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SUMMARY

Within engineering design, optimization often involves building models of working systems to improve design
objectives such as performance, reliability and cost. Bond graph models express systems in terms of energy f ow
and can be used to identify key factors that inf uence system behaviour. Robust Engineering Design (RED) is a
strategy for the optimization of systems through experimentation and empirical modelling; however, experiments
can often be prohibitively expensive for large or complex systems. By using bond graphs as a front-end to RED,
experiments on systems could be designed more eff ciently, reducing the number of experiments required for
accurate empirical modelling. Two case study examples are given which show that bond graphs can be used to
good effect in the empirical analysis of engineering systems. Copyright 0 2000 John Wiley & Sons, Ltd.

KEY WORDS: bond graphs; experimental design; spatial modelling; optimization; robust engineering design

1. INTRODUCTION

Engineering systems are modelled so that the
relationships between the design variables (design
factors) and the desired system response (responses)
may be understood and controlled. Accurate models
allow systems to be optimized with respect to design
objectives such as performance, reliability and cost.
The level of accuracy obtained by system models
depends on the level of understanding of the system,
the cost of building the model and the cost of
subsequent model evaluation. In practice, system
models approximate system behaviour by appropriate
linearizations and this needs to be taken into account
during analysis.

In the f'eld of engineering design complex engineer-
ing systems are routinely modelled for the purpose
of design optimization. This is not often a straight-
forward process, engineering systems often exist in
several states, models of the system may be very large
and costly to evaluate, there can be multiple responses
to optimize and these responses are often subject
to multiple constraints. Robust Engineering Design
(RED) is a strategy for experimentation, modelling
and optimization of engineering systems borne out
of the mathematical disciplines of Design of Experi-
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ments (DoE), Response Surface Modelling (RSM) and
numerical optimization. Accurate modelling of large
systems can require a large number of observations,
especially when the number of factors is large and
the responses are nonlinear. Conducting experiments
eff ciently requires the gathering of as much prior
information about the system as possible. The design
factors that are to be the subject of experimentation
need to be identifie , including which factors are likely
to be the most important, the existence of complex
relationships between factors, the practical ranges of
factor values and effective ways of measuring system
response.

Bond graph models of systems express relationships
between design factors using energy f ow and are built
using engineering insight into the physical nature of a
system. Building a bond graph model of a system can
highlight key design factors and their relationships and
encapsulate the engineering knowledge that has led to
the initial system architecture and factor settings.

The aim of this paper is to explore a new strategy
for performing RED in a complex engineering en-
vironment, capturing engineering knowledge through
the use of bond graphs and using this as a front-
end for RED. Two case studies are presented, the
design of a loudspeaker driver unit and the design of
a hedgetrimmer. Bond graph models are built for each
design and used to collect empirical data. In the loud-
speaker study, data were collected ‘on-line’ during the
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Figure 1. Power bond with causal stroke

production of 20 driver units. In the hedgetrimmer
study, a planned experiment was conducted on the
design, and ‘off-line” data were collected for analysis.

2. BOND GRAPHS

Bond graphs are a means of generating rapid
mathematical models of multi-energy domain systems
that were introduced by Paynter [1] based on electro-
mechanical analogues. Notable contributions have
been made by Karnopp [2], Rosenberg [3] and
Cellier [4]. The causality assignment and model-
building associated with bond graphs makes them an
interesting proposition for use as a RED front-end.

Dynamic physical systems are concerned with one
or more of the following: (i) energy transfer, (ii) mass
transfer, and (iii) information (or signal) transfer. Bond
graphs are an abstract representation of a system that
uses one set of symbols to represent all applicable
types of systems in terms of energy transfer [5].
In particular, they focus on the exchange of power
between components.

Each line or bond with half arrow (Figure 1) in a
bond graph implies the existence of a pair of signals
whose fows are in opposite directions. These signal
pairs, or power variables, are generally termed effort
(e) and fow (f). As most engineering systems are
dynamic these power variables are often functions of
time.

