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Fig. 1.1. Transition diagram of network's states.Our approah is somewhat omplementary. It has beome apparent that although there ismuh researh being arried out on providing timely and aurate information to drivers[1,4,21℄, there is muh work still to be performed regarding the generation and use ofomplex dynamial models to improve the ongestion levels in large urban areas. We aregoing to develop a new modeling paradigm, namely robust guidane strategies. We shallintrodue a number of models for networks subjet to failures, disuss robust guidanestrategies and illustrate the results on an example of a real-world network. Sine the nete�et of the robust strategies that we propose here is to redue the size of jams whenfailures our, the modeling format proposed herein an also be used for more e�etivedesign of fault tolerant ommuniations networks. In this ase, the network is typiallydesigned to have enough residual apaity to safely reroute ow when a failure oursby generating at least two paths through the network for eah demand pair. If robuststrategies are used for path hoie, we believe that signi�antly smaller apaities need tobe provided sine ows an be more e�etively rerouted whenever a failure ours.Our assumptions are rather abstrat and the models that we develop apply to other typesof networks, most notably|teleommuniation networks. In fat, we believe that there ismuh potential in applying some our ideas in teleommuniation.We use the transportationterminology mainly for illustrative purposes and to guide intuition.We onsider a network with node set N and ar set A � N �N , and random non-negativear osts (travel times) ~ij and apaities ~uij, (i; j) 2 A. The travel times and apaitiesare determined by the state of the network ` 2 f0; : : : ; Lg: for eah ` the travel timesare equal to ìj and apaities to uìj. The states evolve in time at random, aording toa ontinuous-time Markov hain, and the urrent state is known to the vehiles in thenetwork.We shall at �rst fous our attention on the simple ase when the only possible transitionsare between state 0 (representing the normal operation mode) and states ` 6= 0 (repre-senting failure modes). The rate of transition from 0 to ` 6= 0 will be denoted by �`, andthe transition rate bak by �`, see Figure 1.1. It will beome lear in the sequel how moregeneral transition diagrams an be treated. 2



The problem is as follows. At eah node n 2 N there is a onstant demand ow sn thatmust be moved through the network to some destination node D at the minimum expetedtravel time. Related problem formulations have been studied by many authors. In [5,6,16℄stohasti shortest path problems are analyzed; they orrespond to our setting when noar apaity onstraints are present. In [3℄ related two-stage problems are onsidered inthe ase when some ar lengths may beome in�nite. Problems with apaity onstraintsare disussed in [12℄ in the ase of a dynami (layered) network with one soure (see also[17℄ and referenes therein).To failitate the analysis and to provide ground for more general ases we make the fol-lowing simplifying assumptions.(A1) If the state of the system hanges from k to ` when a vehile is on ar (i; j) thetravel time on (i; j) remains equal to kij for this vehile; it experienes new travel timesonly after hitting j.(A2) The produts �`0ij and �`ìj are muh smaller than one for eah ` and eah (i; j) 2 A.Condition (A1) amounts to assuming that failures our at the initial setions of the arsand do not a�et those who have passed them. It is equally simple to onsider other ases,exept the notation then beomes more involved.Condition (A2) implies that the failures are rare and the probability of more than one statetransition during the travel time of a vehile on an ar (i; j) is negligibly small. In manyreal{world transportation networks this assumption an be legitimately ritiised, but inthe area of teleommuniation networks it is more likely to be satis�ed. Nevertheless, weshall see that in the presene of apaity onstraints even rare failures lead to new andrather involved models.In setion 2 we onsider the unapaitated version of the problem and show a simpledynami programming solution. Setions 3 and 4 develop a ow-oriented model in thetwo-stage ase, where only one state transition in a vehile's journey is allowed; setions5 and 6 illustrate how this model an be extended to the multistage ase. In setions 7{9we analyze the apaitated problem, in whih the main issue is the interation betweenvehiles that started at di�erent times but reah a node at the same time, thus leadingto jams. We analyze models that guide vehiles in a way that minimizes the ost of jamsand failitate the learing of jams in a user-spei�ed time frame. Finally, in setion 10 weonsider a real-world network of Sioux Falls to illustrate the models and solutions.2 Single vehile approah and dynami programmingLet us at �rst onsider the unapaitated problem: uìj = +1 for (i; j) 2 A and ` =0; : : : ; L. Owing to the Markov property of state transitions and to the linearity of theosts, the problem an be solved by dynami programming methods as the stohasti3



