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tThe problem of adaptive routing in a network with failures is 
onsidered. The network may bein one of �nitely many states 
hara
terized by di�erent travel times along the ar
s, and transi-tions between the states o

ur a

ording to a 
ontinuous-time Markov 
hain. The obje
tive is todevelop a routing strategy that minimizes the total expe
ted travel time. Dynami
 programmingmodels and 
ow-oriented models are developed and analyzed in the un
apa
itated and the 
a-pa
itated 
ase. It is shown that the robust plan 
an be found from a spe
ial two-stage sto
hasti
programming problem in whi
h the se
ond stage models the re-routing problem after the statetransition in the network. The models are illustrated on an example of the Sioux Falls transporta-tion network. The 
omputational results reveal striking properties of di�erent routing poli
iesand show that substantial improvements in both duration and size of jams 
an be a
hieved byemploying robust strategies.
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tionThe notion of a traÆ
 jam is familiar to almost everyone who has driven a 
ar. Redu
ingthe frequen
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h jams is a key issue that traÆ
 planners and automati
guidan
e systems have to deal with almost 
ontinually [15,20℄. One way to redu
e jamsis to in
rease the 
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Fig. 1.1. Transition diagram of network's states.Our approa
h is somewhat 
omplementary. It has be
ome apparent that although there ismu
h resear
h being 
arried out on providing timely and a

urate information to drivers[1,4,21℄, there is mu
h work still to be performed regarding the generation and use of
omplex dynami
al models to improve the 
ongestion levels in large urban areas. We aregoing to develop a new modeling paradigm, namely robust guidan
e strategies. We shallintrodu
e a number of models for networks subje
t to failures, dis
uss robust guidan
estrategies and illustrate the results on an example of a real-world network. Sin
e the nete�e
t of the robust strategies that we propose here is to redu
e the size of jams whenfailures o

ur, the modeling format proposed herein 
an also be used for more e�e
tivedesign of fault tolerant 
ommuni
ations networks. In this 
ase, the network is typi
allydesigned to have enough residual 
apa
ity to safely reroute 
ow when a failure o

ursby generating at least two paths through the network for ea
h demand pair. If robuststrategies are used for path 
hoi
e, we believe that signi�
antly smaller 
apa
ities need tobe provided sin
e 
ows 
an be more e�e
tively rerouted whenever a failure o

urs.Our assumptions are rather abstra
t and the models that we develop apply to other typesof networks, most notably|tele
ommuni
ation networks. In fa
t, we believe that there ismu
h potential in applying some our ideas in tele
ommuni
ation.We use the transportationterminology mainly for illustrative purposes and to guide intuition.We 
onsider a network with node set N and ar
 set A � N �N , and random non-negativear
 
osts (travel times) ~
ij and 
apa
ities ~uij, (i; j) 2 A. The travel times and 
apa
itiesare determined by the state of the network ` 2 f0; : : : ; Lg: for ea
h ` the travel timesare equal to 
ìj and 
apa
ities to uìj. The states evolve in time at random, a

ording toa 
ontinuous-time Markov 
hain, and the 
urrent state is known to the vehi
les in thenetwork.We shall at �rst fo
us our attention on the simple 
ase when the only possible transitionsare between state 0 (representing the normal operation mode) and states ` 6= 0 (repre-senting failure modes). The rate of transition from 0 to ` 6= 0 will be denoted by �`, andthe transition rate ba
k by �`, see Figure 1.1. It will be
ome 
lear in the sequel how moregeneral transition diagrams 
an be treated. 2



The problem is as follows. At ea
h node n 2 N there is a 
onstant demand 
ow sn thatmust be moved through the network to some destination node D at the minimum expe
tedtravel time. Related problem formulations have been studied by many authors. In [5,6,16℄sto
hasti
 shortest path problems are analyzed; they 
orrespond to our setting when noar
 
apa
ity 
onstraints are present. In [3℄ related two-stage problems are 
onsidered inthe 
ase when some ar
 lengths may be
ome in�nite. Problems with 
apa
ity 
onstraintsare dis
ussed in [12℄ in the 
ase of a dynami
 (layered) network with one sour
e (see also[17℄ and referen
es therein).To fa
ilitate the analysis and to provide ground for more general 
ases we make the fol-lowing simplifying assumptions.(A1) If the state of the system 
hanges from k to ` when a vehi
le is on ar
 (i; j) thetravel time on (i; j) remains equal to 
kij for this vehi
le; it experien
es new travel timesonly after hitting j.(A2) The produ
ts �`
0ij and �`
ìj are mu
h smaller than one for ea
h ` and ea
h (i; j) 2 A.Condition (A1) amounts to assuming that failures o

ur at the initial se
tions of the ar
sand do not a�e
t those who have passed them. It is equally simple to 
onsider other 
ases,ex
ept the notation then be
omes more involved.Condition (A2) implies that the failures are rare and the probability of more than one statetransition during the travel time of a vehi
le on an ar
 (i; j) is negligibly small. In manyreal{world transportation networks this assumption 
an be legitimately 
riti
ised, but inthe area of tele
ommuni
ation networks it is more likely to be satis�ed. Nevertheless, weshall see that in the presen
e of 
apa
ity 
onstraints even rare failures lead to new andrather involved models.In se
tion 2 we 
onsider the un
apa
itated version of the problem and show a simpledynami
 programming solution. Se
tions 3 and 4 develop a 
ow-oriented model in thetwo-stage 
ase, where only one state transition in a vehi
le's journey is allowed; se
tions5 and 6 illustrate how this model 
an be extended to the multistage 
ase. In se
tions 7{9we analyze the 
apa
itated problem, in whi
h the main issue is the intera
tion betweenvehi
les that started at di�erent times but rea
h a node at the same time, thus leadingto jams. We analyze models that guide vehi
les in a way that minimizes the 
ost of jamsand fa
ilitate the 
learing of jams in a user-spe
i�ed time frame. Finally, in se
tion 10 we
onsider a real-world network of Sioux Falls to illustrate the models and solutions.2 Single vehi
le approa
h and dynami
 programmingLet us at �rst 
onsider the un
apa
itated problem: uìj = +1 for (i; j) 2 A and ` =0; : : : ; L. Owing to the Markov property of state transitions and to the linearity of the
osts, the problem 
an be solved by dynami
 programming methods as the sto
hasti
3