Only a few basic types of element are required in
order to model a variety of energy domains [6,7]. The
elements will have one or more ports and at each
port, effort and fow variables co-exist. In addition,
one of these variables will be controlled, but both
cannot be controlled simultaneously. The direction of
the half arrowhead on the bond in Figure 1 indicates
the direction of positive power fow [6]. The short
vertical bar, or causal stroke, indicates how e and f
are simultaneously determined on a bond, i.e. effort
pushes towards the causal stroke and f ow f ows away
from it.

The study of input—output causality is a unique
feature of bond graphs and can indicate the form
of the underlying mathematical representation of the
system. This can be very useful in avoiding analyti-
cal problems, such as unnecessary differential calcu-
lus [7]. In mathematical modelling the organization of

component constitutive laws into sets of differential
equations requires cause-and-effect decisions to be
made [8]. The integral causality assignment of bond
graphs aids in the development of mathematical mod-
els that mimic the physical system they represent and
that can be resolved avoiding unnecessary complex-

ity [6].

3. ROBUST ENGINEERING DESIGN

RED is concerned with reducing the effects of
uncontrollable factors (noise factors) on the output
of a system by selecting optimum settings for
controllable factors (design factors) through the use of
Experimental Design [9]. In terms of factor selection,
RED involves the following steps:

(1) identify high-level factors, such as overall
functions, quality characteristics or physical
effects;

(i1) use physical laws to identify the role of low-
level factors, that is to highlight signif cant design
factors;

(iii) estimate appropriate target values for (low-
level) design factors in order to achieve optimal
performance;

(iv) identify the values to be employed for these
design factors as they will depend upon
production capability and other statistical issues.

The ‘engineering judgement’ exercised in step (ii)
and step (iii) above often appears to be based on
insight into the nominal behaviour of the system
under investigation gained through analysis and/or
experience of similar systems. Effective insight would
ideally provide understanding of the infuences on
system output variability as well as nominal output,
but this is rarely the case. For example, physical
laws could be used to reveal complex relationships
between high-level and low-level factors in order
to assess potential variability. However, insight is
often limited to simple relationships for the purpose
of identifying target values for (low-level) design
factors and potential interactions between them are
overlooked.

Dealing with interactions between design factors
often requires compromise and trade-off between the
target design factor values in question (step (iii)
above). Consequently, the selection of design factors
and the anticipation of relationships between them are
an unreliable aspect of contemporary RED practice
making the predictive power of the method unreliable.
Unexpected interactions discovered later in the design
process may require design changes in order to



reduce their effects. There is also the risk that key
design factors will not be identif ed for inclusion in
the experiments because of insuff cient understanding
of the system. Thus the conventional approach to
RED relies heavily on physical experiments that can
be time-consuming and costly. Energy transfer has
been highlighted as a key consideration of many
physical systems when selecting parameters for an
RED experiment [10], and building an energy-based
model of the system could aid the design factor
selection process.

To identify key design and noise factors prior
to physical experimentation requires highly complex
computer models capable of simulating variation
(noise), which is not yet practical with current analysis
tools. It is well known from reliability engineering
that representative probability distributions of loads
are virtually impossible to identify [11], which means
that physical experiments should remain a stage in
RED for the foreseeable future. Instead, the focus is on
using appropriate computer models to provide insight
into physical experiments. For example, subsystem
identif cation for grouping of variables is especially
useful in reducing system complexity.

4. BOND GRAPHS AS AN RED FRONT-END

Since equations do not normally express energy f ow
within a system this cannot be observed analytically.
However, engineers are often interested in developing
a ‘feel’ for energy fow in physical systems. One
advantage of the bond graph representation is that
the system topology is maintained, giving an idea of
the causal relationships between parameters, which,
in turn, offers some guidance on parameter selection.
Such an insight into system behaviour is important
when planning RED experiments on energy-related
products so that appropriate design and noise factors
are included. The use of bond graphs is proposed in
order to highlight the role of energy-based parameters
in RED.