shortest path problem [5℄. With eah node i 2 N and eah state ` 2 f0; 1; : : : ; Lg weassoiate the ost-to-go vì : the least expeted travel time from i to D when the initialnetwork state is `. They satisfy the following Bellman's equation:vì = min(i;j)2A IEfìj + v`0j g; i 2 N n fDg; ` = 0; : : : ; L; (2.1)where `0 is the state of the network when the vehile reahes node j. We set vD̀ = 0 forall `.Assume that the initial state of the network is 0. If a vehile enters ar (i; j), the stateof the network may hange during its travel time 0ij. Owing to (A2), the probability ofmore than one state transition in time 0ij is negligible, and the travel time itself remainsunhanged, by virtue of (A1). Thus the probabilities p0` of transition from 0 to ` in thistime are given byp00 � �1� LX̀=1�`�0ij; p0` � �`0ij; ` = 1; : : : ; L:If (A1) or (A2) is not satis�ed, we an still alulate these transition probabilities bymethods of Markov proess theory. 1Equation (2.1) for ` = 0 readsv0i = min(i;j)2A n0ij + �1� 0ij LX̀=1�`�v0j + 0ij LX̀=1�`vj̀o; i 2 N n fDg: (2.2)Similarly, for ` = 1; : : : ; L we obtainvì = min(i;j)2A nìj + �1� ìj�`�vj̀ + ìj�`v0jo; i 2 N n fDg: (2.3)To simplify the exposition, let us temporarily make a further (over-)simpli�ation: assumethat it is reasonable to neglet ases when more than one state transition ours in thetime of vehile's entire journey, so that the transition diagram is given in Figure 2.1. Then,1 If more than one transition is possible, the probabilities p0` are given by the �rst row ofthe matrix P (t) = exp(Gt), with t = 0ij and the generator G having nonzero entries: g00 =�PL̀=1 �`, g0` = �`, g`0 = �`, g`` = ��`, ` = 1; : : : ; L (see [9℄). If the travel time on (i; j) hangesinstantaneously when the state hanges (due to the hange in speed), the alulation beomesmore involved, beause the next state ` is not the state of the network after a �xed time 0ij butafter a random stopping time ~ij . Again, the evaluation of the transition probabilities is possibleby using the loation of the vehile on this ar instead of time, and the orresponding transitionrates. We shall not pursue this interesting avenue here; our assumptions allow the approximationP (t) = exp(Gt) � I +Gt, beause Gt is small. 4
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Fig. 2.1. Transition diagram for a one-step lookahead poliy.for the purpose of designing the route for a vehile starting at state 0, we may set �` = 0in (2.3) so that it beomes the following system:vì = min(i;j)2A fìj + vj̀g; i 2 N n fDg; ` = 1; : : : ; L: (2.4)These equations an be solved for eah ` = 1; : : : ; L independently, and their solutionssubstituted into (2.2). The expeted total travel ost is equal to Pn2NnfDg snv0n. We shallall the solution thus obtained a one-step lookahead poliy (see [5℄).If the initial state of the network is ` 6= 0 when a vehile starts its journey, the one steplookahead poliy is given by a similar approximation: we set all �` = 0, ` 6= 0, in (2.2),but onsider (2.3) in its full form.Our onsiderations make it lear how to proeed when more that one transition has aprobability that annot be negleted. We shall return to this question in setions 5 and 6,where more general n-step lookahead poliies are onsidered.3 The ow formulationThe purpose of this setion is to develop a ow model of the unapaitated problemdisussed in setion 2. This model will be more diÆult to analyse and to solve than thedynami programming equations. However, it will be a more onvenient starting point forthe development of models for the apaitated ase, where the appliability of dynamiprogramming is rather limited.Before proeeding to the details, let us stress again that in the ase when failures may ourand when the information about that an be used for re-routing, the initial hoie of thepath should aomodate this possibility. Our ow-based models will help us to formalizethis fundamental issue. 5



Suppose that the state of the network at time t = 0 is 0. Consider the vehiles startingin a time interval [0; �℄ with some small � > 0 and assume that vehiles starting fromeah node follow some pre-spei�ed path. Let us denote by fij(�) the expeted numberof these vehiles whih reah ar (i; j) at state 0 (at any time t � 0), and by gìj(�),` 6= 0, the expeted number of these vehiles that enter (i; j) at state ` 6= 0. We shalldevelop the ow balane of these vehiles at node i. Observe that the vehiles traversingan ar (k; i) experiene with probability 0kiPL̀=1 �l a state transition before reahing i,thus disappearing from our balane of vehiles at state 0 (we use (A2) to neglet thehane of two or more transitions). On the other hand, vehiles that entered (k; i) at state` 6= 0 have the hane of �lk̀i of getting to i at state 0 and reating an extra inow ati. The expeted soure inow at i at network's state 0 will be si� � oi(�), where oi(�)represents the expeted number of vehiles that start in the interval [0; �℄ at network'sstate ` 6= 0. Clearly, oi(�)=�! 0 as �! 0. ThusX(i;j)2A fij(�)� X(k;i)2A �1� 0ki LX̀=1�`�fki(�)� LX̀=1 X(k;i)2A k̀i�`gk̀i(�) = si�� oi(�):(3.1)Let us denotexij = lim�!0 fij(�)=�; yìj = lim�!0 gìj(�)=�; ` = 1; : : : ; L:The variables xij and yìj an be interpreted as expeted marginal ows at states 0 and `.These limits exist, beause if all vehiles starting from some node follow the same path, thenumber of those whih reah a given ar at a ertain state of the network is proportionalto the number of vehiles that started.The optimal values of the expeted `marginal ows' xij and yìj solve the following linearprogramming problem:minn X(i;j)2A 0ijxij + LX̀=1 X(i;j)2A ìjyìjo (3.2)X(i;j)2A xij � X(k;i)2A �1� 0ki LX̀=1�`�xki � LX̀=1 X(k;i)2A k̀i�`yk̀i = si; i 2 N n fDg; (3.3)��` X(k;i)2A 0kixki + X(i;j)2A yìj � X(k;i)2A �1� k̀i�`�yk̀i = 0; i 2 N n fDg;` = 1; : : : ; L; (3.4)xij � 0; yìj � 0; (i; j) 2 A; ` = 0; : : : ; L: (3.5)6



