View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Crossref

Robust path choice in networks with failures

Michael C. Ferris

Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706

Andrzej Ruszczynski

Department of Industrial Engineering, University of Wisconsin, Madison, Wisconsin 537062

Abstract

The problem of adaptive routing in a network with failures is considered. The network may be
in one of finitely many states characterized by different travel times along the arcs, and transi-
tions between the states occur according to a continuous-time Markov chain. The objective is to
develop a routing strategy that minimizes the total expected travel time. Dynaimic programming
models and flow-oriented models are developed and analyzed in the uncapacitated and the ca-
pacitated case. It is shown that the robust plan can be found from a special two-stage stochastic
programming problem in which the second stage models the re-routing problem after the state
transition in the network. The models are illustrated on an example of the Sioux Falls transporta-
tion network. The computational results reveal striking properties of different routing policies
and show that substantial improvements in both duration and size of jams can be achieved by
employing robust strategies.

1 Introduction

The notion of a traffic jam is familiar to almost everyone who has driven a car. Reducing
the frequency and size of such jams is a key issue that traffic planners and automatic
guidance systems have to deal with almost continually [15,20]. One way to reduce jams
is to increase the capacity or the number of the arcs in the transportation network. This
is typically very expensive to perform and in some extreme cases can be shown to have a
detrimental effect [7,14].
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Fig. 1.1. Transition diagram of network’s states.

Our approach is somewhat complementary. It has become apparent that although there is
much research being carried out on providing timely and accurate information to drivers
[1,4,21], there is much work still to be performed regarding the generation and use of
complex dynamical models to improve the congestion levels in large urban areas. We are
going to develop a new modeling paradigm, namely robust guidance strategies. We shall
introduce a number of models for networks subject to failures, discuss robust guidance
strategies and illustrate the results on an example of a real-world network. Since the net
effect of the robust strategies that we propose here is to reduce the size of jams when
failures occur, the modeling format proposed herein can also be used for more effective
design of fault tolerant communications networks. In this case, the network is typically
designed to have enough residual capacity to safely reroute flow when a failure occurs
by generating at least two paths through the network for each demand pair. If robust
strategies are used for path choice, we believe that significantly smaller capacities need to
be provided since flows can be more effectively rerouted whenever a failure occurs.

Our assumptions are rather abstract and the models that we develop apply to other types
of networks, most notably—telecommunication networks. In fact, we believe that there is
much potential in applying some our ideas in telecommunication. We use the transportation
terminology mainly for illustrative purposes and to guide intuition.

We consider a network with node set A and arc set A C N x N, and random non-negative
arc costs (travel times) ¢;; and capacities @;;, (¢,7) € A. The travel times and capacities
are determined by the state of the network ¢ € {0,...,L}: for each ¢ the travel times
are equal to cfj and capacities to ufj The states evolve in time at random, according to
a continuous-time Markov chain, and the current state is known to the vehicles in the

network.

We shall at first focus our attention on the simple case when the only possible transitions
are between state 0 (representing the normal operation mode) and states ¢ # 0 (repre-
senting failure modes). The rate of transition from 0 to £ # 0 will be denoted by \*, and
the transition rate back by puf, see Figure 1.1. It will become clear in the sequel how more
general transition diagrams can be treated.



The problem is as follows. At each node n € A there is a constant demand flow s,, that
must be moved through the network to some destination node D at the minimum expected
travel time. Related problem formulations have been studied by many authors. In [5,6,16]
stochastic shortest path problems are analyzed; they correspond to our setting when no
arc capacity constraints are present. In [3] related two-stage problems are considered in
the case when some arc lengths may become infinite. Problems with capacity constraints
are discussed in [12] in the case of a dynamic (layered) network with one source (see also
[17] and references therein).

To facilitate the analysis and to provide ground for more general cases we make the fol-
lowing simplifying assumptions.

(A1) If the state of the system changes from k to ¢ when a vehicle is on arc (7,7) the
travel time on (4, j) remains equal to cfj for this vehicle; it experiences new travel times
only after hitting j.

(A2) The products \'¢; and pi‘cf; are much smaller than one for each ¢ and each (7, j) € A.

Condition (Al) amounts to assuming that failures occur at the initial sections of the arcs
and do not affect those who have passed them. It is equally simple to consider other cases,
except the notation then becomes more involved.

Condition (A2) implies that the failures are rare and the probability of more than one state
transition during the travel time of a vehicle on an arc (7, j) is negligibly small. In many
real-world transportation networks this assumption can be legitimately criticised, but in
the area of telecommunication networks it is more likely to be satisfied. Nevertheless, we
shall see that in the presence of capacity constraints even rare failures lead to new and
rather involved models.

In section 2 we consider the uncapacitated version of the problem and show a simple
dynamic programming solution. Sections 3 and 4 develop a flow-oriented model in the
two-stage case, where only one state transition in a vehicle’s journey is allowed; sections
5 and 6 illustrate how this model can be extended to the multistage case. In sections 7-9
we analyze the capacitated problem, in which the main issue is the interaction between
vehicles that started at different times but reach a node at the same time, thus leading
to jams. We analyze models that guide vehicles in a way that minimizes the cost of jams
and facilitate the clearing of jams in a user-specified time frame. Finally, in section 10 we
consider a real-world network of Sioux Falls to illustrate the models and solutions.