Another useful property of bond graphs is that any
design factors represented are all at the same ‘level’
of complexity or detail within the system. The link
between the bond graph graphical representation and
the computational causality was clearly demonstrated
in an air pump example [12]. It is commonly accepted
[3,4] that with suffcient practice, identificatio of
potential significan system parameters can be made
solely from the bond graph representation. This has
not been demonstrated for RED and so the following
procedure is suggested.

(i) Draw the bond graph of the system ensuring
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Figure 2. Loudspeaker driver unit

integral causality (following the Sequential
Causality Assignment Procedure [6]).

(i) Obtain a feel for the significan design factor
through visualizing or sketching the state—
space equations and assigning estimated values,
including a sensitivity analysis on these values.

(iii) Select each inertia and capacitance from amongst
the chosen design and trace the causal links to
highlight potential interactions between design
factors.

(iv) Use this information to select factors and
responses for RED.

Two case studies are now presented. Their main
aim is to show how the bond graph method can be
used to describe engineering systems and provide
useful information for an empirical analysis. The fir t
case study is the design of a loudspeaker driver unit
and involves building a bond graph of the system
and collecting data on the manufacture of 20 units.
The results of the bond graph analysis are compared
with the relative importance of the design factors
as predicted by the empirical data collected during
production. The second study is the design of a
hedgetrimmer. Here the bond graph model is used
to plan a small experiment to determine the relative
effects of the design factors.

5. LOUDSPEAKER VOICE COIL CASE STUDY
5.1.  Driver unit parameters

Loudspeaker performance will vary between any
two speakers taken from the production line due to the
inevitable variation in material properties, dimensions,
and other parameters of the component parts. The two
major subsystems of a loudspeaker are the driver unit
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Figure 3. Bond graph model of loudspeaker voice-coil

and its enclosure. The main aim of this case study is to
investigate the main sources of unit-to-unit variation
of driver units.

The basic working principle of the moving-coil
loudspeaker can be appreciated from the driver unit
assembly shown in Figure 2. Essentially a motor
coil moves axially within a radial magnetic fiel
driving a diaphragm at audible frequencies radiating
sound from its surface into the air. Consideration
of potential design factors in the driver unit for
RED experimentation highlights several groups or
subsystems even for this product with its relatively
low parts count. The loudspeaker design factors will
depend on the nature of the subsystem to which they
are associated.

(i) Surround—material and adhesive bonding prop-
erties

(ii) Diaphragm—material properties and various
dimensions

(iii) Suspension—dynamic characteristics

(iv) Magnet—magnetic properties and various di-
mensions

(v) Voice-coil—energy properties and various di-
mensions

Choosing factors for experimentation from one
system level is preferred in order to avoid interacting
effects [9]. From this basic level (low resolution) there
is potential for more detail to be added by subdividing
the system into more elements and connections. The
next Section follows steps (i) to (iii) of Section 4 to
construct the bond graph model.

5.2.  Bond graph model of voice-coil

Figure 3 was utilized to highlight potential design
factors for selection from a large number of parameters
identifed by the design team. This bond graph is
a lumped parameter model. Distributed parameter
models are a more advanced bond graph approach, but

would involve considerable time to model, and such
models have not yet been presented in the bond graph
literature [13].

In choosing the design factors for this investigation,
the bond graph in Figure 3 highlights parameters
at a common basic level linked with the fow of
power through the voice-coil device. That is for each
energy domain (electrical and mechanical in this case)
the various parameters are grouped or ‘lumped’ and
assigned to categories for l-port elements if they
store or dissipate energy, and a 2-port element if they
convert energy, namely:

1. R.—the electrical resistance of the driver unit,
made up almost entirely by that of the coil with a
small amount contributed by the lead-out braid;

2. Bl—the motor ‘shove factor’, determined by the
coil turns on the voice coil and the magnetic fl x
generated in the gap between magnet and coil,

3. M,,;—the total moving mass, which is mainly
that of the voice coil and the cone diaphragm;

4. R,;—the total mechanical resistance offered
from elements such as the surround and support;

and
5. Cus—the total mechanical compliance of the
supports.

