
Topology Inference from BGP Routing Dynamics
David G. Andersen, Nick Feamster, Steve Bauer, Hari Balakrishnan

MIT Laboratory for Computer Science
fdga, feamster, bauer, harig@lcs.mit.edu

Abstract— This paper describes a method of inferring logical relation-
ships between network prefixes within an Autonomous System (AS) using
only passive monitoring of BGP messages. By clustering these prefixes
based upon similarities between their update times, we create a hierarchy
linking the prefixes within the larger AS. We can frequently identify groups
of prefixes routed to the same ISP Point of Presence (PoP), despite the lack
of identifying information in the BGP messages. Similarly, we observe dis-
parate prefixes under common organizational control, or with long shared
network paths. In addition to discovering interesting network characteris-
tics, our passive method facilitates topology discovery by potentially reduc-
ing the number of active probes required in traditional traceroute-based
Internet mapping mechanisms.

I. I NTRODUCTION

Topological information about the Internet is useful for var-
ious reasons, including troubleshooting operational problems,
and facilitating more realistic simulation and evaluation of net-
work protocols and applications. Most approaches to topol-
ogy discovery usetraceroute–based measurements [1], [2],
routing messages [3], or a combination of both [4]. We use clus-
tering methods to derive alogical topology from routing mes-
sages. The results have more detail than topologies constructed
only from routing data, and require no active probing. These
topologies are structurally interesting on their own, and have
application to existing topology measurements.
traceroute-based topologies observe the actual path

taken by packets as they travel1. Unfortunately, this approach
requires sending active data into remote networks—something
that is not always well received, may be filtered by end net-
works, and which requires more network resources on the part
of the mapper.2

Topology inference from routing messages is completely pas-
sive, but does not obtain as detailed or accurate a map. BGP data
does not necessarily reflect the actual routing of packets [3].
To reduce their routing load, Internet Service Providers (ISPs)
aggressively aggregate prefixes into supernets, hiding many in-
ternal details. Finally, many large ISPs announce hundreds of
prefixes under the same Autonomous System (AS) path. For in-
stance, Figure 1 shows the cumulative distribution of prefixes
by origin AS, and lists the 5 most frequently occurring origins
from MIT’s routing table. Buet al. speculate on a power law for
routing tables [5], but regardless of the constants, it is clear that
1We consider thepath to be the IP-layer path.
2This research was sponsored by Defense Advanced Research Projects

Agency (DARPA) and the Space and Naval Warfare Systems Center San Diego
under contract N66001-00-1-8933.

AT&T (7018): 1250
UUNET (701 702): 1250

Source (AS) #prefixes

Supernet (3908): 793

(hong Kong)REACH (1221): 1282
UUNET (701): 2053

14000

0.8
0.9

1

0 2000 4000 6000 8000 10000

Number of origin AS’s

Cumulative distribution

0.6
0.5
0.4
0.3
0.2
0.1

0

F
ra

ct
io

n
of

 a
nn

ou
nc

ed
 p

re
fix

es

0.7

Figure 1. The 5 most frequent origin AS’s account for 5.8% of
the routes in an April 11, 2002 BGP table snapshot at MIT.
The number of prefixes is dominated by a small number of
prolific systems.

a small number of systems are responsible for a large fraction of
the announced prefixes on the Internet. The 13 most common
systems originate 10% of the total announced prefixes. Because
of this, topologies that simply group all of the prefixes from a
large, global ISP miss a great deal of information. Our work
attempts to address this last failing of BGP-based topologies.

In this paper, we present a fully passive, BGP-based topol-
ogy inference method. We group IP address prefixes based upon
how frequently we observe BGP updates for both prefixes within
the same time window. We then apply a standard clustering al-
gorithm to join these prefixes into successively larger groups.
Our temporal clustering produces higher-fidelity topologies than
pure BGP table–based clustering. As an aid to other Internet
mapping techniques, temporal clustering can guide the choice
of paths on which to traceroute. Better destination selection can
increase the information gained from fewer traceroute probes.