shortest path problem [5℄. With ea
h node i 2 N and ea
h state ` 2 f0; 1; : : : ; Lg weasso
iate the 
ost-to-go vì : the least expe
ted travel time from i to D when the initialnetwork state is `. They satisfy the following Bellman's equation:vì = min(i;j)2A IEf
ìj + v`0j g; i 2 N n fDg; ` = 0; : : : ; L; (2.1)where `0 is the state of the network when the vehi
le rea
hes node j. We set vD̀ = 0 forall `.Assume that the initial state of the network is 0. If a vehi
le enters ar
 (i; j), the stateof the network may 
hange during its travel time 
0ij. Owing to (A2), the probability ofmore than one state transition in time 
0ij is negligible, and the travel time itself remainsun
hanged, by virtue of (A1). Thus the probabilities p0` of transition from 0 to ` in thistime are given byp00 � �1� LX̀=1�`�
0ij; p0` � �`
0ij; ` = 1; : : : ; L:If (A1) or (A2) is not satis�ed, we 
an still 
al
ulate these transition probabilities bymethods of Markov pro
ess theory. 1Equation (2.1) for ` = 0 readsv0i = min(i;j)2A n
0ij + �1� 
0ij LX̀=1�`�v0j + 
0ij LX̀=1�`vj̀o; i 2 N n fDg: (2.2)Similarly, for ` = 1; : : : ; L we obtainvì = min(i;j)2A n
ìj + �1� 
ìj�`�vj̀ + 
ìj�`v0jo; i 2 N n fDg: (2.3)To simplify the exposition, let us temporarily make a further (over-)simpli�
ation: assumethat it is reasonable to negle
t 
ases when more than one state transition o

urs in thetime of vehi
le's entire journey, so that the transition diagram is given in Figure 2.1. Then,1 If more than one transition is possible, the probabilities p0` are given by the �rst row ofthe matrix P (t) = exp(Gt), with t = 
0ij and the generator G having nonzero entries: g00 =�PL̀=1 �`, g0` = �`, g`0 = �`, g`` = ��`, ` = 1; : : : ; L (see [9℄). If the travel time on (i; j) 
hangesinstantaneously when the state 
hanges (due to the 
hange in speed), the 
al
ulation be
omesmore involved, be
ause the next state ` is not the state of the network after a �xed time 
0ij butafter a random stopping time ~
ij . Again, the evaluation of the transition probabilities is possibleby using the lo
ation of the vehi
le on this ar
 instead of time, and the 
orresponding transitionrates. We shall not pursue this interesting avenue here; our assumptions allow the approximationP (t) = exp(Gt) � I +Gt, be
ause Gt is small. 4
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Fig. 2.1. Transition diagram for a one-step lookahead poli
y.for the purpose of designing the route for a vehi
le starting at state 0, we may set �` = 0in (2.3) so that it be
omes the following system:vì = min(i;j)2A f
ìj + vj̀g; i 2 N n fDg; ` = 1; : : : ; L: (2.4)These equations 
an be solved for ea
h ` = 1; : : : ; L independently, and their solutionssubstituted into (2.2). The expe
ted total travel 
ost is equal to Pn2NnfDg snv0n. We shall
all the solution thus obtained a one-step lookahead poli
y (see [5℄).If the initial state of the network is ` 6= 0 when a vehi
le starts its journey, the one steplookahead poli
y is given by a similar approximation: we set all �` = 0, ` 6= 0, in (2.2),but 
onsider (2.3) in its full form.Our 
onsiderations make it 
lear how to pro
eed when more that one transition has aprobability that 
annot be negle
ted. We shall return to this question in se
tions 5 and 6,where more general n-step lookahead poli
ies are 
onsidered.3 The 
ow formulationThe purpose of this se
tion is to develop a 
ow model of the un
apa
itated problemdis
ussed in se
tion 2. This model will be more diÆ
ult to analyse and to solve than thedynami
 programming equations. However, it will be a more 
onvenient starting point forthe development of models for the 
apa
itated 
ase, where the appli
ability of dynami
programming is rather limited.Before pro
eeding to the details, let us stress again that in the 
ase when failures may o

urand when the information about that 
an be used for re-routing, the initial 
hoi
e of thepath should a

omodate this possibility. Our 
ow-based models will help us to formalizethis fundamental issue. 5



Suppose that the state of the network at time t = 0 is 0. Consider the vehi
les startingin a time interval [0; �℄ with some small � > 0 and assume that vehi
les starting fromea
h node follow some pre-spe
i�ed path. Let us denote by fij(�) the expe
ted numberof these vehi
les whi
h rea
h ar
 (i; j) at state 0 (at any time t � 0), and by gìj(�),` 6= 0, the expe
ted number of these vehi
les that enter (i; j) at state ` 6= 0. We shalldevelop the 
ow balan
e of these vehi
les at node i. Observe that the vehi
les traversingan ar
 (k; i) experien
e with probability 
0kiPL̀=1 �l a state transition before rea
hing i,thus disappearing from our balan
e of vehi
les at state 0 (we use (A2) to negle
t the
han
e of two or more transitions). On the other hand, vehi
les that entered (k; i) at state` 6= 0 have the 
han
e of �l
k̀i of getting to i at state 0 and 
reating an extra in
ow ati. The expe
ted sour
e in
ow at i at network's state 0 will be si� � oi(�), where oi(�)represents the expe
ted number of vehi
les that start in the interval [0; �℄ at network'sstate ` 6= 0. Clearly, oi(�)=�! 0 as �! 0. ThusX(i;j)2A fij(�)� X(k;i)2A �1� 
0ki LX̀=1�`�fki(�)� LX̀=1 X(k;i)2A 
k̀i�`gk̀i(�) = si�� oi(�):(3.1)Let us denotexij = lim�!0 fij(�)=�; yìj = lim�!0 gìj(�)=�; ` = 1; : : : ; L:The variables xij and yìj 
an be interpreted as expe
ted marginal 
ows at states 0 and `.These limits exist, be
ause if all vehi
les starting from some node follow the same path, thenumber of those whi
h rea
h a given ar
 at a 
ertain state of the network is proportionalto the number of vehi
les that started.The optimal values of the expe
ted `marginal 
ows' xij and yìj solve the following linearprogramming problem:minn X(i;j)2A 
0ijxij + LX̀=1 X(i;j)2A 
ìjyìjo (3.2)X(i;j)2A xij � X(k;i)2A �1� 
0ki LX̀=1�`�xki � LX̀=1 X(k;i)2A 
k̀i�`yk̀i = si; i 2 N n fDg; (3.3)��` X(k;i)2A 
0kixki + X(i;j)2A yìj � X(k;i)2A �1� 
k̀i�`�yk̀i = 0; i 2 N n fDg;` = 1; : : : ; L; (3.4)xij � 0; yìj � 0; (i; j) 2 A; ` = 0; : : : ; L: (3.5)6