Element (2) is a 2-port element, the rest are 1-port
elements. The coil inductance, I, was not selected
under guidance from the engineering design team.

It is important to note that this bond graph model
is an approximation to the loudspeaker system, but
that the bond graph approach does allow modelling
of nonlinear behaviour. Some nonlinear effects, such
as non-uniformity of the magnetic feld at the edge of
the loudspeaker magnet, have been ignored, but these
effects can be reduced by careful design, for example,
flu linearity can be improved by using devices such as
undercuts in the magnet poles and eddy current control
rings [14].



5.3.  State equations for design factor selection

The state equations are determined from the Power
Bonds in Figure 3 and numbered clockwise around
each junction starting with the supply as Power Bond 1
(marked as pbl in Figure 3), which has associated
effort e; and fow fi, and fi ishing with the R, as
Power Bond 8 (marked as pb8 in Figure 3).

The bond graph equations can be written as follows:

dfa 1
W = Y(Mse - Ref4 - Blf7) (1)
deg 1
=6 _ 2
a Gl @
dfy 1
— = Blfy — ec — Rpys 3
dr Mmd( fa—es ms J7) 3)
Putting these equations in matrix form:
dfs Re 0 _Bl
dt 1 I f4
@l=1°0 o 0 €6
df Bl 1 _Rm |Lf7
dr Mpa Mpa My
1
1
+ | 0 | [Msel “4)
0
This reduces to:
dfs
dr 2 x 10* 0 —24x 107 [ /4
Lel=1 0 1x10° 0 e
df; 750 125 —50 1
dr
4 x 103
+ 0 [Mse] (%)
0

The relative significanc of the design factors in
the main matrix can be estimated after scaling the
matrix so as to equalize all numerical values [12]. First
estimates of the nominal values of f4, e and f7 are
required. Let us consider fs = 3A, e¢s = IN and
f7 = 1 m s~!. Scaling ¢ and f7 by 3 yields the
following equations:

dfs
ar 2 x 10 0 -8 x 103
Bee | = 0 3 x 103 0
& 225x 10 125 —50
dr

fa 4x10°

X 36’6 + 0 [Mse] (6)
3f7 0

The two largest values indicate that from the design
factors considered, R, and Bl may have signif cant
infuence on the energy fow through the voice-coil.
Thus we expect these two factors to be particularly
signif cant in physical experiments.

5.4.  Driver unit test data

The 20 voice coils remaining were assembled into
driver units using parts specificall selected from the
production line for their near-nominal values. That is,
apart from the variation in voice coil measurements,
the driver units were considered to be ‘best practice’
in terms of manufacture.

It is diff cult to measure M,,,4, Ry and C,,;s dynam-
ically in a direct manner. To obtain measurements for
the above design factors, the following three dimen-
sionless parameters, of specif ¢ interest to the loud-
speaker design engineers, are estimated using a Fast
Fourier Transform analyser with 100 Hz bandwidth
pseudo-random noise:

1. Q¢s—the electrical damping ratio define as
Q@ fsMmaRe)/(BI)?;

2. Qms—the mechanical damping ratio define as
Q@ fsMma)/ Runs;

3. Q;s—the total system damping ratio defned as
L/((1/ Qms) + (1/Qes));

where f; is the free resonance frequency.
The procedure for determining parameter values is
as follows.

(i) Measure fundamental resonance f; and Q.
This gives expressions involving M4, Cins, R
and BI.

(il)) Add a fixe mass to the driver cone and
re-measure fy. Mpq and C,s can now be
evaluated with reasonable accuracy (from fp =
(1/27) /K [m).

iii. Measure real part of impedance at fy. This gives
Res = (Bl)z/Rms-

(iv) Put values into expression for Qys, i.6. Qs =
2nfSMdees/(Bl)2. Now we have Bl and
therefore R, also.