Equation (3.3), whih results from dividing (3.1) by� and passing to the limit with�! 0,expresses the balane of expeted marginal ows at node i in state 0, while (3.4) (by asimilar argument) is the ow balane in state ` 6= 0.Let us stress that we onsider in these balanes only vehiles that started at state 0.We do not need to inlude vehiles that started after the state transition, beause in theunapaitated ase they do not interat with the vehiles whih are already on the way.In the apaitated ase, whih will be disussed in setions 7{9, we shall revise this modeland onsider all vehiles.The objetive is the total expeted travel time of vehiles that start in the normal state.We shall show that at a ertain optimal basi solution to (3.2){(3.5) the dual variables arethe optimal osts-to-go satisfying the dynami programming equations (2.2){(2.3).Let us de�ne a stable optimal basis of (3.2){(3.5) as a basis whih remains optimal whenthe demands si in (3.3) are replaed by si + ", and the zero demands in (3.4) by ", for alli 2 N nfDg and all suÆiently small " > 0. We shall show that one of optimal bases mustbe stable.Let "k # 0, and let Bk be an optimal basis for the problem with demands in (3.3) and(3.4) equal to si + "k and "k, respetively. At least one of these bases must appear atin�nitely many k; this is our stable basis. Indeed, passing with k to 1 we see that it isoptimal for the original problem. Moreover, at eah node i at least one of the variables xijorresponding to the outgoing ars (i; j) 2 A must be basi. The last observation followsfrom the fat that this basis de�nes a feasible basi solution for the demand si+"k > 0, andthe only positive oeÆients in (3.3) are those at xij. The same applies to the variables yìjin the row (3.4) with demand "k > 0, for all ` 6= 0. It follows that every node i 2 N n fDghas at least L + 1 basi variables assoiated with it: one for eah ` = 0; : : : ; L. Sine thenumber of onstraints (3.3){(3.4) is equal to the number of nodes in N n fDg multipliedby L+1, eah node i has exatly one basi variable xij assoiated with state 0, and exatlyone basi variable yìj for eah state ` 6= 0. 2The dual variables vì assoiated with a stable optimal basis yield non-negative reduedosts0ij � v0i + �1� 0ij LX̀=1�`�v0j + 0ij LX̀=1�`vj̀ � 0; i 2 N n fDg;ìj � vì + �1� ìj�`�vj̀ + ìj�`v0j � 0; i 2 N n fDg; ` = 1; : : : ; L:2 In ontrast to the deterministi shortest path problem, the basi ars do not have to form aspanning tree. Indeed, in the absene of ar apaities it may be pro�table to traverse a loop untilthe state of the network hanges. Consider the example with two nodes: 1 and 2 (destinationnode) and ars (1; 1) and (1; 2). If 01;2 = 1, 11;2 = 100 and �1 = 0:1, in state 1 it is optimal tohoose ar (1; 1) (wait for the return to the normal state).7



For eah i and eah ` the inequality for the basi variable beomes an equation, so (2.2){(2.3) is satis�ed.If we neglet the possibility of more than one transition per journey, the ow formulationsimpli�es:minn X(i;j)2A 0ijxij + LX̀=1 X(i;j)2A ìjyìjo (3.6)X(i;j)2A xij � X(k;i)2A �1� 0ki LX̀=1�`�xki = si; i 2 N n fDg; (3.7)��` X(k;i)2A 0kixki + X(i;j)2A yìj � X(k;i)2A yk̀i = 0; i 2 N n fDg; ` = 1; : : : ; L; (3.8)xij � 0; yìj � 0; (i; j) 2 A; ` = 0; : : : ; L: (3.9)Again, by an idential argument, the dual variables assoiated with (3.7){(3.8) at a stableoptimal basi solution satisfy the simpli�ed dynami programming equations (2.2){(2.4).We emphasize the fat that the variables in (3.6){(3.9) are expeted ows rather thanow realizations under di�erent senarios. To obtain the ow realization X in the normaloperation mode (the plan) we �nd the basi variable xijB for eah i 2 N n fDg; there isonly one for eah i at a stable basi solution. The ar (i; jB) is the one to hoose underthe normal operation mode, that isXijB = si + X(k;i)2AXki; i 2 N n fDg:Senarios `normal-failure `' in our problem are atually olletions of many events, so the`ow' in this ase is still a random objet. But again, for eah ` 6= 0 there is only one basivariable assoiated with node i and it indiates whih ar should be hosen as a detourfrom this node in ase the state hanges to `.Problem (3.6){(3.9) is similar to two-stage stohasti programming problems with x play-ing the role of �rst stage variables, and y` being the seond stage variables in senario` = 1; : : : ; L. However, we should keep in mind that our senarios are aggregates of verylarge olletions of events, and both x and y represent expeted values over these olle-tions. Suh aggregate representation is possible owing to the linearity of the ost funtion.
8