Equation (3.3), whi
h results from dividing (3.1) by� and passing to the limit with�! 0,expresses the balan
e of expe
ted marginal 
ows at node i in state 0, while (3.4) (by asimilar argument) is the 
ow balan
e in state ` 6= 0.Let us stress that we 
onsider in these balan
es only vehi
les that started at state 0.We do not need to in
lude vehi
les that started after the state transition, be
ause in theun
apa
itated 
ase they do not intera
t with the vehi
les whi
h are already on the way.In the 
apa
itated 
ase, whi
h will be dis
ussed in se
tions 7{9, we shall revise this modeland 
onsider all vehi
les.The obje
tive is the total expe
ted travel time of vehi
les that start in the normal state.We shall show that at a 
ertain optimal basi
 solution to (3.2){(3.5) the dual variables arethe optimal 
osts-to-go satisfying the dynami
 programming equations (2.2){(2.3).Let us de�ne a stable optimal basis of (3.2){(3.5) as a basis whi
h remains optimal whenthe demands si in (3.3) are repla
ed by si + ", and the zero demands in (3.4) by ", for alli 2 N nfDg and all suÆ
iently small " > 0. We shall show that one of optimal bases mustbe stable.Let "k # 0, and let Bk be an optimal basis for the problem with demands in (3.3) and(3.4) equal to si + "k and "k, respe
tively. At least one of these bases must appear atin�nitely many k; this is our stable basis. Indeed, passing with k to 1 we see that it isoptimal for the original problem. Moreover, at ea
h node i at least one of the variables xij
orresponding to the outgoing ar
s (i; j) 2 A must be basi
. The last observation followsfrom the fa
t that this basis de�nes a feasible basi
 solution for the demand si+"k > 0, andthe only positive 
oeÆ
ients in (3.3) are those at xij. The same applies to the variables yìjin the row (3.4) with demand "k > 0, for all ` 6= 0. It follows that every node i 2 N n fDghas at least L + 1 basi
 variables asso
iated with it: one for ea
h ` = 0; : : : ; L. Sin
e thenumber of 
onstraints (3.3){(3.4) is equal to the number of nodes in N n fDg multipliedby L+1, ea
h node i has exa
tly one basi
 variable xij asso
iated with state 0, and exa
tlyone basi
 variable yìj for ea
h state ` 6= 0. 2The dual variables vì asso
iated with a stable optimal basis yield non-negative redu
ed
osts
0ij � v0i + �1� 
0ij LX̀=1�`�v0j + 
0ij LX̀=1�`vj̀ � 0; i 2 N n fDg;
ìj � vì + �1� 
ìj�`�vj̀ + 
ìj�`v0j � 0; i 2 N n fDg; ` = 1; : : : ; L:2 In 
ontrast to the deterministi
 shortest path problem, the basi
 ar
s do not have to form aspanning tree. Indeed, in the absen
e of ar
 
apa
ities it may be pro�table to traverse a loop untilthe state of the network 
hanges. Consider the example with two nodes: 1 and 2 (destinationnode) and ar
s (1; 1) and (1; 2). If 
01;2 = 1, 
11;2 = 100 and �1 = 0:1, in state 1 it is optimal to
hoose ar
 (1; 1) (wait for the return to the normal state).7



For ea
h i and ea
h ` the inequality for the basi
 variable be
omes an equation, so (2.2){(2.3) is satis�ed.If we negle
t the possibility of more than one transition per journey, the 
ow formulationsimpli�es:minn X(i;j)2A 
0ijxij + LX̀=1 X(i;j)2A 
ìjyìjo (3.6)X(i;j)2A xij � X(k;i)2A �1� 
0ki LX̀=1�`�xki = si; i 2 N n fDg; (3.7)��` X(k;i)2A 
0kixki + X(i;j)2A yìj � X(k;i)2A yk̀i = 0; i 2 N n fDg; ` = 1; : : : ; L; (3.8)xij � 0; yìj � 0; (i; j) 2 A; ` = 0; : : : ; L: (3.9)Again, by an identi
al argument, the dual variables asso
iated with (3.7){(3.8) at a stableoptimal basi
 solution satisfy the simpli�ed dynami
 programming equations (2.2){(2.4).We emphasize the fa
t that the variables in (3.6){(3.9) are expe
ted 
ows rather than
ow realizations under di�erent s
enarios. To obtain the 
ow realization X in the normaloperation mode (the plan) we �nd the basi
 variable xijB for ea
h i 2 N n fDg; there isonly one for ea
h i at a stable basi
 solution. The ar
 (i; jB) is the one to 
hoose underthe normal operation mode, that isXijB = si + X(k;i)2AXki; i 2 N n fDg:S
enarios `normal-failure `' in our problem are a
tually 
olle
tions of many events, so the`
ow' in this 
ase is still a random obje
t. But again, for ea
h ` 6= 0 there is only one basi
variable asso
iated with node i and it indi
ates whi
h ar
 should be 
hosen as a detourfrom this node in 
ase the state 
hanges to `.Problem (3.6){(3.9) is similar to two-stage sto
hasti
 programming problems with x play-ing the role of �rst stage variables, and y` being the se
ond stage variables in s
enario` = 1; : : : ; L. However, we should keep in mind that our s
enarios are aggregates of verylarge 
olle
tions of events, and both x and y represent expe
ted values over these 
olle
-tions. Su
h aggregate representation is possible owing to the linearity of the 
ost fun
tion.
8