(v) Measure piston diameter and calculate mass of
air load, subtract from M,,; to get actual piston
mass.

(vi) Calculate Q.5 from Q,;5, Ryus and R,. Total Q,
Qys, 1s the parallel sum of Q. and Q5.

One can see already that there is potentially a
large inaccuracy in the measurement of Bl since it
is a derived parameter. Also, O, although based
on measurement, can also be subject to errors as
it is calculated by measuring loudspeaker electrical
impedance, subtracting the resistance and inductive
effects and using a simple curve-fitti g routine to
determine the 3dB points (the loudspeaker can be
easily modelled as it is a single degree of freedom
system). The measured values for 20 driver units are
shown in Table 1.



Table 1. Driver-unit parameter values

Driver R, fs Mya Cms Bl Rins

wit () (Hz) Oms Qi Qes (2 (103mN7) (Tm) (kgs™')
1 4.67 5446 745 0363 0381 7.835 1.015 5.942 0.387
2 475 49.63 7.15 0.322 0.337 8.392 1.142 6.280 0.392
3 494 5443 739 0368 0.388 7.882 1.012 6.067 0.390
4 4.86 54.48 7.43 0.386 0.408 7.855 1.012 5.862 0.387
5 485 54.69 7.39 0361 0380 8.042 0.982 6.145 0.400
6 4.87 53.35 7.69 0365 0.383 8.120 1.022 6.080 0.380
7 486 5335 7.50 0.351 0368 8.125 1.022 6.202 0.387
8 476  53.37 847 0.352 0.367 8.167 1.020 6.162 0.342
9 492 53838 720 0.362 0.381 7.967 1.022 6.105 0.402
10 4.83 53.74 7.84 0.349 0.365 8.005 1.025 6.192 0.370
11 485 53.09 7.17 0364 0385 8.315 1.017 6.107 0.412
12 492 5222 7.59 0342 0.359 8.302 1.047 6.317 0.382
13 474 5420 8.09 0.363 0380 7.577 1.062 5.882 0.342
14 497 52.18 7.74 0356 0.373 8.037 1.080 6.130 0.367
15 500 5238 753 0.355 0373 8.135 1.062 6.195 0.382
16 476 4891 7.41 0.312 0.326 8.092 1.222 6.240 0.357
17 492 5468 7.89 0368 0386 8.197 0.965 6.192 0.380
18 4.86 52.88 7.41 0.350 0.367 8.242 1.030 6.222 0.392
19 487 4988 6.85 0.320 0336 8.262 1.152 6.330 0.402
20 479 51.48 7.74 0.345 0.361 8.497 1.057 6.243 0.380

5.5. Sound Pressure Level measurement

The Sound Pressure Level (SPL) of each driver unit
was measured in a infnite baff e anechoic chamber,
the driver units being tested in a random order. The
results are shown in Figure 4, where SPL is plotted in
the frequency range of 100 to 800 Hz.

5.6. Linear regression

In the analysis two replications were used for each
coil in each of which a fully frequency response curve
was produced. The explanatory factors modelled are:

(i) coil electrical resistance including connections
(Re);
(ii) total moving mass (M,q);
(iii) total suspension compliance (C,;);
(iv) motor ‘shove factor’ (BI);
(v) mechanical damping (R;s).

A set of simple linear regression analysis of the
experimental data is reported in Table 2, where the
factors are modelled at 10 specif ¢ frequency points
on the SPL curves. The factor values are scaled to be
in the range [—0.5, +0.5] so that direct comparisons
may be made between model factors.

The regression results show that the ftted linear
models account for between 10 and 64% of the

variability in the data depending on which response
was chosen. The regression models between 100 and
400 Hz on average explain about 60% of the variation
in the data, with an F statistic of around 4 and
association 95% p-value of 0.02. This indicates that it
is unlikely that all the regression coefficie ts are zero
for these models. From the models of 150 to 400 Hz,
the coeff cient for R, has the highest value and is the
most significan factor.