II. CLUSTERING OFROUTING UPDATES

The input to our clustering is a time-series of routing updates.
An update is any BGP routing message that is specific to a pre-
fix, such as an announcement, or withdrawal. Each update con-
tains a timestamp indicating the second at which it was received,
and the prefix (“18.0.0.0/8”) that was affected. The updates are
ordered by timestamp. Clustering proceeds by grouping the pre-
fixes that are frequently updated in the same time window. The
result of our clustering is a binary tree on the input prefixes,
where prefixes that are more tightly correlated are linked more
closely in the binary tree. We find that prefixes linked by our
algorithm often share administrative or topological features.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/209552865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

time

p1 updates

p2 updates

u

u

I seconds

1

1

1

1

10

0 0

(t)
p1

(t)
p2

Figure 2. Generating the update vectors u(t)
p1 and u

(t)
p2 from a

stream of BGP updates for prefixes (p1; p2). Time is dis-

cretized into I-second bins. u(t)p = 1 if and only if at least
one BGP update for that prefix is received in the time win-
dow t.

A. Preprocessing

Before clustering, we group and filter the BGP updates. We
first group BGP updates into time intervals of I seconds. We fil-
ter out massive updates that were typically caused by BGP ses-
sion resets near our monitoring host. The information contained
in massive updates is very limited—it reflects the measuring net-
work’s topology and immediate upstream connections, not the
topology of any connections deeper in the network. Because
clustering scales with the number of items that have connections
to each other, this filtering can greatly increase the speed of the
cluster computation.

The output of the preprocessing stage is a series of update
groups, each of which contains the set of prefixes updated at
that time.

B. Clustering

Clustering requires two components. The distance metric is
a function that determines how closely two items are related.
The clustering methodgroups items based upon their distance.

Our primary distance metric (actually a nearness metric) is
based upon the correlation between the two update streams. To
compute this, we take the discretized update groups, and deter-
mine the update vector u(t)p for each prefix p:

u(t)p =

�
1 if p updated during interval t
0 otherwise

(1)

Figure 2 gives an example of update vector creation.
The correlation coefficient distance metric between two pre-

fixes (p1; p2) is the correlation coefficient between their corre-
sponding one/zero update vectors across n time intervals:

C(p1; p2) =

1
n

Pn

t=1

�
u
(t)
p1 � up1

��
u
(t)
p2 � up2

�
q
�2p1

q
�2p2

(2)

up1 is the average of up1, that is, the probability that the prefix
will be updated in any given interval. � 2

p is its variance.
We also examined a second metric, the weighted sum of the

number of times that two prefixes (p1; p2) occur in the same
time interval. Each interval is normalized by the total number of
updates observed in order to reduce the significance of p 1 and
p2 updates coinciding in a period of increased update traffic.

E−A: 84

A B C D E

Resulting ClusterInput Distances
A−B: 1
A−C: 2

...

B−C: 5
D−E: 25

Figure 3. An example of the single-linkage (pairwise greedy)
clustering method. The list on the left shows the 5 most
closely related items, in order, and the graph on the right
shows the clustering that results from this ordering.

Formally, let jtj be the number of prefixes updated in time bin t.
The weighted sum is:

S(p1; p2) =

nX
t=1

(
1
jtj if u

(t)
p1 = u

(t)
p1 = 1

0 otherwise
(3)

We found the correlation metric superior to the weighted sum
metric in almost all cases, and focus on it during our evalua-
tion. The weighted sum normalizes against increased update
traffic, but admits a small bias towards groups of prefixes that
experience frequent updates. In contrast, correlation normal-
izes against update frequency, but does not incorporate the con-
fidence of the correlation. In future work, we intend to address
this by adding a small prior to the correlation computation—
a bias towards believing that prefixes are unrelated, so that the
confidence in the correlation plays a part as well.

Single-linkage clusteringis a simple and efficient pairwise
greedy clustering method [6]. This method first computes the
O(n2) pairwise distances between objects and stores them in
sorted order. It iterates through the prefix pairs from closest to
farthest. When it encounters a new node in a pair, the single-
linkage method joins the node to its neighbor, or its neighbor’s
cluster if the neighbor has already been clustered. If both pre-
fixes are in the same cluster, it does nothing. If the prefixes are in
different clusters, the two are merged. This process is illustrated
in Figure 3.