4 The equivalent �rst stage problemSupposing that the expe
ted 
ow of the plan x is �xed, the re-routing 
ows y`, ` = 1; : : : ; L,in (3.6){(3.9) 
an be 
al
ulated from the se
ond stage problems:min X(i;j)2A 
ìjyìj (4.1)X(i;j)2A yìj � X(k;i)2A yk̀i = �` X(k;i)2A 
0kixki; i 2 N n fDg; (4.2)yìj � 0; (i; j) 2 A: (4.3)The right hand side of (4.2)|the supply|is the expe
ted marginal 
ow of vehi
les thatexperien
ed state transition from 0 to ` while passing ar
s ending at node i. We noti
e therelation of this supply ve
tor to the 
ost terms asso
iated with x in (3.6).The optimal value of (4.1){(4.3) is a fun
tion of the plan x. Let us denote it by q`(x).Then we 
an 
ompa
tly rewrite (3.6){(3.9) asminn X(i;j)2A 
0ijxij + LX̀=1 q`(x)o; (4.4)subje
t to (3.7) and the nonnegativity 
onstraint on x.In general, su
h two-stage problems need to be solved iteratively. For example, given a planx, the se
ond stage problems (4.1){(4.3) provide some information about the fun
tionsq`(x). This information 
an be used to revise the plan and the iteration 
an be repeated.In our 
ase, however, a one pass approa
h is suÆ
ient, be
ause the fun
tions q`(�) arelinear. We haveq`(x) = X(i;j)2A vj̀
0ijxij; (4.5)where vì are dual variables (node potentials) asso
iated with the 
onstraints (4.2) at anoptimal basi
 solution to (4.1){(4.3). Indeed, by the duality theory in linear programmingthe optimal value in (4.1){(4.3), if it is solvable, is equal to the optimal value of its dual,and the right hand side of (4.5) multiplied by �` is the obje
tive of the dual. Moreover,as known from general theory of network programming the optimal basis 
orresponds to aspanning tree, and the values of dual variables 
an be 
al
ulated from (2.4), independentlyof the supply; they depend only on 
`.
9



Substitution into (4.4) yields the 
ompa
t �rst stage problem:min X(i;j)2A �1 + LX̀=1�`vj̀�
0ijxij (4.6)X(i;j)2A xij � X(k;i)2A �1� 
0ki LX̀=1�`�xki = si; i 2 N n fDg; (4.7)xij � 0; (i; j) 2 A: (4.8)As a 
on
lusion from this simple analysis we observe that the robust paths from ea
h nodeto D 
an be found by solving an aggregate generalized network 
ow problem (4.6){(4.8)(see [2℄). Its 
ost 
oeÆ
ients are not a
tual travel times; they are expe
ted travel timesobtained byb
ij = �1 + LX̀=1�lvj̀�
0ij:It is interesting to observe that the modi�ed ar
 
osts b
ij are obtained by a multipli
ativemodi�
ation of the original 
osts, with the multipliers independent of the travel times 
0ij.It should be stressed that paths from i to D that have equal expe
ted travel times mayhave di�erent a
tual travel times. This is di�erent from the deterministi
 formulationwhere su
h an equality is the fundamental property of all optimal paths. Here, ex
hangeof travel time for se
urity is possible.5 S
enarios `failure{normal' and `normal{failure{normal'It is 
lear how to treat the 
ase when the vehi
les start at network's state `. A simpleexample of the underlying Markov 
hain is given in Figure 5.1.The travel plan �` for these vehi
les is given by the problemmin X(i;j)2A �1 + �`w0j�
ìj�ìj (5.1)X(i;j)2A �ìj � X(k;i)2A �1� 
k̀i�`��k̀i = si; i 2 N n fDg; (5.2)�ìj � 0; (i; j) 2 A; (5.3)
10
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Fig. 5.1. Transition diagram for model starting in failure mode.in whi
h w0j represents the shortest time from j to D under the normal operation mode 0.Problem (5.1){(5.3) is identi
al to (4.6){(4.8), only the role of state 0 is played by `, and0 is its only su

essor. Note that we use other node potentials w0j than those asso
iatedwith (4.7), be
ause we negle
t the possibility of another failure, on
e the network returnsto state 0.The analysis of s
enarios `normal-failure-normal' 
an be built on the top of that. Problem(5.1){(5.3) repla
es (4.1){(4.3) to 
al
ulate the re-routing 
ost:min X(i;j)2A �1 + �`w0j�
ìjyìj (5.4)X(i;j)2A yìj � X(k;i)2A �1� 
k̀i�`�yk̀i = �` X(k;i)2A 
0kixki; i 2 N n fDg; (5.5)yìj � 0; (i; j) 2 A: (5.6)The optimal Lagrange multipliers (node potentials) vj̀ asso
iated with the 
onstraints (5.5)enter the �rst stage problem (4.6){(4.8). They will no longer be shortest times but shortestvirtual times.6 General state transitions and variable-depth lookahead poli
iesThe above analysis also suggests the way to develop lookahead poli
ies for a more general
ase of an arbitrary Markov 
hain of network states.Let L denote the �nite 
olle
tion of possible states of the network and let 
ìj the traveltime on ar
 (i; j) asso
iated with state ` 2 L. We assume that the states evolve a

ordingto a Markov 
hain with transition rates �kl, k; l 2 L. The initial state is 0.The problem is as follows. Given demands si, i 2 N n fDg, where D is a �xed destination11
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Fig. 6.1. S
enario tree for a variable-depth lookahead poli
y.node, �nd the poli
y that minimizes the sum of expe
ted travel times.Let us develop a multistage linear programming model for this problem. At �rst, we sele
t a
olle
tion of s
enarios: sequen
es of states that may o

ur with a non-negligible probabilityduring a journey of a vehi
le. For the problem addressed in se
tions 1{4, these s
enariosmay represent sequen
es of failures, or di�erent stages of a failure, whi
h we want todistinguish be
ause of their di�erent e�e
t on travel times.It should be kept in mind that our `s
enarios' 
over large 
olle
tions of events, be
ausewe do not spe
ify the times at whi
h the transitions o

ur, but only the order of statesvisited. The s
enarios form a tree T with the initial state at the root node and the pathsfrom the root to the leaves identi
al to sele
ted paths in the 
hain's graph. For example,for the state transition diagram of Figure 1.1 we may wish to 
onsider the s
enario tree ofFigure 6.1.Observe that the same state may o

ur at di�erent lo
ations in the s
enario tree, andusually di�erent 
hara
teristi
s (node potentials) will be asso
iated with it. We denote by`(m) the Markov 
hain's state 
orresponding to node m 2 T , by S(m) the set of su

essorsof node m in the s
enario tree and by f(m) the prede
essor of m in the tree. Ea
h nodem 2 T has an asso
iated path �(m) from the root: it de�nes a unique sequen
e of networkstates that leads to `(m). 12