6. HEDGETRIMMER CASE STUDY

The hedgetrimmer is a simple electromechanical
device for cutting small branches and stems. The
no-load running speed of each manufactured product
is dispersed around the design performance target
depending on the actual parameter values achieved for
the motor, gearbox and blade subsystems, as shown
in Figure 5. During operation, the blade speed of an
individual product will vary due to the loading placed
on the system by the cutting action.

The bond graph of the hedgetrimmer is shown
in Figure 6 and is constructed using the energy-
related parameters of the motor and blade subsystems.
The model has been developed incorporating signal
fows in order to achieve a representation of the
reciprocating motion of the blade and the intermittent
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Table 2. Linear regression model results—most signif cant factor in bold for each model

Regression model factors

Regression statistics

Freq.
(Hz) Constant R. M4 Cms Bl Rins R?-value  F-value p-value
100 83.64 —0.0995 0.2244 0.1205 —0.1665 —0.2045 0.5178 3.007 0.0476
150 89.00 —0.2891  0.0946  0.0129  0.1086  —0.1709 0.6447  5.080  0.0073
200 87.91 -0.2771 0.0952 0.1468 0.1038 —0.1844 0.6223 4.614 0.0107
250 9025  —0.2223  0.1447 02209  0.0414  —0.2016 04959 2754  0.0618
300 90.19 —0.3485 0.0130 0.1561 0.1175 —0.1979 0.6107 4.392 0.0129
400 89.40  —0.3089  0.0192  0.1357  0.1740  —0.2367 0.5819  3.897  0.0201
500 89.73 —0.2760 0.1525 0.0923 0.1527 —0.2088 0.5074 2.884 0.0539
600 89.79 —0.2351 0.1472 0.1090 0.1558 —0.1469 0.2960 1.177 0.3684
700 8935  —0.2260 03001  0.3133 —0.2429  —0.0757 0.1009 03141  0.8963
800 88.74 0.2434  —0.7266 03572  —0.3155 0.7197 0.1866 0.6422  0.6717
nature of the load. The load is conf gured to always
work against motion, peaking at half-stroke, i.e. out
Motor of phase with the blade motion. The operation of
this model has been verifie using a commercially
51133 Gearbox available bond graph simulation package, 20Sim,
available at: www.20sim.com.
oo The function fi(x) in Figure 6 represent functions
/Yoke /Blades for changing displacement into an intermittent load
Plan to simulate the cutting action on branches, and the
view function f>(x) represents a function to convert rotary

Figure 5. Schematic of hedgetrimmer

displacement into linear displacement. Typical bond
graph model factors are shown in Table 3.

The typical values established for each factor were
calculated from physical measurements of motors and
blades and existing product test data. Note that there
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Table 3. Hedgetrimmer bond graph model factors

Description Typical value

R, Electrical resistance of 30.3 Q2
motor

Iinag  Motor inductance 0.152H

r Modulus of motor 0.074
gyrator element

I Moment of inertia of 4.54¢—05 kg m?
motor armature

Ry;  Friction torque of motor 15.9¢—06 Nms rad !
mechanism

mg Modulus of gearbox 0.0125
transformer

me Modulus of yoke crank 0.082

C Mechanical compliance le—05mN~!
of system

M Expected blade mass 0.5 kg

Rys  Blade friction 63 Nsm™!

S Cutting load opposing 23 Nand 45N
motion

are two values associated with the factor S;, which
represent the distribution of foliage from thin objects
such as leaves to thick objects such as branches. The
factor S; can be considered as a noise factor, as it is
not under the designer’s control.

As for the loudspeaker bond graph model, the
hedgetrimmer model is an approximation to the
real system, but can be used to describe important
nonlinear behaviour of the system.