4 The equivalent �rst stage problemSupposing that the expeted ow of the plan x is �xed, the re-routing ows y`, ` = 1; : : : ; L,in (3.6){(3.9) an be alulated from the seond stage problems:min X(i;j)2A ìjyìj (4.1)X(i;j)2A yìj � X(k;i)2A yk̀i = �` X(k;i)2A 0kixki; i 2 N n fDg; (4.2)yìj � 0; (i; j) 2 A: (4.3)The right hand side of (4.2)|the supply|is the expeted marginal ow of vehiles thatexperiened state transition from 0 to ` while passing ars ending at node i. We notie therelation of this supply vetor to the ost terms assoiated with x in (3.6).The optimal value of (4.1){(4.3) is a funtion of the plan x. Let us denote it by q`(x).Then we an ompatly rewrite (3.6){(3.9) asminn X(i;j)2A 0ijxij + LX̀=1 q`(x)o; (4.4)subjet to (3.7) and the nonnegativity onstraint on x.In general, suh two-stage problems need to be solved iteratively. For example, given a planx, the seond stage problems (4.1){(4.3) provide some information about the funtionsq`(x). This information an be used to revise the plan and the iteration an be repeated.In our ase, however, a one pass approah is suÆient, beause the funtions q`(�) arelinear. We haveq`(x) = X(i;j)2A vj̀0ijxij; (4.5)where vì are dual variables (node potentials) assoiated with the onstraints (4.2) at anoptimal basi solution to (4.1){(4.3). Indeed, by the duality theory in linear programmingthe optimal value in (4.1){(4.3), if it is solvable, is equal to the optimal value of its dual,and the right hand side of (4.5) multiplied by �` is the objetive of the dual. Moreover,as known from general theory of network programming the optimal basis orresponds to aspanning tree, and the values of dual variables an be alulated from (2.4), independentlyof the supply; they depend only on `.
9



Substitution into (4.4) yields the ompat �rst stage problem:min X(i;j)2A �1 + LX̀=1�`vj̀�0ijxij (4.6)X(i;j)2A xij � X(k;i)2A �1� 0ki LX̀=1�`�xki = si; i 2 N n fDg; (4.7)xij � 0; (i; j) 2 A: (4.8)As a onlusion from this simple analysis we observe that the robust paths from eah nodeto D an be found by solving an aggregate generalized network ow problem (4.6){(4.8)(see [2℄). Its ost oeÆients are not atual travel times; they are expeted travel timesobtained bybij = �1 + LX̀=1�lvj̀�0ij:It is interesting to observe that the modi�ed ar osts bij are obtained by a multipliativemodi�ation of the original osts, with the multipliers independent of the travel times 0ij.It should be stressed that paths from i to D that have equal expeted travel times mayhave di�erent atual travel times. This is di�erent from the deterministi formulationwhere suh an equality is the fundamental property of all optimal paths. Here, exhangeof travel time for seurity is possible.5 Senarios `failure{normal' and `normal{failure{normal'It is lear how to treat the ase when the vehiles start at network's state `. A simpleexample of the underlying Markov hain is given in Figure 5.1.The travel plan �` for these vehiles is given by the problemmin X(i;j)2A �1 + �`w0j�ìj�ìj (5.1)X(i;j)2A �ìj � X(k;i)2A �1� k̀i�`��k̀i = si; i 2 N n fDg; (5.2)�ìj � 0; (i; j) 2 A; (5.3)
10
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Fig. 5.1. Transition diagram for model starting in failure mode.in whih w0j represents the shortest time from j to D under the normal operation mode 0.Problem (5.1){(5.3) is idential to (4.6){(4.8), only the role of state 0 is played by `, and0 is its only suessor. Note that we use other node potentials w0j than those assoiatedwith (4.7), beause we neglet the possibility of another failure, one the network returnsto state 0.The analysis of senarios `normal-failure-normal' an be built on the top of that. Problem(5.1){(5.3) replaes (4.1){(4.3) to alulate the re-routing ost:min X(i;j)2A �1 + �`w0j�ìjyìj (5.4)X(i;j)2A yìj � X(k;i)2A �1� k̀i�`�yk̀i = �` X(k;i)2A 0kixki; i 2 N n fDg; (5.5)yìj � 0; (i; j) 2 A: (5.6)The optimal Lagrange multipliers (node potentials) vj̀ assoiated with the onstraints (5.5)enter the �rst stage problem (4.6){(4.8). They will no longer be shortest times but shortestvirtual times.6 General state transitions and variable-depth lookahead poliiesThe above analysis also suggests the way to develop lookahead poliies for a more generalase of an arbitrary Markov hain of network states.Let L denote the �nite olletion of possible states of the network and let ìj the traveltime on ar (i; j) assoiated with state ` 2 L. We assume that the states evolve aordingto a Markov hain with transition rates �kl, k; l 2 L. The initial state is 0.The problem is as follows. Given demands si, i 2 N n fDg, where D is a �xed destination11
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Fig. 6.1. Senario tree for a variable-depth lookahead poliy.node, �nd the poliy that minimizes the sum of expeted travel times.Let us develop a multistage linear programming model for this problem. At �rst, we selet aolletion of senarios: sequenes of states that may our with a non-negligible probabilityduring a journey of a vehile. For the problem addressed in setions 1{4, these senariosmay represent sequenes of failures, or di�erent stages of a failure, whih we want todistinguish beause of their di�erent e�et on travel times.It should be kept in mind that our `senarios' over large olletions of events, beausewe do not speify the times at whih the transitions our, but only the order of statesvisited. The senarios form a tree T with the initial state at the root node and the pathsfrom the root to the leaves idential to seleted paths in the hain's graph. For example,for the state transition diagram of Figure 1.1 we may wish to onsider the senario tree ofFigure 6.1.Observe that the same state may our at di�erent loations in the senario tree, andusually di�erent harateristis (node potentials) will be assoiated with it. We denote by`(m) the Markov hain's state orresponding to node m 2 T , by S(m) the set of suessorsof node m in the senario tree and by f(m) the predeessor of m in the tree. Eah nodem 2 T has an assoiated path �(m) from the root: it de�nes a unique sequene of networkstates that leads to `(m). 12