The transition rate in T from node m to its su

essor n 2 S(m) is �mn = �`(m);`(n); onlytransitions in the dire
tion from the root to the leaves may o

ur.Let us denote (with a slight abuse of notation) by xmij� the expe
ted number of vehi
lesthat started at the normal state in the time interval [0; �℄ and entered ar
 (i; j) afterexperien
ing state transitions of the path �(m) (from our earlier 
onsiderations it is 
learthat it is for small � proportional to the length of this interval). The problem 
an beformulated as follows.min Xm2T X(i;j)2A 
`(m)ij xmij (6.1)X(i;j)2A x0ij � X(k;i)2A �1� 
0ki Xn2S(0) �0n�x0ki = si; i 2 N n fDg; (6.2)��f(m);m X(k;i)2A 
`(f(m))ki xf(m)ki + X(i;j)2A xmij � X(k;i)2A �1� 
`(m)ki Xn2S(m) �mn�xmki = 0;i 2 N n fDg; m 2 T n f0g: (6.3)xmij � 0; (i; j) 2 A; m 2 T : (6.4)In this problem 
`(m)ij denotes the travel time along the ar
 (i; j) in the state `(m) asso
iatedwith the node m of the s
enario tree; similarly, 
`(f(m))ki is the travel time in the stateasso
iated with the parent node.To solve (6.1){(6.4), we asso
iate with ea
h node m of the s
enario tree T the followinglinear programmin X(i;j)2A �1 + Xn2S(m)�mnvnj �
`(m)ij xmij (6.5)X(i;j)2A xmij � X(k;i)2A �1� 
`(m)ki Xn2S(m)�mn�xmki = smi ; i 2 N n fDg; (6.6)xmij � 0; (i; j) 2 A: (6.7)In this problem the demand ve
tor sm (if m 6= 0) is the expe
ted marginal 
ow of vehi
lesto be re-routed inherited from the prede
essor f(m):smi = �f(m);m X(k;i)2A 
`(f(m))ki xf(m)ki ; i 2 N n fDg:At the root node s0 = s. The 
onstants vnj appearing in the obje
tive are potentials of thenetwork's nodes that 
orrespond to the 
onstraints (6.6) at the optimal basi
 solutions of13



su

essor nodes n 2 S(m). Again, analogously to se
tion 4, the optimal value of (6.5){(6.7)is linear with respe
t to the demand smi . Consequently, all these problems 
an be solvedin a one-pass approa
h by traversing the s
enario tree from the leaves to the root.We shall omit the straightforward manipulations whi
h show that su
h a tree of problemsindeed solves the problem of �nding the best route, when only the s
enarios in
ludedinto the tree may o

ur. It almost exa
tly repeats our argument for the `normal{failure'and `normal{failure{normal' s
enarios 
onsidered earlier, ex
ept that the notation wouldobs
ure the otherwise 
lear idea.7 Introdu
tion to the 
apa
itated problemLet us now 
onsider a more general 
ase with ar
 
apa
ities uìj, asso
iated with states` = 0; : : : ; L. The main diÆ
ulty, as 
ompared to the un
apa
itated network, is thatwe 
annot work with expe
ted values of 
ows, as in se
tion 3. A
tual 
ow realizationsunder di�erent events must be 
onsidered. We also 
annot ignore the intera
tions betweendi�erent 
ow subve
tors, if they share the same ar
 at the same time. So, events and timemust be present in our model.We shall again restri
t our attention to the basi
 
ase of state 0 representing the normaloperation mode, and states ` = 1; : : : ; L representing failure modes, as des
ribed in se
tion1. In the 
ase of 
apa
itated ar
s the dynami
 programming approa
h be
omes extremelydiÆ
ult, be
ause the 
urrent lo
ation of all vehi
les must be in
orporated into the stateve
tor. We shall follow the 
ow modeling approa
h des
ribed in se
tions 3{5 to developan appropriate one-step lookahead model.Let us 
onsider the model (3.6){(3.9), and de�ne Y ` = y`=�`, ` = 1; : : : ; L. Further, letXij be the 
ow of vehi
les that enter ar
 (i; j) in the normal operation mode. Assuming1� 
0kiPL̀=1 �` � 1 in (3.7), we may use the approximation Xij � xij. Dividing (3.8) by �`we obtain the problem:minn X(i;j)2A 
0ijXij + LX̀=1�` X(i;j)2A 
ìjY `ijo (7.1)X(i;j)2AXij � X(k;i)2AXki = si; i 2 N n fDg; (7.2)� X(k;i)2A 
0kiXki + X(i;j)2AY `ij � X(k;i)2AYk̀i = 0; i 2 N n fDg; ` = 1; : : : ; L; (7.3)Xij � 0; Y `ij � 0; (i; j) 2 A; ` = 0; : : : ; L: (7.4)The ve
tor X in the above problem plays the role of the plan|the 
ow to be used in14



the normal state|while the ve
tors Y ` are the 
ows of re-routed vehi
les in states ` 6= 1(that is, vehi
les that experien
ed the state transition from 0 to ` during their journey).Equation (7.2) is the 
ow 
onservation 
onstraint in the normal operation mode. Equation(7.3) is the 
ow 
onservation 
onstraint for vehi
les that started in the normal operationmode but experien
ed transition to state ` during their journey.The subtle di�eren
e between (7.1){(7.4) and (3.6){(3.9) is that here we ignore the fa
tthat the ar
s that lie further from the sour
es on the plan's routes have a slightly smaller
han
e of being used, be
ause state transition may o

ur before a vehi
le rea
hes them.We keep, though, the terms with �l in the obje
tive fun
tion (7.1), be
ause they may
ontain large re-routing 
osts 
ìjY `ij. Apart from this small ina

ura
y, the model (7.1){(7.4) allows us to take into a

ount the ar
 
apa
ities for the plan. However, we still 
annotformulate 
apa
ity 
onstraints for the re-routed 
ows, be
ause we do not know at whi
htime they will need parti
ular ar
s, and what will be their intera
tion with the vehi
lesthat start after the transition o