2 Single vehicle approach and dynamic programming

Let us at first consider the uncapacitated problem: ufj = +oo for (i,j) € A and ( =

0,...,L. Owing to the Markov property of state transitions and to the linearity of the
costs, the problem can be solved by dynamic programming methods as the stochastic



shortest path problem [5]. With each node i € N and each state £ € {0,1,...,L} we
associate the cost-to-go vf: the least expected travel time from i to D when the initial
network state is £. They satisfy the following Bellman’s equation:

0 00 . _
v; _(ir,?)lenAIE{Cij—i_Uj b, ie N\{D}, (=0,...,L, (2.1)

where ¢’ is the state of the network when the vehicle reaches node j. We set v%, = 0 for
all 2.

Assume that the initial state of the network is 0. If a vehicle enters arc (i, 7), the state
of the network may change during its travel time ¢};. Owing to (A2), the probability of
more than one state transition in time c?j is negligible, and the travel time itself remains
unchanged, by virtue of (A1). Thus the probabilities py, of transition from 0 to ¢ in this
time are given by

L
Poo R (1 — Z)\Z)cgj, Poe )\Zc?j, ¢(=1,...,L.
=1

If (A1) or (A2) is not satisfied, we can still calculate these transition probabilities by
methods of Markov process theory. !

Equation (2.1) for ¢ = 0 reads

L

L
0 — 1 0 0 ¢\,,0 0 N, .
v = (gl)lellA{cij + (1 - Cijz;)\ )Uj + cij;)\ Uj}, ie N\ {D}. (2.2)

Similarly, for / =1,..., L we obtain

vf = (g})ierlA {cfj + (1 — cfj,ul)vf + cfju‘qv?}, i e N\ {D}. (2.3)

To simplify the exposition, let us temporarily make a further (over-)simplification: assume
that it is reasonable to neglect cases when more than one state transition occurs in the
time of vehicle’s entire journey, so that the transition diagram is given in Figure 2.1. Then,

LIf more than one transition is possible, the probabilities py, are given by the first row of
the matrix P(t) = exp(Gt), with ¢ = c?j and the generator G having nonzero entries: gy =
— S X goe = A g0 = py g = —pb, € =1,..., L (see [9]). If the travel time on (i, j) changes
instantaneously when the state changes (due to the change in speed), the calculation becomes
more involved, because the next state £ is not the state of the network after a fixed time c?j but
after a random stopping time ¢;j. Again, the evaluation of the transition probabilities is possible
by using the location of the vehicle on this arc instead of time, and the corresponding transition
rates. We shall not pursue this interesting avenue here; our assumptions allow the approximation
P(t) = exp(Gt) = I + Gt, because Gt is small.
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Fig. 2.1. Transition diagram for a one-step lookahead policy.

for the purpose of designing the route for a vehicle starting at state 0, we may set pu* = 0
in (2.3) so that it becomes the following system:

vf = (iry?)iEnA{cfj—l-vf}, ie N\{D}, (=1,...,L. (2.4)

These equations can be solved for each ¢/ = 1,..., L independently, and their solutions
substituted into (2.2). The expected total travel cost is equal to 3,can (py s,v°. We shall
call the solution thus obtained a one-step lookahead policy (see [5]).

If the initial state of the network is ¢ # 0 when a vehicle starts its journey, the one step
lookahead policy is given by a similar approximation: we set all A* = 0, £ # 0, in (2.2),
but consider (2.3) in its full form.

Our considerations make it clear how to proceed when more that one transition has a
probability that cannot be neglected. We shall return to this question in sections 5 and 6,
where more general n-step lookahead policies are considered.

3 The flow formulation

The purpose of this section is to develop a flow model of the uncapacitated problem
discussed in section 2. This model will be more difficult to analyse and to solve than the
dynamic programming equations. However, it will be a more convenient starting point for
the development of models for the capacitated case, where the applicability of dynamic
programming is rather limited.

Before proceeding to the details, let us stress again that in the case when failures may occur
and when the information about that can be used for re-routing, the initial choice of the
path should accomodate this possibility. Our flow-based models will help us to formalize
this fundamental issue.



Suppose that the state of the network at time ¢ = 0 is 0. Consider the vehicles starting
in a time interval [0, A] with some small A > 0 and assume that vehicles starting from
each node follow some pre-specified path. Let us denote by f;;(A) the expected number
of these vehicles which reach arc (i,7) at state 0 (at any time t > 0), and by gf;(4A),
¢ # 0, the expected number of these vehicles that enter (7,j) at state ¢ # 0. We shall
develop the flow balance of these vehicles at node i. Observe that the vehicles traversing
an arc (k,i) experience with probability ¢}, S5 A a state transition before reaching i,
thus disappearing from our balance of vehicles at state 0 (we use (A2) to neglect the
chance of two or more transitions). On the other hand, vehicles that entered (k,7) at state
¢ # 0 have the chance of ulct; of getting to 4 at state 0 and creating an extra inflow at
i. The expected source inflow at i at network’s state 0 will be s;A — 0;(A), where 0;(A)
represents the expected number of vehicles that start in the interval [0, A] at network’s
state ¢ # 0. Clearly, 0;(A)/A — 0 as A — 0. Thus

Z fzy Z (1 - Ck;z Z )‘E)sz Z Z Ciz’:ulgll;i(A) = SiA - Oi(A)'(?"l)

(i,j)eA (ki)eA =1 (kyi)eA

Let us denote

= lim f; £ lim o’ _
x’t] - ELI%) f’L](A)/AJ yz] k%glj(A)/AJ g 17 . 'JL'

The variables ;; and yfj can be interpreted as expected marginal flows at states 0 and ¢.
These limits exist, because if all vehicles starting from some node follow the same path, the
number of those which reach a given arc at a certain state of the network is proportional
to the number of vehicles that started.

