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THE RELATIONSHIP BETWEEN THE ZEROS 
OF BEST APPROXIMATIONS AND DIFFERENTIABILITY 

PETER B. BORWEIN' 

ABSTRACT. We examine the relationship between the analytic properties of 
continuous functions on [-1,1] and the location of the roots of the sequence 
of best polynomial approximations. We show that if the approximants have 
no zeros in a certain ellipse then the function being approximated must be 
analytic in this ellipse. We also show that the rate at which the zeros of the nth 
approximant tend to the interval [-1,1] determines the global differeritiability 
of the function under consideration. 

1. Introduction. The theorems of Bernstein and Jackson establish an exact 
relationship between the rate of convergence of the sequence of best polynomial 
approximants to a function f e Ct-1, 1] and the global differentiability of f on 
[-1,1] (see [1 or 3]). We intend to show that such a relationship also holds be- 
tween the location of the zeros of the sequence of best approximants and the global 
differentiability of f. 

Let C[-1, 1] be the set of continuous functions on [-1,1]. Let 7rn denote the 
collection of algebraic polynomials of degree at most n with real coefficients. For 
f e C[-1,1] let 

(1) P,n(f) mmin lf -Pnll-1,1] Pn 
Pn07rn 

where [a,b] denotes the supremum norm on [a, b]. Let Pn(f) be the best uniform 
approximation to f from rrn. Then Pn(f) is, of course, the unique polynomial of 
degree at most n which attains the minimum in (1). 

Let Ep, p > 1, be the open ellipse (in the complex plane C) with foci at ?1 and 
with axes 2 1). 

We will prove the following theorems: 

THEOREM 1. Let N be an integer. Suppose f E C[-1, 1] and, for all n > N, 
Pn(f) has no zeros in E.. Then f is analytic in Ep (that is, f is the restriction to 
[-1, 1] of a function analytic in Ep). 

THEOREM 2. Let N be an integer. Suppose f E C[-1, 1] and there exist integers 
k and N and a 6 E (0, 1) so that, for each n > N, P,(f) has no zeros in Epa, where 
Pn = n(l+k+?)/n. Then, for any E > 0, f is k times continuously differentiable on 
[-1 + , 1 - E] and f(k) satisfies a Lipschitz condition of order 6 on [-1 + E, 1 - E]. 

Theorem 1 is an analogue of the observation that if a formal power series 

E'7-o anzn has the property that, for each N, E>N anzn has no zeros in 
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Cp = l{lz < p}, then EZ- Oa,Zn is convergent in Cp. This is straightforward. 
We can write, for aN 7& 0, 

N N 

E anZ7= aN fl(Z - Zi), |zil > p, 

n=O i=1 

and thus, 
N 

|aN! 17 IZil = laol. 

In particular, 

|aN| 1/N < laol l/N/p, 

from whence the observation follows. 
Jentzsch's Theorem says that the zeros of the partial sums of f (z) = anZ n 

are dense in {I z = p}, where p is the radius of convergence of f. Walsh [5] offers 
the following analogue of Jentzsch's Theorem. 

THEOREM 3. If Ep is the maximal ellipse of analyticity for f, then the zeros 

Of Pn(f) are dense in the boundary of Ep. 

If we had assumed, in Theorem 1, that f was analytic on [-1, 1], instead of just 

continuous, then we could have deduced the result from this analogue of Jentzsch's 

Theorem. Professor Goncar, in private communication, informs me that he can 

prove the following interesting generalization: If there exists a domain D, D n 
[-1,1] #80, so that no Pn(f) has any zero in D, then f is analytic in D. This 

generalization and other extensions of Theorem 1 to general compact sets were 

discussed by H. P. Blatt and E. B. Saff at the Tampa Conference on Rational 

Approximation and Interpolation in December 1983. Related problems for Pade 

approximants are considered by Goncar in [2]. 

2. An inequality for polynomials with no roots in Ep. The proofs of 

Theorems 1 and 2 are consequences of the following inequality: 

I NEQUALITY 1. Suppose Pn (X) = Eno akXk e irn and Pn has no zeros in Ep. 
Then 

lan| < (2n/pn) pn [-1,1] 

PROOF. Let 

q2n(Z) = Z Pn((Z + ZJ)/2). 