6.1.  Bond graph insight into hedgetrimmer system

The bond graph of Figure 6 is used to construct
a set of state—space equations describing the system,
recalling that the state—space equations are generated
from consideration of each inertia and capacitor
element in the system. From Figure 6, each power
bond (pb) considered below is assigned a number
clockwise around each 1-junction and O-junction
starting with the supply as pb1 the gyrator output as
pb5, the gearbox output as pb9, the crank output as



pb11 and fnishes with the mass as pb16. As for the
previous bond graph, the variables are numbered so
that e; and f; are the effort and f ow associated with
pb1 and so on.

Thus at the frst 1-junction

dfp, 1
g_m(se_Refé_rfﬁ)s (7)

and for the second 1-junction

d 1
g = Y(sz — szf() — mgmcel3). (8)

For the 0-junction:

d 1
% = Smemg fi = fio). )

and for the f'nal 1-junction

dfie 1
—_ = — — R Sp. 10
” M(613 bf fi6 + S1) (10)

Putting these equations into matrix form gives

—R. _
Toi Tna 0
f2 r =Ry, —mgnic 0 f2
dlfe|_| 1T T 1 o
dr {ei3| 0 Mg 0 =1 €13
C
fi6 1 Ry fi6
0 0 M M'f
1
g 0
0 0 Se
+ . 11
0 0 |:Sl:| (i
1
0

As was shown for the voice-coil, the relative
significanc of the design factors in the main matrix
can be estimated after scaling the matrix so as to
equalize all numerical values [ 12]. However, estimates
of the nominal values of f>, fs, €13 and fi¢ are frst
required.

From motor data corresponding to approximate
anticipated blade running sped of 1800 rpm, f>» =
1.33A, fs = 2847 rads™! and fig = 1.896 ms~.
However, eq3 is more diff cult to estimate. Let the
sum of output power and power lost to blade friction
=74 W+ 66 W = 140 W, then, based on power =
force x velocity, force ej3 = 140/1.86 = 75 N.

We can then scale each equation to unity and the
matrix equations become

2
d 1.33
S s
dr | 2847
€13
- 1.86
71993 —1049 0 0
| 076 -035 —06 0
- 0 3898 0 2480
0 0 3061 —382
v
'f” 496 0
J6
2847 0 0 Se
<| 20+ o 0 |:Sz] (12)
& 0 1.08
e
1.86

Mass, M, and stiffness, C, in particular are
parameters that are highlighted as having a potentially
significan influenc on the system. However, greater
insight will be obtained through utilizing the expected
variation of each parameter value as is used in control
theory [15] by multiplying each value in the matrix by
the ratio of expected variation divided by the nominal
value for each parameter.

Furthermore, at this point let us confne the
parameters considered to the design factors that can be
investigated in physical experiments later, which relate
to Re, M, Rys; and Rpr. Only the main matrix values
modif ed by these design factors are shown below. In
each case we have used the anticipated experimental
range value as the expected variation value, that is
we are calculating response sensitivity relative to the
design factors.

—199.3 x 203 -

303
- —0.35 x 2%
: : (13)
0.62 14.3
3061 x %62 382 x 143
~0.32 - - -
— _8.4e-03 — -
- . (14)
- _ 3796 —28.6

Note that from this analysis mass, M, is the strongest
candidate followed by blade friction, Rp.



Table 4. Experimental results, blade speed measured using a stroboscope in flashe per second

Run  Re () Rpr Nsm™!) Ry (Nmsr!) M(kg) S (N) Bladespeed
1 3030 19.1 15.86e—06 0.5 25 2010
2 3030 6.3 16.06e—06 0.81 25 1900
33030 4.8 16.25¢—06 1.12 25 1620
4 3026 19.1 16.06e—06 1.12 25 1890
5 3026 6.3 16.25¢—06 0.5 25 1910
6 3026 4.8 15.86e—06 0.81 25 1875
7 3025 19.1 16.25¢—06 0.81 25 1885
8 3025 6.3 15.86e—06 1.12 25 1780
9 3025 4.8 16.06e—06 0.5 25 1950