urred. In other words, we need a non-stationary modelof the transient period immediately after the state transition.8 The nonstationary re-routing problemLet us assume that all travel times are integer and let M be an upper bound on all ofthem. Suppose that a transition from state 0 to state ` takes pla
e, and let t = 0 denotethe time of this transition. Let Y `ij(t) be the 
ow of re-routed vehi
les entering ar
 (i; j) attime t. They satisfy the 
ow 
onservation equationsX(i;j)2AY `ij(t)� X(k;i)2A
k̀i�t Yk̀i(t� 
k̀i) = �i(t); i 2 N n fDg; t = 0; 1; 2; : : : ; (8.1)where �i(t) is the in
ow into i of the vehi
les that experien
ed the state transition whiletraveling along the ar
s leading to i:�i(t) = X(k;i)2A
0ki>t Xki: (8.2)Sin
e the supply (8.2) vanishes after a �nite time (for whi
h an upper boundM is known),we know that the 
ows Y ` will vanish after a �nite time, too, although this time may bemu
h larger than M .Let Xìj(t) denote the 
ow of vehi
les that started when network's state was ` and thatenter ar
 (i; j) at time t. Sin
e we have many sour
es, and the network is not layered, we
annot ignore the intera
tions of the res
heduled 
ow Y ` with the 
ow X`(t). We makea simplifying assumption that further state transitions do not o

ur during the time that15



we are 
al
ulating X`. Even with this assumption, we 
annot avoid modeling the initialnon-stationary phase, when the re-routed 
ow Y `(t) and the new 
ow X`(t) intera
t. Thepoli
y that we develop under this assumption is termed a one-step lookahead poli
y.Denoting by T the optimization horizon and by Z`(t) = Y `(t) + X`(t) the e�e
tive 
owafter the state transition, we obtain the problemmin TXt=0 X(i;j)2A 
ìjZìj(t) (8.3)X(i;j)2AZìj(t)� X(k;i)2A
k̀i�t Zk̀i(t� 
k̀i) = si + �i(t); i 2 N n fDg; t = 0; 1; : : : ; T; (8.4)0 � Zìj(t) � uìj; (i; j) 2 A; t = 0; 1; : : : ; T; (8.5)where the additional supply �i(t) is given by (8.2). Let us note the fundamental di�eren
ebetween (8.4) and (3.4): in the 
apa
itated 
ase all vehi
les entering ar
 (i; j) must be
onsidered.The optimal value Q`(X) of (8.3){(8.5) is the res
heduling 
ost for the plan X, whentransition to state ` o

urs.Our further 
onsiderations are based on the assumption that the value T does not matterfor determining the robust plan X, provided T is large enough, and that the solution to(8.3){(8.5) be
omes for large t equal to a solution of the `steady-state' problem asso
iatedwith state `:min X(i;j)2A 
ìjX ìjX(i;j)2AX ìj � X(k;i)2AX k̀i = si; i 2 N n fDg;0 � X ìj � uìj; (i; j) 2 A:The detailed analysis of this issue ex
eeds the s
ope of the present note. From now on weshall simply assume that T is large enough and �xed, e.g., at the double of the maximumtravel time. We also assume that a transition from one plan to another is feasible. This
an be guaranteed by the existen
e of un
apa
itated ar
s (i; i) of length one for ea
h nodei whi
h e�e
tively model `waiting' at node i.To avoid some terminal e�e
ts asso
iated with the fa
t that the vehi
les that start late
annot make it to the destination anyway, and therefore 
hoose short ar
s, we may augment16
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Fig. 8.1. Counter-example for steady-state attainment. The numbers at the ar
s are travel times,or pairs (travel time, 
apa
ity) if 
apa
ity is �nite.(8.3){(8.5) with terminal 
onditions:Zìj(t) = X ìj; t = T � �; T � � + 1; : : : ; T � 1; T; (i; j) 2 A; (8.6)where � is some 
onstant (for example, the maximum travel time on the ar
s). In fa
t, by
hoosing T (or �) one may 
hange the allowed length of the transient period, before the
ow settles on the new steady-state solution.If there is no possibility of waiting (no un
apa
itated ar
s (i; i) of length one) it is notguaranteed that the 
ow must settle on the `steady-state' solutionX` at all, as the exampleshown in Figure 8.1 demonstrates. The example has 6 nodes, the destination node beingD = 6 and apart from the 
apa
ities noted in the �gure, all other ar
s are un
apa
itated.There is only one failure state, in whi
h the travel time on the ar
 (2; 3) in
reases to
123 = 10; other times and 
apa
ities remain un
hanged. It is 
lear that the optimal solutionin state 0 is to send the 
ow of 3 units along 2-3-4-6, and 1 unit along 1-5-6. After thefailure on ar
 (2,3), the 
ow from node 2 swit
hes to the path 2-4-6, but there is no way toswit
h the 
ow from node 1 to the now empty and shorter path 1-3-4-5-6. Indeed, assumethat the failure o

urs at time t = t0, and that Z13(t) = 1 for t � t0. Consider the 
ow

17



�4(t) 
oming to node 4 at time t. It is not diÆ
ult to see that
�4(t) = 8>>>>>>>><>>>>>>>>:

3 for t < t0 + 2;0 for t 2 [t0 + 2; t0 + 4);1 for t 2 [t0 + 4; t0 + 5);4 for t � t0 + 5:By the 
apa
ity 
onstraint on (4; 6), it follows that Z45(t) = 1 for t � t0 + 5. But then the
ow �5(t) 
oming to node 5 equals 2 for t 2 [t0 + 6; t0 + 7℄, be
ause there are still vehi
leson the ar
 (1; 5) that were sent before the failure o

urred: at t 2 [t0 � 1; t0). This violatesthe 
apa
ity 
onstraint on the ar
 (5; 6) in this time interval.9 The robust 
apa
itated problemWe are now ready to formulate the robust planning problem in the 
apa
itated 
ase:minn X(i;j)2A 
0ijXij + LX̀=1�`Q`(X)o (9.1)X(i;j)2AXij � X(k;i)2AXki = si; i 2 N n fDg; (9.2)0 � Xij � u0ij; (i; j) 2 A: (9.3)The fun
tions Q`(X) are the optimal values of the re-routing problems in s
enarios ` =1; : : : ; L.Problem (9.1){(9.3) is similar to two-stage sto
hasti
 programming problems (see [13,18,22℄and the referen
es therein). Mu
h is known about these problems, and eÆ
ient solutionte
hniques exist that exploit the stru
ture of the model in question (see [22℄ and thereferen
es therein). We summarize below the fa
ts that are relevant for our 
ase.The simplest approa
h is to in
lude the linear programs de�ning Q`(X) into (9.1){(9.3)and 
onstru
t a giant linear programming problem with a dual blo
k angular stru
ture:min X(i;j)2A �
0ijXij + LX̀=1 �` TXt=0 
ìjZìj(t)� (9.4)subje
t to (9.2){(9.3) and (8.4){(8.5). This problem 
an be solved by standard linearprogramming te
hniques, su
h as the simplex method or interior point methods.18