The optimal values of the expected ‘marginal flows’ z;; and yfj solve the following linear
programming problem:

min{ 3" cl]xw—i-z > iy} (3.2)

(i,5)eA =1 (i,j)eA

Sooxy— Y. (1 — ), Z)\E)xki -3 N Guntyn=si, i€ N\{D}, (3.3)

(i,j)eA (ki)eA =1 =1 (k,i)eA

_)\l Z cgixki + Z yfj - Z (1 - Cizug)yiz = 07 (S N\ {D}a
(ki)eA (i,J)eA (k,i)eA
(=1,...,L, (3.4)

xij 207 ?JfJZO; (ZL]) EA: ZZO,,L (35)



Equation (3.3), which results from dividing (3.1) by A and passing to the limit with A — 0,
expresses the balance of expected marginal flows at node 7 in state 0, while (3.4) (by a
similar argument) is the flow balance in state ¢ # 0.

Let us stress that we consider in these balances only vehicles that started at state 0.
We do not need to include vehicles that started after the state transition, because in the
uncapacitated case they do not interact with the vehicles which are already on the way.
In the capacitated case, which will be discussed in sections 7-9, we shall revise this model
and consider all vehicles.

The objective is the total expected travel time of vehicles that start in the normal state.

We shall show that at a certain optimal basic solution to (3.2)—(3.5) the dual variables are
the optimal costs-to-go satisfying the dynamic programming equations (2.2)—(2.3).

Let us define a stable optimal basis of (3.2)—(3.5) as a basis which remains optimal when
the demands s; in (3.3) are replaced by s; + ¢, and the zero demands in (3.4) by ¢, for all
i € N\ {D} and all sufficiently small £ > 0. We shall show that one of optimal bases must
be stable.

Let g | 0, and let By be an optimal basis for the problem with demands in (3.3) and
(3.4) equal to s; + ¢, and gy, respectively. At least one of these bases must appear at
infinitely many k; this is our stable basis. Indeed, passing with k to oo we see that it is
optimal for the original problem. Moreover, at each node ¢ at least one of the variables x;;
corresponding to the outgoing arcs (7, j) € A must be basic. The last observation follows
from the fact that this basis defines a feasible basic solution for the demand s;+¢; > 0, and
the only positive coefficients in (3.3) are those at ;. The same applies to the variables yfj
in the row (3.4) with demand &5, > 0, for all £ # 0. It follows that every node i € N'\ {D}
has at least L + 1 basic variables associated with it: one for each ¢ = 0,..., L. Since the
number of constraints (3.3)—(3.4) is equal to the number of nodes in N\ {D} multiplied
by L+1, each node ¢ has exactly one basic variable x;; associated with state 0, and exactly
one basic variable yfj for each state £ # 0.2

The dual variables v} associated with a stable optimal basis yield non-negative reduced
costs

L L
gy — v+ (1 - ngz)\e)v?+co Z)\va >0, i€ N\{D},
=1

ij
(=1

;- vl + (l—cfjué)vf—l-cfjuév? >0, ieN\{D}, ¢=1,...,L.

2In contrast to the deterministic shortest path problem, the basic arcs do not have to form a
spanning tree. Indeed, in the absence of arc capacities it may be profitable to traverse a loop until
the state of the network changes. Consider the example with two nodes: 1 and 2 (destination
node) and arcs (1,1) and (1,2). If 5 = 1, ¢f 5 = 100 and p' = 0.1, in state 1 it is optimal to
choose arc (1,1) (wait for the return to the normal state).



For each i and each ¢ the inequality for the basic variable becomes an equation, so (2.2)—
(2.3) is satisfied.

If we neglect the possibility of more than one transition per journey, the flow formulation
simplifies:

min{ > ngfrzy+z > wyzy} (3.6)

(i,)eA =1 (i,j)eA

> oap— > (=Y N)aw=s;, i€ N\{D}, (3.7)

(i,)€A (k,i)eA =1

_)\l Z Ckzxkz’l‘ Z ?JU Z ym —0 ) EN\{D}, ! = ]_7_”7L7 (38)
(ki)eA (4,4)€A (ki)eA

vi; 20, y; >0, (i,j) €A (=0,... L (3.9)

Again, by an identical argument, the dual variables associated with (3.7)—(3.8) at a stable
optimal basic solution satisfy the simplified dynamic programming equations (2.2)—(2.4).

We emphasize the fact that the variables in (3.6)—(3.9) are expected flows rather than
flow realizations under different scenarios. To obtain the flow realization X in the normal
operation mode (the plan) we find the basic variable x;;, for each i € N\ {D}; there is
only one for each i at a stable basic solution. The arc (7, jp) is the one to choose under
the normal operation mode, that is

Xijy =si+ Y. Xu, 1€N\{D}L
(ki)eA

Scenarios ‘normal-failure ¢’ in our problem are actually collections of many events, so the
‘flow’ in this case is still a random object. But again, for each ¢ # 0 there is only one basic
variable associated with node ¢ and it indicates which arc should be chosen as a detour
from this node in case the state changes to /.

Problem (3.6)—(3.9) is similar to two-stage stochastic programming problems with x play-
ing the role of first stage variables, and y* being the second stage variables in scenario
¢=1,...,L. However, we should keep in mind that our scenarios are aggregates of very
large collections of events, and both x and y represent expected values over these collec-
tions. Such aggregate representation is possible owing to the linearity of the cost function.