We note that q2n e l2n has lead coefficient an/2n and that if zo is a root of q2n 
then so are 1/zo and zo. Since w (z + z-')/2 maps C - {zl1/p < lzl < p} into 

C - Ep, it follows that 

q2n(z) = 2f(z- ai)fJ (Z ) -) 
i=1 i=-1 I 



530 P. B. BORWEIN 

where la2I > p for each i and where the ai come in conjugate pairs. Thus, for 
Z =1, 

q() znan fJ( - n)f (a% - 1/z) |q2n (Z)l I 2n fl(z Itf ai) 
i= 1 )= 1 

n 2nf ln ail lani I (z - ai,i - 1 i) 

By the maximum modulus principle 
J7J(z-ai)~~ fl-at 

i=l {IzI=z} - =1 

and, hence, 

n 

IlPn [E-1,1] = ll2n IzI=1 ? 2fl aa I > 
L[ 

There exists Pn c ir, Pn= 2mxm + , so that, in the variable x (z + zl)/2, 

p (z ? ) = (z > - a- 

For this polynomial an = 2n and 

|lPnll[-1,1] ? II zn _pn pfl +l2 + pn 

or 

Pn (2 /(pZ + 2 + pnl))P-n 
n 

_-1,n]. 

In particular, Inequality 1 is asymptotically best possible. 
Minor modifications to the proof of Inequality 1 yield: 
INEQUALITY 2. Suppose pn(X) = E>n= anxk c irn and Pn has k or fewer zeros 

in Ep. Then 

lan | < (2 n/Pn ) IlPn ll [-1,1]- 

PROOF OF THEOREMS 1 AND 2. Let n > N and let an be the lead coefficient 
of Pn(f ). From Inequality 1 and the assumptions on the roots of Pn we have 

(2) lanj < (2 /n)in(f)ll[_,,,] < (2 n/pn) ml 

where M = 21 fL 1]. It follows that there exists Sni E 1rn-1 so that 

(3) ISn- - Pn(f)ll[-1 1] < 2M/p. 

One need only set Pn(f) - Sn- = anTn/2n-1 where Tn is the nth Neby6ev 
polynomial (see [3, p. 31]). Thus, 

Pn(f) < Ilf 
- 

SnI[-1,1] < lf - Pn+ l[-1,1] + IISn 
- 

Pn+lll[ 1] 

< Pn+ 1 (f ) + 2M/pn+ 
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and 
00 

(5) Pn(f) < 2M n+m ?< 
_= 

n+ pfl 

where C is independent of n. This, by Bernstein's characterization of analytic 
functions in terms of the rate of convergence of Pn*, guarantees that f is analytic 
in Ep. (See, for example, [3, p. 76].) 

The proof of Theorem 2 proceeds along similar lines. Equations (2)-(5) become 

(2') lan| < 2nM/nl+k+& 

(3') ||Sn- -Pn(f) l[-1,1] < 2M/n1+k+6 

(4) Pn(f) < Pn+1(f) + 2M/nl+k+b 

and 

(5') PPn (f ) < CI/nk+. 

Equation (5'), once again by Bernstein's results [3, p. 61], guarantees that f has k 
continuous derivatives on [-1 + &, 1 - E] and f(k) C Lip8 on [-1 + &, 1 - &]. El 

If we use Inequality 2 instead of Inequality 1 in the above proofs, we can deduce 
that both Theorems 1 and 2 hold under weaker assumptions. For example, we need 
only assume that the number of zeros of Pn(f) in Ep (or Epn) is o(n). 

3. How sharp are Theorems 1 and 2? If f is analytic and nonzero in Ep 
then the sequence {Pn} converges uniformly to f on compact subsets of Ep [3, p. 
76]. Hence, for p' < p and for n sufficiently large, the zeros of Pn will lie outside 
Ep,. In particular, Theorem 1 can be used to characterize the largest ellipse in 
which f is analytic. 

For nonanalytic f we have the following example: Let k be a positive integer 
and let 

00 

f(x) := 5 + L (3-m)kT3m (X), 
m=1 

where T, is the ith Nebycev polynomial on [-1,1]. Then, for 3h < n < 3h+1, 

h 

Pn(f) = 5 + E (3 m)kT3(X) 

m=l 

(See [1, p. 132].) Also, 
|ITmIIEp <Pm 

(See [3, p. 42].) For h sufficiently large, if p < 3kh/3 then 

hZ h 33(m-h)h) k 

(3 -kTm < E 3 ) < 5. 
m=1 Ep m=1 

Thus, for n sufficiently large, Pn(f) has no zeros in Ep, where p n nk/n. However, 
by examining f (cos 0) one can verify that f is not k times continuously differentiable 
on [-1 + &, 1 - 
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The previous example leaves a gap of 1 + & between the assumptions on k in 
Theorem 2 an(d the "best possible" assumptions. 

The results of this paper are quintessentially results about best approximants. 
Given f C C[-1, 1] an(d any compact sets K in the complex plane that separates 
[-1,1] from infinity, it is always possible to fin(d a sequence of polynomials with all 
roots in K that converges to f. (See, for example, [4].) 
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