This large s
ale linear program 
an also be used to derive the optimality 
onditions thatprovide some additional insight into our model. Let wj̀(t) be the optimal values of Lagrangemultipliers asso
iated with (8.4) for j 2 N nfDg and ` = 1; : : : ; L. Adding the 
onstraints(8.4) multiplied by wj̀(t) to the obje
tive (9.4) we observe that the optimal plan X solvesthe following network programming problem:min X(i;j)2A �
0ij + LX̀=1�` 
0ij�1Xt=0 wj̀(t)�Xijsubje
t to (9.2){(9.3). It is similar to the deterministi
 
ow problem, only the 
osts aremodi�ed in a manner analogous to (4.6){(4.8).Another solution approa
h, espe
ially useful when the full linear programming formulationis very large, is to apply spe
ial de
omposition methods developed for two-stage sto
hasti
programming problems [19℄. These methods work with the 
ompa
t formulation (9.1){(9.3) and use obje
tive and feasibility 
uts for Q`, ` = 1; : : : ; L, to 
onstru
t suÆ
ientlygood models of (9.1). In this way problems with very many s
enarios 
an be solved, be-
ause derivation of obje
tive and feasibility 
uts 
an be 
arried out within independentsubproblems for ` = 1; : : : ; L.10 Computational ResultsWe have investigated the e�e
ts of the modeling formats des
ribed in the previous se
tionsof this paper on a simple example using the Sioux Falls network with data that is givenin [11℄. In this example, the network has 76 ar
s and 24 nodes with symmetri
 travelingtimes given in Table 10. Node 24 was taken as the destination node with the demands fortrips to this node being given by0:11� [1; 0; 0; 2; 0; 1; 1; 2; 2; 8; 6; 5; 8; 4; 4; 3; 3; 0; 1; 4; 5; 11; 7℄The fa
tor 0:11 was used only to 
onform with the data given in [11℄. Repla
ing the fa
torby 1 and modifying the ar
 
apa
ities 
onformally leads only to 
hanges in the sizes of the
ows given in Figures 10.7 and 10.9.Our 
omputations were 
arried out using the modeling language GAMS [8℄, 
alling theCPLEX simplex 
ode (with default options) to solve the resulting linear programs.We 
onsidered �rst the un
apa
itated 
ase as a means of illuminating the model formatsdes
ribed in Se
tions 3 and 5. Related 
omputational work for Se
tion 4 
an be found in[10℄. We initially solved (3.2){(3.5) with �` = �` = 0 to �nd the deterministi
 solution inthis simple 
ase. This essentially amounts to �nding shortest paths in the network. The19



Table 10.1Traveling times for Sioux Falls network.i,j 
0ij i,j 
0ij i,j 
0ij i,j 
0ij1 , 2 6 1 , 3 4 2 , 6 5 3 , 4 44 , 5 2 5 , 6 4 5 , 9 5 6 , 8 29 , 8 1 8 , 7 3 3 , 12 4 4 , 11 69 , 10 3 8 , 16 5 7 , 18 2 12 , 11 611 , 12 5 10 , 16 5 16 , 18 3 10 , 17 816 , 17 2 11 , 14 4 10 , 15 6 17 , 19 214 , 15 5 15 , 19 4 14 , 23 4 15 , 22 423 , 22 4 12 , 13 3 23 , 24 2 22 , 21 219 , 20 4 22 , 20 5 18 , 20 4 13 , 24 424 , 21 3 21 , 20 6
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24 21Fig. 10.1. Deterministi
 solution for Sioux Falls network.form of the solution is depi
ted in Figure 10.1. Sin
e the form of the solution is moreilluminating than the values of the 
ows in the plan, we only depi
t the paths on whi
hthere is nonzero 
ow in all our �gures.
20
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Fig. 10.2. Transition diagram for full model.We then investigated the full e�e
t of our Markov modeling paradigm in the un
apa
itated
ase by allowing 
ertain failures to o

ur. Thus starting in the normal state, we allow forthe possibility of failure on two ar
s, namely ar
 (1,2) and ar
 (21,24). These were 
hosenfor illustration purposes due to the fa
t that (1,2) has no 
ow in the base 
ase, and (21,24)is the heaviest used ar
. By failure, we mean that the 
ost of the ar
 rises from 6 or 2respe
tively to 100. The failure rates of these ar
s were 0:01 and 0:05 respe
tively. (Whilethese 
osts and rates do not satisfy assumption (A2), they were 
hosen to emphasize thee�e
ts of a failure. Smaller values for ar
 failure 
osts and/or failure rates 
hange the nu-meri
al values in the solutions, but the 
on
lusions drawn from the model are essentiallyun
hanged.) Furthermore, we allow the possibility of these ar
s being �xed and the 
orre-sponding transition rates were 
hosen as 0:01. The resulting transition diagram is shownin Figure 10.2. The robust plan arising from solving (3.2){(3.5) with the above inputs isshown in Figure 10.3. Note the only 
hange in the form of this plan over the deterministi
plan is that 
ow from node 6 is sent along the path 6-5-4-3-12-13-24, instead of along6-8-7-18-20-21-24. It is interesting to observe that only 
ow paths from nodes that areremote from the destination are 
hanged. It is intuitively 
lear that if we wish to makethe plan more robust to possible failures on the two given ar
s at minimal 
ost, then weshould only penalize the nodes that really have some ability to 
hange. In the example, thelargest v0 is found at node 6, 
hanging the e�e
tive 
osts of the paths and resulting in thenew path 
ow noted above. The a
tual 
osts of the two paths are 21 and 20 respe
tively.The rerouting 
ows are also found by analyzing the solution of (3.2){(3.5). If ar
 (21,24)fails, the only rerouting 
hanges to the 
ow pattern are shown in Figure 10.4. Note that wehave already redire
ted the 
ow from 6 so that it does not use ar
 (21,24). The 
hanges thatare indi
ated are essentially unavoidable be
ause in the model we have postulated, largeamounts of 
ow arrive at nodes 20 and 21 before we have time to rea
t to the informationthat a failure has o