4 The equivalent first stage problem

Supposing that the expected flow of the plan z is fixed, the re-routing flows v¢, ¢ = 1,..., L,
in (3.6)—(3.9) can be calculated from the second stage problems:

min Y cijfj (4.1)
(1,J)eA

Soui— X vk=A Y Qs i€ N\{D}, (4.2)

(4,7)€A (kji)EA (ki)eA

y; >0, (i,j) € A (4.3)

The right hand side of (4.2)—the supply—is the expected marginal flow of vehicles that
experienced state transition from 0 to ¢ while passing arcs ending at node i. We notice the
relation of this supply vector to the cost terms associated with z in (3.6).

The optimal value of (4.1)—(4.3) is a function of the plan x. Let us denote it by ¢*(x).
Then we can compactly rewrite (3.6)—(3.9) as

min { > i+ ; qf(x)}, (4.4)

(i,7)eA

subject to (3.7) and the nonnegativity constraint on x.

In general, such two-stage problems need to be solved iteratively. For example, given a plan
x, the second stage problems (4.1)—(4.3) provide some information about the functions
¢‘(x). This information can be used to revise the plan and the iteration can be repeated.
In our case, however, a one pass approach is sufficient, because the functions ¢‘(-) are
linear. We have

¢ €0
¢'(x) = > vicmij, (4.5)
(i,7)eA
where v} are dual variables (node potentials) associated with the constraints (4.2) at an

optimal basic solution to (4.1)—(4.3). Indeed, by the duality theory in linear programming
the optimal value in (4.1)—(4.3), if it is solvable, is equal to the optimal value of its dual,
and the right hand side of (4.5) multiplied by A¢ is the objective of the dual. Moreover,
as known from general theory of network programming the optimal basis corresponds to a
spanning tree, and the values of dual variables can be calculated from (2.4), independently
of the supply; they depend only on cf.



Substitution into (4.4) yields the compact first stage problem:

L
min Y (1 +> )\va) T (4.6)
(i,j)eA =1

>oomy— Y (1 - Z)\l)xki =s;, 1€N\{D}, (4.7)

(i,j)eA (kii)eA =1

As a conclusion from this simple analysis we observe that the robust paths from each node
to D can be found by solving an aggregate generalized network flow problem (4.6)—(4.8)
(see [2]). Its cost coefficients are not actual travel times; they are expected travel times
obtained by

Cij = (1 + XL: /\lvf) -
=1

It is interesting to observe that the modified arc costs ¢;; are obtained by a multiplicative
modification of the original costs, with the multipliers independent of the travel times c?j.
It should be stressed that paths from 7 to D that have equal expected travel times may
have different actual travel times. This is different from the deterministic formulation
where such an equality is the fundamental property of all optimal paths. Here, exchange
of travel time for security is possible.

5 Scenarios ‘failure-normal’ and ‘normal-failure-normal’

It is clear how to treat the case when the vehicles start at network’s state ¢. A simple
example of the underlying Markov chain is given in Figure 5.1.

The travel plan & for these vehicles is given by the problem

min Z (1 + l/w?)cfj fj (5.1)
(i,j)eA
> - > (1-cun )t =5, i€ N\{D}, (5.2)
(4,5)€A (ki)eA
Y] ..
¥ 2 07 (ZL]) S A: (53)

10



Fig. 5.1. Transition diagram for model starting in failure mode.

in which w? represents the shortest time from j to D under the normal operation mode 0.
Problem (5.1)—(5.3) is identical to (4.6)—(4.8), only the role of state 0 is played by ¢, and
0 is its only successor. Note that we use other node potentials w? than those associated
with (4.7), because we neglect the possibility of another failure, once the network returns
to state 0.

The analysis of scenarios ‘normal-failure-normal’ can be built on the top of that. Problem
(5.1)-(5.3) replaces (4.1)—(4.3) to calculate the re-routing cost:

min Y (1 + uéw?) cijfj (5.4)
(i,7)€A
S oui— Y (- )y =X Y aw, i€ N\{D}, (5.5)
(i,J)eA (ki)eA (ki)eA

The optimal Lagrange multipliers (node potentials) v} associated with the constraints (5.5)
enter the first stage problem (4.6)—(4.8). They will no longer be shortest times but shortest
virtual times.

6 General state transitions and variable-depth lookahead policies

The above analysis also suggests the way to develop lookahead policies for a more general
case of an arbitrary Markov chain of network states.

Let £ denote the finite collection of possible states of the network and let cfj the travel
time on arc (7, j) associated with state £ € £. We assume that the states evolve according
to a Markov chain with transition rates py, k,l € £. The initial state is 0.

The problem is as follows. Given demands s;, i € '\ {D}, where D is a fixed destination

11



Fig. 6.1. Scenario tree for a variable-depth lookahead policy.

node, find the policy that minimizes the sum of expected travel times.

Let us develop a multistage linear programming model for this problem. At first, we select a
collection of scenarios: sequences of states that may occur with a non-negligible probability
during a journey of a vehicle. For the problem addressed in sections 1-4, these scenarios
may represent sequences of failures, or different stages of a failure, which we want to
distinguish because of their different effect on travel times.

It should be kept in mind that our ‘scenarios’ cover large collections of events, because
we do not specify the times at which the transitions occur, but only the order of states
visited. The scenarios form a tree 7 with the initial state at the root node and the paths
from the root to the leaves identical to selected paths in the chain’s graph. For example,
for the state transition diagram of Figure 1.1 we may wish to consider the scenario tree of
Figure 6.1.

Observe that the same state may occur at different locations in the scenario tree, and
usually different characteristics (node potentials) will be associated with it. We denote by
¢(m) the Markov chain’s state corresponding to node m € T, by §(m) the set of successors
of node m in the scenario tree and by f(m) the predecessor of m in the tree. Each node
m € T has an associated path 7(m) from the root: it defines a unique sequence of network
states that leads to £(m).