The transition rate in T from node m to its suessor n 2 S(m) is �mn = �`(m);`(n); onlytransitions in the diretion from the root to the leaves may our.Let us denote (with a slight abuse of notation) by xmij� the expeted number of vehilesthat started at the normal state in the time interval [0; �℄ and entered ar (i; j) afterexperiening state transitions of the path �(m) (from our earlier onsiderations it is learthat it is for small � proportional to the length of this interval). The problem an beformulated as follows.min Xm2T X(i;j)2A `(m)ij xmij (6.1)X(i;j)2A x0ij � X(k;i)2A �1� 0ki Xn2S(0) �0n�x0ki = si; i 2 N n fDg; (6.2)��f(m);m X(k;i)2A `(f(m))ki xf(m)ki + X(i;j)2A xmij � X(k;i)2A �1� `(m)ki Xn2S(m) �mn�xmki = 0;i 2 N n fDg; m 2 T n f0g: (6.3)xmij � 0; (i; j) 2 A; m 2 T : (6.4)In this problem `(m)ij denotes the travel time along the ar (i; j) in the state `(m) assoiatedwith the node m of the senario tree; similarly, `(f(m))ki is the travel time in the stateassoiated with the parent node.To solve (6.1){(6.4), we assoiate with eah node m of the senario tree T the followinglinear programmin X(i;j)2A �1 + Xn2S(m)�mnvnj �`(m)ij xmij (6.5)X(i;j)2A xmij � X(k;i)2A �1� `(m)ki Xn2S(m)�mn�xmki = smi ; i 2 N n fDg; (6.6)xmij � 0; (i; j) 2 A: (6.7)In this problem the demand vetor sm (if m 6= 0) is the expeted marginal ow of vehilesto be re-routed inherited from the predeessor f(m):smi = �f(m);m X(k;i)2A `(f(m))ki xf(m)ki ; i 2 N n fDg:At the root node s0 = s. The onstants vnj appearing in the objetive are potentials of thenetwork's nodes that orrespond to the onstraints (6.6) at the optimal basi solutions of13



suessor nodes n 2 S(m). Again, analogously to setion 4, the optimal value of (6.5){(6.7)is linear with respet to the demand smi . Consequently, all these problems an be solvedin a one-pass approah by traversing the senario tree from the leaves to the root.We shall omit the straightforward manipulations whih show that suh a tree of problemsindeed solves the problem of �nding the best route, when only the senarios inludedinto the tree may our. It almost exatly repeats our argument for the `normal{failure'and `normal{failure{normal' senarios onsidered earlier, exept that the notation wouldobsure the otherwise lear idea.7 Introdution to the apaitated problemLet us now onsider a more general ase with ar apaities uìj, assoiated with states` = 0; : : : ; L. The main diÆulty, as ompared to the unapaitated network, is thatwe annot work with expeted values of ows, as in setion 3. Atual ow realizationsunder di�erent events must be onsidered. We also annot ignore the interations betweendi�erent ow subvetors, if they share the same ar at the same time. So, events and timemust be present in our model.We shall again restrit our attention to the basi ase of state 0 representing the normaloperation mode, and states ` = 1; : : : ; L representing failure modes, as desribed in setion1. In the ase of apaitated ars the dynami programming approah beomes extremelydiÆult, beause the urrent loation of all vehiles must be inorporated into the statevetor. We shall follow the ow modeling approah desribed in setions 3{5 to developan appropriate one-step lookahead model.Let us onsider the model (3.6){(3.9), and de�ne Y ` = y`=�`, ` = 1; : : : ; L. Further, letXij be the ow of vehiles that enter ar (i; j) in the normal operation mode. Assuming1� 0kiPL̀=1 �` � 1 in (3.7), we may use the approximation Xij � xij. Dividing (3.8) by �`we obtain the problem:minn X(i;j)2A 0ijXij + LX̀=1�` X(i;j)2A ìjY `ijo (7.1)X(i;j)2AXij � X(k;i)2AXki = si; i 2 N n fDg; (7.2)� X(k;i)2A 0kiXki + X(i;j)2AY `ij � X(k;i)2AYk̀i = 0; i 2 N n fDg; ` = 1; : : : ; L; (7.3)Xij � 0; Y `ij � 0; (i; j) 2 A; ` = 0; : : : ; L: (7.4)The vetor X in the above problem plays the role of the plan|the ow to be used in14