urred.As we would expe
t, there is no rerouting performed due to a failure on ar
 (1,2). However,at this point, we note that is is important to use the full generality of the model formatto generate realisti
 s
enarios of events. If we were to use the over simpli�ed Markovmodel shown in Figure 10.5, along with the problem (3.6){(3.9) then rerouting 
an o

urwhen ar
 (1,2) fails. The de�
ien
y in this over simpli�ed model is that on
e a failure has21
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Fig. 10.5. Transition diagram for simple model.o

urred in ar
 (1,2), the model assumes there 
an be no more failures at all. Sin
e thepath 19-15-22-21-24 has the same length as 19-20-21-24 the rerouting arbitrarily 
hoosesto send the 
ow along the latter path under the new 
ertainty that ar
 (21,24) will notfail now.In the realisti
 model postulated by Figure 10.2, the very small probability (10�6) of afailure in (1,2), followed by a �x of (1,2) then a failure of (21,24) for
es the 
ows to remainon the more robust path 19-15-22-21-24.We note also that our robust plan is 
heaper than the naive approa
h of following thedeterministi
 plan and re-routing if a failure o

urs. To show this in our example, we �rstsolved for the deterministi
 plan as outlined above, and then �xed all the xij variablesto zero that were not used in this plan. The rerouting paths were then 
al
ulated bysolving (3.2){(3.5) with the extra 
onstraints added to �x the 
orresponding xij variables.The resulting plan obviously has the same stru
ture as the deterministi
 plan shown inFigure 10.1. The rerouting plans in this 
ase are identi
al to those given in the paragraphabove. However, the 
ost of following this approa
h is about 0.1% worse than that offollowing our robust approa
h. It 
an be made 
orrespondingly worse by in
reasing thedemand of trips from node 6 to node 24 from 1 to 100, for example. In this 
ase, the robustplan is 2.7% better than the naive plan in obje
tive fun
tion value. A similar improvementin the robust model over the naive one 
an be generated by in
reasing the failure rate onar
 (21,24).We then turned to the 
apa
ited model and tested the formulations given in Se
tions 8and 9 as follows. We in
orporated 
apa
ities of 0.5 on ar
s (15,14) and (22,23) so thatwhen a failure of ar
 (21,24) o

urs, all the 
ow 
ould not be rerouted through these ar
s.The resulting robust solution plan obtained from minimizing (9.4) subje
t to (9.2){(9.3),(8.4){(8.5) and (8.6) is depi
ted in Figure 10.6. An interesting paradox 
an be observed.Ar
s (15,14) and (22,21) that are not used at all in the un
apa
itated robust plan havesaturating 
ow sent a
ross them in the robust plan with 
apa
ities. This paradox 
an beexplained by the fa
t that the ar
s are heavily used in the un
apa
itated 
ase for rerouting.Thus, to avoid the major expense of rerouting large amounts of 
ow through ar
 (10,11)in the event that (21,24) fails, it is better to send as mu
h 
ow as possible away from23
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itated 
ase (T = 40).potential bottlene
ks. Also, in the 
apa
itated robust plan, 
ow is sent from node 8 tonode 6, whi
h is in dire
t 
ontrast to the deterministi
 solution depi
ted in Figure 10.1whi
h sends 
ow from 6 to 8.In our GAMS implementation, we allow the modeler to spe
ify a value Tp for the length ofthe transient period. This is implemented by taking the value for T as Tp+max 
0ij in (8.4){(8.5) and using a value of � = max 
0ij in (8.6). In order to demonstrate the e�e
t of ourrobust plan on the transient behavior of the jam, we show the 
ows on two representativear
s. These rerouting 
ows are 
al
ulated under two di�erent plans. The 
harts on the topof Figure 10.7 depi
t the transient behavior of the 
ows on the ar
s (15,10) and (10,11)under the naive plan that 
hooses shortest paths initially, and then reroutes the 
ow whena failure o

urs.

24
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Fig. 10.7. Rerouted 
ow on (15,10) and (10,11) using naive plan (top) or robust plan (bottom).Failure o

urs at t = 1.The 
harts on the bottom depi
t the rerouting 
ows that o

ur when we follow the robustplan; both of these rerouting pro
edures allow a period Tp = 40 to attain the steady statesolution. Note that on both of these ar
s, the amount of 
ow that has to be rerouted in therobust 
ase is less than half that needed to be rerouted when the naive plan is followed.The model format also allows the ability to try to rea
h the steady state solutions in auser-spe
i�ed time. Instead of allowing a time horizon of Tp = 40, we attempted to solvethe same robust planning problem as outlined above with a horizon of Tp = 20. Sin
e weare for
ing the jams to disappear very qui
kly, it is ne
essary to modify our plan to allowthe 
ows to be rerouted if ne
essary. The new base plan is shown in Figure 10.8; this �gureshould be 
ontrasted with Figure 10.6. In parti
ular, note that the new robust plan sends25
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Fig. 10.9. Rerouted 
ow on (15,10) and (10,11) using robust base plan with Tp = 20.
ow from 19 to 17 (in dire
t 
ontrast to the previous robust plan). The new robust planhas several features that are similar to the rerouting plan under failure of (21,24). Theamounts of 
ow needing to be redire
ted are therefore smaller in this 
ase, as 
an be seenin Figure 10.9. The robust plan reroutes less 
ow due to the fa
t that it has less time toperform the rerouting. In fa
t, some 
ow purposely takes longer paths to ensure that it26




an be rerouted qui
kly enough to attain the steady-state in the period Tp = 20 (see forexample, 
ow on 20-22-21, and no 
ow on (20,21)).This has 
lear rami�
ations in the design of fault-tolerant 
ommuni
ation networks. Whena robust plan is used for normal 
ow s
heduling, mu
h less redundant 
apa
ity needsto be built into the system to withstand failures. This undoubtedly leads to signi�
antmonetary savings. Furthermore, networks 
an be designed that allow jams to be 
learedin a user-spe
i�ed time frame.A
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