12



The transition rate in 7 from node m to its successor n € S(m) is Apn = fegm) on); only
transitions in the direction from the root to the leaves may occur.

Let us denote (with a slight abuse of notation) by z7;A the expected number of vehicles
that started at the normal state in the time interval [0, A] and entered arc (7,j) after
experiencing state transitions of the path 7(m) (from our earlier considerations it is clear
that it is for small A proportional to the length of this interval). The problem can be
formulated as follows.

mlnz Z CU Ty (6.1)

meT (i,j)€A
(i,j)eA (ki)eA neS(0)

A fmym D ckZ xkz ™ 4 > Tii — > (1—(;kZ > )\mn)xkz—()

(ki)eA (i,7)eA (ki)eA nes(m)
ie N\{D}, meT\{0}. (6.3)
x>0, (i,5)€ A meT. (6.4)

v

In this problem c ™ denotes the travel time along the arc (¢, 7) in the state £(m) associated

((f(m))
Cli

with the node m of the scenario tree; similarly, ¢ is the travel time in the state

associated with the parent node.

To solve (6.1)—(6.4), we associate with each node m of the scenario tree T the following
linear program

min Y (1 + > )\an?) cf](m)x?; (6.5)
(i,4)€A nes(m)
S oap— Y (1-c™ Y Au)ap=sP, i€ N\{D}, (6.6)
(i,J)eA (ki)eA neS(m)
zip >0, (i,5) € A (6.7)

In this problem the demand vector s™ (if m # 0) is the expected marginal flow of vehicles
to be re-routed inherited from the predecessor f(m):

st Z Cm :L"kZ ), ie N\ {D}.

(kz JEA

At the root node s° = s. The constants v} appearing in the objective are potentials of the
network’s nodes that correspond to the constraints (6.6) at the optimal basic solutions of

13



successor nodes n € §(m). Again, analogously to section 4, the optimal value of (6.5)—(6.7)
is linear with respect to the demand s;*. Consequently, all these problems can be solved
in a one-pass approach by traversing the scenario tree from the leaves to the root.

We shall omit the straightforward manipulations which show that such a tree of problems
indeed solves the problem of finding the best route, when only the scenarios included
into the tree may occur. It almost exactly repeats our argument for the ‘normal-failure’
and ‘normal-failure—normal’ scenarios considered earlier, except that the notation would
obscure the otherwise clear idea.

7 Introduction to the capacitated problem

Let us now consider a more general case with arc capacities ufj, associated with states

¢ = 0,...,L. The main difficulty, as compared to the uncapacitated network, is that
we cannot work with expected values of flows, as in section 3. Actual flow realizations
under different events must be considered. We also cannot ignore the interactions between
different flow subvectors, if they share the same arc at the same time. So, events and time
must be present in our model.

We shall again restrict our attention to the basic case of state 0 representing the normal
operation mode, and states £ = 1, ..., L representing failure modes, as described in section
1. In the case of capacitated arcs the dynamic programming approach becomes extremely
difficult, because the current location of all vehicles must be incorporated into the state
vector. We shall follow the flow modeling approach described in sections 3-5 to develop
an appropriate one-step lookahead model.

Let us consider the model (3.6)—(3.9), and define Y* = y*/\‘, ¢ = 1,..., L. Further, let
X;; be the flow of vehicles that enter arc (i,7) in the normal operation mode. Assuming
1—c, > A~ 1in (3.7), we may use the approximation X;; ~ z;;. Dividing (3.8) by A
we obtain the problem:

min{ > cU)(”qLZ)\Z > ”} (7.1)

(i,)€A =1 (i,j)eA
Z Xij — Z X =si, 1€ N\ {D}, (7.2)
(i,J)eA (k,i)eA
- > X+ Y Yi- > vi=0, ieN\{D}, (=1,...,L, (7.3)
(k,p)eA (i,J)eA (k,i)eA

The vector X in the above problem plays the role of the plan—the flow to be used in

14



the normal state—while the vectors Y are the flows of re-routed vehicles in states ¢ # 1
(that is, vehicles that experienced the state transition from 0 to ¢ during their journey).
Equation (7.2) is the flow conservation constraint in the normal operation mode. Equation
(7.3) is the flow conservation constraint for vehicles that started in the normal operation
mode but experienced transition to state ¢ during their journey.

The subtle difference between (7.1)—(7.4) and (3.6)—(3.9) is that here we ignore the fact
that the arcs that lie further from the sources on the plan’s routes have a slightly smaller
chance of being used, because state transition may occur before a vehicle reaches them.
We keep, though, the terms with A' in the objective function (7.1), because they may
contain large re-routing costs cij;g Apart from this small inaccuracy, the model (7.1)—
(7.4) allows us to take into account the arc capacities for the plan. However, we still cannot
formulate capacity constraints for the re-routed flows, because we do not know at which
time they will need particular arcs, and what will be their interaction with the vehicles
that start after the transition occurred. In other words, we need a non-stationary model

of the transient period immediately after the state transition.

8 The nonstationary re-routing problem

Let us assume that all travel times are integer and let M be an upper bound on all of
them. Suppose that a transition from state 0 to state ¢ takes place, and let ¢t = 0 denote
the time of this transition. Let Y}5(¢) be the flow of re-routed vehicles entering arc (4, j) at
time ¢. They satisfy the flow conservation equations

S Vi - X Vit —d) =0i(t), ieN\{D}, t=0,12,..., (8.1)
(i,j)EA (kéi)EA
RSt

where o0;(t) is the inflow into i of the vehicles that experienced the state transition while
traveling along the arcs leading to :

(k,i)eA

0
Cki>t

Since the supply (8.2) vanishes after a finite time (for which an upper bound M is known),
we know that the flows Y will vanish after a finite time, too, although this time may be
much larger than M.