the normal state|while the vetors Y ` are the ows of re-routed vehiles in states ` 6= 1(that is, vehiles that experiened the state transition from 0 to ` during their journey).Equation (7.2) is the ow onservation onstraint in the normal operation mode. Equation(7.3) is the ow onservation onstraint for vehiles that started in the normal operationmode but experiened transition to state ` during their journey.The subtle di�erene between (7.1){(7.4) and (3.6){(3.9) is that here we ignore the fatthat the ars that lie further from the soures on the plan's routes have a slightly smallerhane of being used, beause state transition may our before a vehile reahes them.We keep, though, the terms with �l in the objetive funtion (7.1), beause they mayontain large re-routing osts ìjY `ij. Apart from this small inauray, the model (7.1){(7.4) allows us to take into aount the ar apaities for the plan. However, we still annotformulate apaity onstraints for the re-routed ows, beause we do not know at whihtime they will need partiular ars, and what will be their interation with the vehilesthat start after the transition ourred. In other words, we need a non-stationary modelof the transient period immediately after the state transition.8 The nonstationary re-routing problemLet us assume that all travel times are integer and let M be an upper bound on all ofthem. Suppose that a transition from state 0 to state ` takes plae, and let t = 0 denotethe time of this transition. Let Y `ij(t) be the ow of re-routed vehiles entering ar (i; j) attime t. They satisfy the ow onservation equationsX(i;j)2AY `ij(t)� X(k;i)2Ak̀i�t Yk̀i(t� k̀i) = �i(t); i 2 N n fDg; t = 0; 1; 2; : : : ; (8.1)where �i(t) is the inow into i of the vehiles that experiened the state transition whiletraveling along the ars leading to i:�i(t) = X(k;i)2A0ki>t Xki: (8.2)Sine the supply (8.2) vanishes after a �nite time (for whih an upper boundM is known),we know that the ows Y ` will vanish after a �nite time, too, although this time may bemuh larger than M .Let Xìj(t) denote the ow of vehiles that started when network's state was ` and thatenter ar (i; j) at time t. Sine we have many soures, and the network is not layered, weannot ignore the interations of the resheduled ow Y ` with the ow X`(t). We makea simplifying assumption that further state transitions do not our during the time that15



we are alulating X`. Even with this assumption, we annot avoid modeling the initialnon-stationary phase, when the re-routed ow Y `(t) and the new ow X`(t) interat. Thepoliy that we develop under this assumption is termed a one-step lookahead poliy.Denoting by T the optimization horizon and by Z`(t) = Y `(t) + X`(t) the e�etive owafter the state transition, we obtain the problemmin TXt=0 X(i;j)2A ìjZìj(t) (8.3)X(i;j)2AZìj(t)� X(k;i)2Ak̀i�t Zk̀i(t� k̀i) = si + �i(t); i 2 N n fDg; t = 0; 1; : : : ; T; (8.4)0 � Zìj(t) � uìj; (i; j) 2 A; t = 0; 1; : : : ; T; (8.5)where the additional supply �i(t) is given by (8.2). Let us note the fundamental di�erenebetween (8.4) and (3.4): in the apaitated ase all vehiles entering ar (i; j) must beonsidered.The optimal value Q`(X) of (8.3){(8.5) is the resheduling ost for the plan X, whentransition to state ` ours.Our further onsiderations are based on the assumption that the value T does not matterfor determining the robust plan X, provided T is large enough, and that the solution to(8.3){(8.5) beomes for large t equal to a solution of the `steady-state' problem assoiatedwith state `:min X(i;j)2A ìjX ìjX(i;j)2AX ìj � X(k;i)2AX k̀i = si; i 2 N n fDg;0 � X ìj � uìj; (i; j) 2 A:The detailed analysis of this issue exeeds the sope of the present note. From now on weshall simply assume that T is large enough and �xed, e.g., at the double of the maximumtravel time. We also assume that a transition from one plan to another is feasible. Thisan be guaranteed by the existene of unapaitated ars (i; i) of length one for eah nodei whih e�etively model `waiting' at node i.To avoid some terminal e�ets assoiated with the fat that the vehiles that start lateannot make it to the destination anyway, and therefore hoose short ars, we may augment16
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�6 �������>
1s1 = 1 5

2s2 = 3
3 4 63 1 1,1

1 5
Fig. 8.1. Counter-example for steady-state attainment. The numbers at the ars are travel times,or pairs (travel time, apaity) if apaity is �nite.(8.3){(8.5) with terminal onditions:Zìj(t) = X ìj; t = T � �; T � � + 1; : : : ; T � 1; T; (i; j) 2 A; (8.6)where � is some onstant (for example, the maximum travel time on the ars). In fat, byhoosing T (or �) one may hange the allowed length of the transient period, before theow settles on the new steady-state solution.If there is no possibility of waiting (no unapaitated ars (i; i) of length one) it is notguaranteed that the ow must settle on the `steady-state' solutionX` at all, as the exampleshown in Figure 8.1 demonstrates. The example has 6 nodes, the destination node beingD = 6 and apart from the apaities noted in the �gure, all other ars are unapaitated.There is only one failure state, in whih the travel time on the ar (2; 3) inreases to123 = 10; other times and apaities remain unhanged. It is lear that the optimal solutionin state 0 is to send the ow of 3 units along 2-3-4-6, and 1 unit along 1-5-6. After thefailure on ar (2,3), the ow from node 2 swithes to the path 2-4-6, but there is no way toswith the ow from node 1 to the now empty and shorter path 1-3-4-5-6. Indeed, assumethat the failure ours at time t = t0, and that Z13(t) = 1 for t � t0. Consider the ow
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�4(t) oming to node 4 at time t. It is not diÆult to see that
�4(t) = 8>>>>>>>><>>>>>>>>:

3 for t < t0 + 2;0 for t 2 [t0 + 2; t0 + 4);1 for t 2 [t0 + 4; t0 + 5);4 for t � t0 + 5:By the apaity onstraint on (4; 6), it follows that Z45(t) = 1 for t � t0 + 5. But then theow �5(t) oming to node 5 equals 2 for t 2 [t0 + 6; t0 + 7℄, beause there are still vehileson the ar (1; 5) that were sent before the failure ourred: at t 2 [t0 � 1; t0). This violatesthe apaity onstraint on the ar (5; 6) in this time interval.9 The robust apaitated problemWe are now ready to formulate the robust planning problem in the apaitated ase:minn X(i;j)2A 0ijXij + LX̀=1�`Q`(X)o (9.1)X(i;j)2AXij � X(k;i)2AXki = si; i 2 N n fDg; (9.2)0 � Xij � u0ij; (i; j) 2 A: (9.3)The funtions Q`(X) are the optimal values of the re-routing problems in senarios ` =1; : : : ; L.Problem (9.1){(9.3) is similar to two-stage stohasti programming problems (see [13,18,22℄and the referenes therein). Muh is known about these problems, and eÆient solutiontehniques exist that exploit the struture of the model in question (see [22℄ and thereferenes therein). We summarize below the fats that are relevant for our ase.The simplest approah is to inlude the linear programs de�ning Q`(X) into (9.1){(9.3)and onstrut a giant linear programming problem with a dual blok angular struture:min X(i;j)2A �0ijXij + LX̀=1 �` TXt=0 ìjZìj(t)� (9.4)subjet to (9.2){(9.3) and (8.4){(8.5). This problem an be solved by standard linearprogramming tehniques, suh as the simplex method or interior point methods.18



This large sale linear program an also be used to derive the optimality onditions thatprovide some additional insight into our model. Let wj̀(t) be the optimal values of Lagrangemultipliers assoiated with (8.4) for j 2 N nfDg and ` = 1; : : : ; L. Adding the onstraints(8.4) multiplied by wj̀(t) to the objetive (9.4) we observe that the optimal plan X solvesthe following network programming problem:min X(i;j)2A �0ij + LX̀=1�` 0ij�1Xt=0 wj̀(t)�Xijsubjet to (9.2){(9.3). It is similar to the deterministi ow problem, only the osts aremodi�ed in a manner analogous to (4.6){(4.8).Another solution approah, espeially useful when the full linear programming formulationis very large, is to apply speial deomposition methods developed for two-stage stohastiprogramming problems [19℄. These methods work with the ompat formulation (9.1){(9.3) and use objetive and feasibility uts for Q`, ` = 1; : : : ; L, to onstrut suÆientlygood models of (9.1). In this way problems with very many senarios an be solved, be-ause derivation of objetive and feasibility uts an be arried out within independentsubproblems for ` = 1; : : : ; L.10 Computational ResultsWe have investigated the e�ets of the modeling formats desribed in the previous setionsof this paper on a simple example using the Sioux Falls network with data that is givenin [11℄. In this example, the network has 76 ars and 24 nodes with symmetri travelingtimes given in Table 10. Node 24 was taken as the destination node with the demands fortrips to this node being given by0:11� [1; 0; 0; 2; 0; 1; 1; 2; 2; 8; 6; 5; 8; 4; 4; 3; 3; 0; 1; 4; 5; 11; 7℄The fator 0:11 was used only to onform with the data given in [11℄. Replaing the fatorby 1 and modifying the ar apaities onformally leads only to hanges in the sizes of theows given in Figures 10.7 and 10.9.Our omputations were arried out using the modeling language GAMS [8℄, alling theCPLEX simplex ode (with default options) to solve the resulting linear programs.We onsidered �rst the unapaitated ase as a means of illuminating the model formatsdesribed in Setions 3 and 5. Related omputational work for Setion 4 an be found in[10℄. We initially solved (3.2){(3.5) with �` = �` = 0 to �nd the deterministi solution inthis simple ase. This essentially amounts to �nding shortest paths in the network. The19