10 3030 19.1 15.86e—06 0.5 45 1850
11 3030 6.3 16.06e—06 0.81 45 1795
12 3030 4.8 16.25¢—06 1.12 45 1540
13 3026 19.1 16.06e—06 1.12 45 1715
14 3026 6.3 16.25¢—06 0.5 45 1780
15 3026 4.8 15.86e—06 0.81 45 1600
16 3025 19.1 16.25¢—06 0.81 45 1790
17 3025 6.3 15.86e—06 1.12 45 1700
18 3025 4.8 16.06e—06 0.5 45 1840

Table 5. Linear regression results—most important factor in bold

Regression model factors

Regression statistics

Constant Re Rpf Ry M

S R%-value  F-value p-value

1811.0 —42.917 93.288 —49.543

—188.39

—137.13 0.81731 10.737  4.224e—04

6.2. Physical experimentation

Table 4 shows the experimental design plan (a
repeated L9 orthogonal array) and results for the
physical experimentation on the hedgetrimmer.

In this experiment R., Rpr, Ry and M are
considered to be design factors, S; is a noise factor
and blade speed is the quality characteristic. A simple
linear regression analysis of the experimental data is
reported in Table 5. The factor values are scaled to be
in the range [—0.5, +0.5] so that direct comparisons
may be made between model factors.

The model ftted to the data shows that M is the
most important design factor, followed by Ryr, as
predicted by the bond graph model. Blade load, S,
is also very important, but is outside the designer’s
control, so a good design would aim to reduce the
strength of this effect. The regression statistics show
that, with an R? value of 0.82, 82% of the variability in
the data are explained by the model, and the F statistic
of 10.7 and its 95% p-value of 0.0004 show that the
model parameters are highly unlikely to be zero.

7. DISCUSSION

Both case studies show a good agreement between
the expected importance of the design factors, and the
actual importance as measured using empirical data.

The loudspeaker case study involved collecting data
on a single design and measuring the unit-to-unit
variability introduced during the manufacture of the
drive units. The data collected here showed only a
small variation in product performance, but important
effects were still discernable when the data were
analysed. Several linear regression models were built
at different frequency points, and the most reliable
models (those built at 150—400 Hz) all showed that the
factor R, was the most important in determining the
SPL response. This is consistent with the bond graph
analysis, which also showed R, as being an important
factor. The bond graph analysis also showed Bl as
being important, and this factor was signif cant in the
regression models ftted, but it was not as strong an
influenc as R,.

The hedgetrimmer study involved performing an
L9 orthogonal array experiment on the hedgetrim-



mer design. Performing an experiment on the design
should lead to larger variation in design performance
and show the relationships between design factors and
response more clearly than measuring manufacturing
variability. Indeed, this is what the results show with
a statistically more significa t linear regression model
than those obtained for the loudspeaker study. The f't-
ted linear regression model explained 82% of the vari-
ation in blade speed. Again the f ndings from the bond
graph analysis were conf rmed and showed that M was
the most important design factor, followed by Rpy.

7.1.  Conclusions

The use of bond graphs in engineering design has
been described and applied to two design studies.
Some very encouraging preliminary results have been
presented that show how bond graphs can be used to
help in encapsulating engineering knowledge about a
system and in selecting important design factors. This
is useful in RED, where experiments are conducted on
engineering systems by varying the settings of design
factors.

The two studies involved analysis of empirical data
collected during manufacture of a loudspeaker driver
unit, and during a more general experiment on the
design of a hedgetrimmer. These studies showed how
the methods discussed might be applied in future to
provide a more causal link between engineering design
and performing experiments for system optimization
using RED.

The work on bond graphs has been extended to
analyse causal relationships between design factors,
and tracing causal links to highlight potential
interactions is proposed. Future work will establish
closer links between bond graph causality and
experimental design and model selection in RED for
both real and computer experiments.
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