Let ij(t) denote the flow of vehicles that started when network’s state was ¢ and that
enter arc (7, 7) at time ¢. Since we have many sources, and the network is not layered, we
cannot ignore the interactions of the rescheduled flow Y*¢ with the flow X*(t). We make
a simplifying assumption that further state transitions do not occur during the time that
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we are calculating X¢. Even with this assumption, we cannot avoid modeling the initial
non-stationary phase, when the re-routed flow Y*(¢) and the new flow X*(¢) interact. The
policy that we develop under this assumption is termed a one-step lookahead policy.

Denoting by T the optimization horizon and by Z¢(t) = Y*(t) + X*(t) the effective flow
after the state transition, we obtain the problem

min) > ;. Z5(1) (8.3)

t=0 (i,j)eA

(1,5)€A (kéi)eA
i St

0< Z5(t) <ufj, (i,j)e A t=0,1,....T, (8.5)

IR

where the additional supply o;(t) is given by (8.2). Let us note the fundamental difference
between (8.4) and (3.4): in the capacitated case all vehicles entering arc (i,j) must be
considered.

The optimal value Q(X) of (8.3)—(8.5) is the rescheduling cost for the plan X, when
transition to state ¢ occurs.

Our further considerations are based on the assumption that the value 7" does not matter
for determining the robust plan X, provided 7' is large enough, and that the solution to
(8.3)—(8.5) becomes for large ¢ equal to a solution of the ‘steady-state’ problem associated
with state ¢:

min Z Czjyfj
(i,7)eA
L 4
Z ng_ Z sz_slv ZGN\{D}7
(i,j)eA (kjg)eA

The detailed analysis of this issue exceeds the scope of the present note. From now on we
shall simply assume that 7" is large enough and fixed, e.g., at the double of the maximum
travel time. We also assume that a transition from one plan to another is feasible. This
can be guaranteed by the existence of uncapacitated arcs (i, ) of length one for each node
¢ which effectively model ‘waiting’ at node <.

To avoid some terminal effects associated with the fact that the vehicles that start late
cannot make it to the destination anyway, and therefore choose short arcs, we may augment
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Fig. 8.1. Counter-example for steady-state attainment. The numbers at the arcs are travel times,
or pairs (travel time, capacity) if capacity is finite.

(8.3)—(8.5) with terminal conditions:

4

Zit) =X, t=T—-7,T—7+1,...,T-1T, (i,j)€ A, (8.6)

where 7 is some constant (for example, the maximum travel time on the arcs). In fact, by
choosing T' (or 7) one may change the allowed length of the transient period, before the
flow settles on the new steady-state solution.

If there is no possibility of waiting (no uncapacitated arcs (i,4) of length one) it is not

guaranteed that the low must settle on the ‘steady-state’ solution X' at all, as the example
shown in Figure 8.1 demonstrates. The example has 6 nodes, the destination node being
D = 6 and apart from the capacities noted in the figure, all other arcs are uncapacitated.
There is only one failure state, in which the travel time on the arc (2,3) increases to
i3 = 10; other times and capacities remain unchanged. It is clear that the optimal solution
in state 0 is to send the flow of 3 units along 2-3-4-6, and 1 unit along 1-5-6. After the
failure on arc (2,3), the flow from node 2 switches to the path 2-4-6, but there is no way to
switch the flow from node 1 to the now empty and shorter path 1-3-4-5-6. Indeed, assume
that the failure occurs at time ¢t = ¢y, and that Z;3(¢t) = 1 for ¢t > ;. Consider the flow
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&4(t) coming to node 4 at time ¢. It is not difficult to see that

,

for t <ty + 2,
for t € [to +2,t9 + 4),
for t € [ty +4,ty + 5),

= = O W

fOI'tZto‘l‘E).

By the capacity constraint on (4, 6), it follows that Zy;(t) = 1 for ¢t > ¢y, + 5. But then the
flow &5(t) coming to node 5 equals 2 for ¢ € [ty + 6, %y + 7], because there are still vehicles
on the arc (1,5) that were sent before the failure occurred: at ¢ € [to — 1,¢9). This violates
the capacity constraint on the arc (5,6) in this time interval.

9 The robust capacitated problem

We are now ready to formulate the robust planning problem in the capacitated case:

L
min{ > ) Xi;+ Y NQ(X)} (9.1)
(i,7)eA =1
(i,J)eA (k,i)eA

The functions Q(X) are the optimal values of the re-routing problems in scenarios ¢ =
1,..., L.

Problem (9.1)—(9.3) is similar to two-stage stochastic programming problems (see [13,18,22]
and the references therein). Much is known about these problems, and efficient solution
techniques exist that exploit the structure of the model in question (see [22] and the
references therein). We summarize below the facts that are relevant for our case.