Table 10.1Traveling times for Sioux Falls network.i,j 0ij i,j 0ij i,j 0ij i,j 0ij1 , 2 6 1 , 3 4 2 , 6 5 3 , 4 44 , 5 2 5 , 6 4 5 , 9 5 6 , 8 29 , 8 1 8 , 7 3 3 , 12 4 4 , 11 69 , 10 3 8 , 16 5 7 , 18 2 12 , 11 611 , 12 5 10 , 16 5 16 , 18 3 10 , 17 816 , 17 2 11 , 14 4 10 , 15 6 17 , 19 214 , 15 5 15 , 19 4 14 , 23 4 15 , 22 423 , 22 4 12 , 13 3 23 , 24 2 22 , 21 219 , 20 4 22 , 20 5 18 , 20 4 13 , 24 424 , 21 3 21 , 20 6
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24 21Fig. 10.1. Deterministi solution for Sioux Falls network.form of the solution is depited in Figure 10.1. Sine the form of the solution is moreilluminating than the values of the ows in the plan, we only depit the paths on whihthere is nonzero ow in all our �gures.
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Fig. 10.2. Transition diagram for full model.We then investigated the full e�et of our Markov modeling paradigm in the unapaitatedase by allowing ertain failures to our. Thus starting in the normal state, we allow forthe possibility of failure on two ars, namely ar (1,2) and ar (21,24). These were hosenfor illustration purposes due to the fat that (1,2) has no ow in the base ase, and (21,24)is the heaviest used ar. By failure, we mean that the ost of the ar rises from 6 or 2respetively to 100. The failure rates of these ars were 0:01 and 0:05 respetively. (Whilethese osts and rates do not satisfy assumption (A2), they were hosen to emphasize thee�ets of a failure. Smaller values for ar failure osts and/or failure rates hange the nu-merial values in the solutions, but the onlusions drawn from the model are essentiallyunhanged.) Furthermore, we allow the possibility of these ars being �xed and the orre-sponding transition rates were hosen as 0:01. The resulting transition diagram is shownin Figure 10.2. The robust plan arising from solving (3.2){(3.5) with the above inputs isshown in Figure 10.3. Note the only hange in the form of this plan over the deterministiplan is that ow from node 6 is sent along the path 6-5-4-3-12-13-24, instead of along6-8-7-18-20-21-24. It is interesting to observe that only ow paths from nodes that areremote from the destination are hanged. It is intuitively lear that if we wish to makethe plan more robust to possible failures on the two given ars at minimal ost, then weshould only penalize the nodes that really have some ability to hange. In the example, thelargest v0 is found at node 6, hanging the e�etive osts of the paths and resulting in thenew path ow noted above. The atual osts of the two paths are 21 and 20 respetively.The rerouting ows are also found by analyzing the solution of (3.2){(3.5). If ar (21,24)fails, the only rerouting hanges to the ow pattern are shown in Figure 10.4. Note that wehave already redireted the ow from 6 so that it does not use ar (21,24). The hanges thatare indiated are essentially unavoidable beause in the model we have postulated, largeamounts of ow arrive at nodes 20 and 21 before we have time to reat to the informationthat a failure has ourred.As we would expet, there is no rerouting performed due to a failure on ar (1,2). However,at this point, we note that is is important to use the full generality of the model formatto generate realisti senarios of events. If we were to use the over simpli�ed Markovmodel shown in Figure 10.5, along with the problem (3.6){(3.9) then rerouting an ourwhen ar (1,2) fails. The de�ieny in this over simpli�ed model is that one a failure has21
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Fig. 10.5. Transition diagram for simple model.ourred in ar (1,2), the model assumes there an be no more failures at all. Sine thepath 19-15-22-21-24 has the same length as 19-20-21-24 the rerouting arbitrarily hoosesto send the ow along the latter path under the new ertainty that ar (21,24) will notfail now.In the realisti model postulated by Figure 10.2, the very small probability (10�6) of afailure in (1,2), followed by a �x of (1,2) then a failure of (21,24) fores the ows to remainon the more robust path 19-15-22-21-24.We note also that our robust plan is heaper than the naive approah of following thedeterministi plan and re-routing if a failure ours. To show this in our example, we �rstsolved for the deterministi plan as outlined above, and then �xed all the xij variablesto zero that were not used in this plan. The rerouting paths were then alulated bysolving (3.2){(3.5) with the extra onstraints added to �x the orresponding xij variables.The resulting plan obviously has the same struture as the deterministi plan shown inFigure 10.1. The rerouting plans in this ase are idential to those given in the paragraphabove. However, the ost of following this approah is about 0.1% worse than that offollowing our robust approah. It an be made orrespondingly worse by inreasing thedemand of trips from node 6 to node 24 from 1 to 100, for example. In this ase, the robustplan is 2.7% better than the naive plan in objetive funtion value. A similar improvementin the robust model over the naive one an be generated by inreasing the failure rate onar (21,24).We then turned to the apaited model and tested the formulations given in Setions 8and 9 as follows. We inorporated apaities of 0.5 on ars (15,14) and (22,23) so thatwhen a failure of ar (21,24) ours, all the ow ould not be rerouted through these ars.The resulting robust solution plan obtained from minimizing (9.4) subjet to (9.2){(9.3),(8.4){(8.5) and (8.6) is depited in Figure 10.6. An interesting paradox an be observed.Ars (15,14) and (22,21) that are not used at all in the unapaitated robust plan havesaturating ow sent aross them in the robust plan with apaities. This paradox an beexplained by the fat that the ars are heavily used in the unapaitated ase for rerouting.Thus, to avoid the major expense of rerouting large amounts of ow through ar (10,11)in the event that (21,24) fails, it is better to send as muh ow as possible away from23
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24 21Fig. 10.6. Robust solution in apaitated ase (T = 40).potential bottleneks. Also, in the apaitated robust plan, ow is sent from node 8 tonode 6, whih is in diret ontrast to the deterministi solution depited in Figure 10.1whih sends ow from 6 to 8.In our GAMS implementation, we allow the modeler to speify a value Tp for the length ofthe transient period. This is implemented by taking the value for T as Tp+max 0ij in (8.4){(8.5) and using a value of � = max 0ij in (8.6). In order to demonstrate the e�et of ourrobust plan on the transient behavior of the jam, we show the ows on two representativears. These rerouting ows are alulated under two di�erent plans. The harts on the topof Figure 10.7 depit the transient behavior of the ows on the ars (15,10) and (10,11)under the naive plan that hooses shortest paths initially, and then reroutes the ow whena failure ours.
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