynamic and the quasistatic cases must be mentioned: in quasistatics, the
internal length associated with the obtained band width is no longer only a function of the
material parameters but also depends on the boundary value problem (geometry and loads,
specially loading velocity).

An adaptive computation has been successfully applied to softening viscoplastic materials
showing strain localization. As the key ingredient of the adaptive strategy, a residual-type error
estimator has been generalized to deal with such highly non-linear material model. Moreover,
this estimator has been designed in order to account for pollution errors. However, as expected,
the pollution errors have been found to be negligible, specially in the refined meshes, with
elements concentrated in the vicinity of the singularities.

In the numerical examples, the adaptive process is shown to be able to detect complex collapse
modes that are not captured by a first, even if fine, mesh. This is specially interesting for softening
localization problems, where small variations in the geometry of the problem may induce very
different mechanical behaviour. In this situation the location of the localization band cannot be
predicted a priori. For instance, in one of the examples the first mesh is not able to reproduce the
two consecutive mechanisms captured with the final mesh. The second mechanism is associated
with a second shear band appearing in a further stage of the loading process. However, if
adaptivity is not used, the first mesh would be regarded as correct and one never would detect the
second mechanism. In fact, even if some heuristic remeshing is done, based on solution obtained
with the first mesh, the mesh would not be refined along the second shear band, that is, where it is
needed to capture the second mechanism. On the contrary, if a remeshing strategy based on the
error distribution is used, the elements are concentrated along this second band and the new mesh
is able to reproduce the two mechanisms. Consequently, adaptive strategies based on error
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estimation are essential to detect the collapse mechanism and to assess the location of the
elements in an optimal mesh.
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