The simplest approach is to include the linear programs defining Q*(X) into (9.1)—(9.3)
and construct a giant linear programming problem with a dual block angular structure:

L T
min Y (X + DNz (1) (9.4)
=1 t=0

(i,7)€A

subject to (9.2)-(9.3) and (8.4)-(8.5). This problem can be solved by standard linear
programming techniques, such as the simplex method or interior point methods.
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This large scale linear program can also be used to derive the optimality conditions that
provide some additional insight into our model. Let wf(t) be the optimal values of Lagrange
multipliers associated with (8.4) for j € N\ {D} and ¢ = 1,..., L. Adding the constraints
(8.4) multiplied by w(t) to the objective (9.4) we observe that the optimal plan X solves
the following network programming problem:
L c?j_l

min Y (C?j +3 A0y wjf(t))Xij
=1

(i,j)eA =0

subject to (9.2)—(9.3). It is similar to the deterministic flow problem, only the costs are
modified in a manner analogous to (4.6)—(4.8).

Another solution approach, especially useful when the full linear programming formulation
is very large, is to apply special decomposition methods developed for two-stage stochastic
programming problems [19]. These methods work with the compact formulation (9.1)-
(9.3) and use objective and feasibility cuts for Q%, ¢ = 1,..., L, to construct sufficiently
good models of (9.1). In this way problems with very many scenarios can be solved, be-
cause derivation of objective and feasibility cuts can be carried out within independent
subproblems for ¢ =1,..., L.

10 Computational Results

We have investigated the effects of the modeling formats described in the previous sections
of this paper on a simple example using the Sioux Falls network with data that is given
in [11]. In this example, the network has 76 arcs and 24 nodes with symmetric traveling
times given in Table 10. Node 24 was taken as the destination node with the demands for
trips to this node being given by

0.11 x [1,0,0,2,0,1,1,2,2,8,6,5,8,4,4,3,3,0,1,4,5,11, 7]

The factor 0.11 was used only to conform with the data given in [11]. Replacing the factor
by 1 and modifying the arc capacities conformally leads only to changes in the sizes of the
flows given in Figures 10.7 and 10.9.

Our computations were carried out using the modeling language GAMS [8], calling the
CPLEX simplex code (with default options) to solve the resulting linear programs.

We considered first the uncapacitated case as a means of illuminating the model formats
described in Sections 3 and 5. Related computational work for Section 4 can be found in
[10]. We initially solved (3.2)—(3.5) with A* = u* = 0 to find the deterministic solution in
this simple case. This essentially amounts to finding shortest paths in the network. The
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Table 10.1
Traveling times for Sioux Falls network.

1,7 c% 1,] c% i,7 c% 1,7 c%

1,2 6 1,3 4 2,6 ) 3,4 4
4,5 2 5,6 4 5,9 5 6,8 2
9,8 1 8,7 3 13,12 4 | 4,11 6
9,10 3 | 8,16 5 | 7,18 2 |12,11 6
11,12 5 |10,16 5 (16,18 3 |10,17 8
16,17 2 |11,14 4 |10,15 6 |17,19 2
14,15 o5 |156,19 4 |14,23 4 15,22 4
23,22 4 112,13 3 23,24 2 22,21 2
19,20 4 122,20 5 |18,20 4 |13,24 4
24,21 3 |21,20 6

Fig. 10.1. Deterministic solution for Sioux Falls network.

form of the solution is depicted in Figure 10.1. Since the form of the solution is more
illuminating than the values of the flows in the plan, we only depict the paths on which
there is nonzero flow in all our figures.
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0.01 0.05

Fig. 10.2. Transition diagram for full model.

We then investigated the full effect of our Markov modeling paradigm in the uncapacitated
case by allowing certain failures to occur. Thus starting in the normal state, we allow for
the possibility of failure on two arcs, namely arc (1,2) and arc (21,24). These were chosen
for illustration purposes due to the fact that (1,2) has no flow in the base case, and (21,24)
is the heaviest used arc. By failure, we mean that the cost of the arc rises from 6 or 2
respectively to 100. The failure rates of these arcs were 0.01 and 0.05 respectively. (While
these costs and rates do not satisfy assumption (A2), they were chosen to emphasize the
effects of a failure. Smaller values for arc failure costs and/or failure rates change the nu-
merical values in the solutions, but the conclusions drawn from the model are essentially
unchanged.) Furthermore, we allow the possibility of these arcs being fixed and the corre-
sponding transition rates were chosen as 0.01. The resulting transition diagram is shown
in Figure 10.2. The robust plan arising from solving (3.2)—(3.5) with the above inputs is
shown in Figure 10.3. Note the only change in the form of this plan over the deterministic
plan is that flow from node 6 is sent along the path 6-5-4-3-12-13-24, instead of along
6-8-7-18-20-21-24. It is interesting to observe that only flow paths from nodes that are
remote from the destination are changed. It is intuitively clear that if we wish to make
the plan more robust to possible failures on the two given arcs at minimal cost, then we
should only penalize the nodes that really have some ability to change. In the example, the
largest v° is found at node 6, changing the effective costs of the paths and resulting in the
new path flow noted above. The actual costs of the two paths are 21 and 20 respectively.

The rerouting flows are also found by analyzing the solution of (3.2)—(3.5). If arc (21,24)
fails, the only rerouting changes to the flow pattern are shown in Figure 10.4. Note that we
have already redirected the flow from 6 so that it does not use arc (21,24). The changes that
are indicated are essentially unavoidable because in the model we have postulated, large
amounts of flow arrive at nodes 20 and 21 before we have time to react to the information
that a failure has occurred.

As we would expect, there is no rerouting performed due to a failure on arc (1,2). However,
at this point, we note that is is important to use the full generality of the model format
to generate realistic scenarios of events. If we were to use the over simplified Markov
model shown in Figure 10.5, along with the problem (3.6)—(3.9) then rerouting can occur
when arc (1,2) fails. The deficiency in this over simplified model is that once a failure has
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Fig. 10.4. Rerouting under failure of (21,24).
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0.01 0.05

Fig. 10.5. Transition diagram for simple model.

occurred in arc (1,2), the model assumes there can be no more failures at all. Since the
path 19-15-22-21-24 has the same length as 19-20-21-24 the rerouting arbitrarily chooses
to send the flow along the latter path under the new certainty that arc (21,24) will not
fail now.

In the realistic model postulated by Figure 10.2, the very small probability (107%) of a
failure in (1,2), followed by a fix of (1,2) then a failure of (21,24) forces the flows to remain
on the more robust path 19-15-22-21-24.

We note also that our robust plan is cheaper than the naive approach of following the
deterministic plan and re-routing if a failure occurs. To show this in our example, we first
solved for the deterministic plan as outlined above, and then fixed all the z;; variables
to zero that were not used in this plan. The rerouting paths were then calculated by
solving (3.2)—(3.5) with the extra constraints added to fix the corresponding x;; variables.
The resulting plan obviously has the same structure as the deterministic plan shown in
Figure 10.1. The rerouting plans in this case are identical to those given in the paragraph
above. However, the cost of following this approach is about 0.1% worse than that of
following our robust approach. It can be made correspondingly worse by increasing the
demand of trips from node 6 to node 24 from 1 to 100, for example. In this case, the robust
plan is 2.7% better than the naive plan in objective function value. A similar improvement
in the robust model over the naive one can be generated by increasing the failure rate on
arc (21,24).

We then turned to the capacited model and tested the formulations given in Sections 8
and 9 as follows. We incorporated capacities of 0.5 on arcs (15,14) and (22,23) so that
when a failure of arc (21,24) occurs, all the flow could not be rerouted through these arcs.
The resulting robust solution plan obtained from minimizing (9.4) subject to (9.2)—(9.3),
(8.4)—(8.5) and (8.6) is depicted in Figure 10.6. An interesting paradox can be observed.
Arcs (15,14) and (22,21) that are not used at all in the uncapacitated robust plan have
saturating flow sent across them in the robust plan with capacities. This paradox can be
explained by the fact that the arcs are heavily used in the uncapacitated case for rerouting.
Thus, to avoid the major expense of rerouting large amounts of flow through arc (10,11)
in the event that (21,24) fails, it is better to send as much flow as possible away from
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Fig. 10.6. Robust solution in capacitated case (1" = 40).

potential bottlenecks. Also, in the capacitated robust plan, flow is sent from node 8 to
node 6, which is in direct contrast to the deterministic solution depicted in Figure 10.1
which sends flow from 6 to 8.

In our GAMS implementation, we allow the modeler to specify a value T, for the length of
the transient period. This is implemented by taking the value for T" as T, +max ¢}; in (8.4)~
(8.5) and using a value of 7 = maxc}; in (8.6). In order to demonstrate the effect of our
robust plan on the transient behavior of the jam, we show the flows on two representative
arcs. These rerouting flows are calculated under two different plans. The charts on the top
of Figure 10.7 depict the transient behavior of the flows on the arcs (15,10) and (10,11)
under the naive plan that chooses shortest paths initially, and then reroutes the flow when

a failure occurs.
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8 T T T T T T T T T 12 T T T T T T T T T
- “naive (15,10)" — “naive (10,11)" —

10

0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
8 T T T T T T T T T 12 T T T T T T T T T

"robust (15,10)" — “non1011.dat" —

10

0 I I I I I I I I I 0 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Fig. 10.7. Rerouted flow on (15,10) and (10,11) using naive plan (top) or robust plan (bottom).
Failure occurs at ¢ = 1.

The charts on the bottom depict the rerouting flows that occur when we follow the robust
plan; both of these rerouting procedures allow a period T, = 40 to attain the steady state
solution. Note that on both of these arcs, the amount of flow that has to be rerouted in the
robust case is less than half that needed to be rerouted when the naive plan is followed.

The model format also allows the ability to try to reach the steady state solutions in a
user-specified time. Instead of allowing a time horizon of T), = 40, we attempted to solve
the same robust planning problem as outlined above with a horizon of T}, = 20. Since we
are forcing the jams to disappear very quickly, it is necessary to modify our plan to allow
the flows to be rerouted if necessary. The new base plan is shown in Figure 10.8; this figure
should be contrasted with Figure 10.6. In particular, note that the new robust plan sends
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Fig. 10.8. Robust solution in capacitated case (1}, = 20).

8 T T T T T T T T T 12 T T T T T T T T T
"robust (15,10)" — "robust (10,11)" —
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10
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5 -
4r 6
3 -
4+
2 F
2 b
1+ i
0 ’—‘ 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Fig. 10.9. Rerouted flow on (15,10) and (10,11) using robust base plan with 7}, = 20.

flow from 19 to 17 (in direct contrast to the previous robust plan). The new robust plan
has several features that are similar to the rerouting plan under failure of (21,24). The
amounts of flow needing to be redirected are therefore smaller in this case, as can be seen
in Figure 10.9. The robust plan reroutes less flow due to the fact that it has less time to
perform the rerouting. In fact, some flow purposely takes longer paths to ensure that it
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can be rerouted quickly enough to attain the steady-state in the period 7, = 20 (see for
example, flow on 20-22-21, and no flow on (20,21)).

This has clear ramifications in the design of fault-tolerant communication networks. When
a robust plan is used for normal flow scheduling, much less redundant capacity needs
to be built into the system to withstand failures. This undoubtedly leads to significant
monetary savings. Furthermore, networks can be designed that allow jams to be cleared
in a user-specified time frame.
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