This straightforward clustering requires no recomputation of
the O(n2) pairwise distances between objects, so the algorithm
runs in O(n2 logn) time. While single-linkage can be prone
to artifacts like long unbranched chains, we require a fast al-
gorithm to handle the large number of objects that we cluster
(1,000–110,000). Using this method, it is feasible, if time con-
suming, to cluster all 110,000 prefixes in the BGP routing tables.
Clustering 2,000 nodes runs in about 3 minutes.

III. DATA COLLECTION

We collected a large set of BGP traffic on which to perform
our analysis, and a snapshot of traceroutes with which to eval-
uate our clustering. In this section, we describe how and when
we collected routing traffic and traceroute data.

ihtfp.mit.edu

ginseng.lcs.mit.edu

AS 10578AS 7015AS 1

AS 3

Figure 4. We collected BGP announcements at gin-
seng.lcs.mit.edu, which listened to routing updates from
MIT’s border router, ihtfp.mit.edu. MIT obtains upstream
connectivity from Genuity (AS 1) and the Northeast Ex-
change (via AS 10578). On April 18, 2002 at 9:30am
GMT, a private link between MIT and AT&T Broadband
(AS 7015) was established.

A. BGP Collection

We collected BGP announcements using a Linux machine at
the MIT Laboratory for Computer Science running Zebra 0.91a,
an open source software router [7], which peered with MIT’s
border router. We configured Zebra to log all BGP updates, and
archived these updates nightly. We have collected almost 70
million BGP announcements since June 28, 2001.

Figure 4 shows where our collection machine, ginseng, sits in
relation to MIT’s border router, ihtfp, and the rest of the Inter-
net. During this collection, MIT received two upstream feeds:
a commercial feed via Genuity (AS 1), and an Internet2 feed
via the Northeast Exchange (AS 10578). Because of our con-
figuration, we hear only MIT’s best route to any given prefix.
This means that our BGP monitor will not see all announce-
ments seen by MIT; it will only see BGP announcements that
caused a change in MIT’s choice of best route to a prefix.

One noteworthy feature of MIT’s peering session with Ge-
nuity is that we often see route updates that change only the
Multi-Exit Discriminator (MED) of the route. These updates
likely reflect a routing change internal to Genuity, or the selec-
tion of a different peer router out of which to send traffic. These
announcements may propagate more topology information to us
than other BGP routing feeds. We leave a quantification of these
effects as future work.

As noted by Mahajan et al., many announcements in the BGP
table are accidental [8]. With one ISP, we observed a monthly
factor of two increase in the number of announced prefixes,
when an access list change permitted internal routes to leak to
the rest of the network. Such leaks provide a possible source of
data for obtaining higher-resolution topology maps. However,
these accidental leaks may be reduced as a result of the Maha-
jan study, removing this potential source of information. We
therefore remove these spurious announcements from our data
set before clustering.

B. Traceroutes and Analytical Data

We took a “snapshot” of traceroutes to all BGP-announced
prefixes in our routing table (109,783 destinations) by probing
the first IP address within the prefix. After collection, we pro-

cessed the traceroutes to assign DNS names and autonomous
systems, and collected whois data for the prefixes.

Because we evaluate our clustering only in a tree context,
not a full-mesh mapping context, we did not need to use the
router interface identification techniques used by Mercator [2]
or Rocketfuel [4]. We did, however, need to identify and merge
cases of multi-path routing. To do so, we chose to compare
paths based upon their most distant shared IP. This could cause
problems when comparing networks that re-use interface IP ad-
dresses, but we did not encounter this problem in our study. We
perform loop elimination by identifying and removing cycles
from the traceroutes.

IV. RESULTS

We performed clustering on 2338 prefixes announced by
UUNET (AS 701) and 1310 prefixes announced by AT&T (AS
7018), the largest domestic chunks of indivisible prefixes in our
routing table3. Some of these prefixes may also have been an-
nounced by other ISPs; we do not make use of this information.
We examine those prefixes that were a) present in a static rout-
ing table snapshot at MIT on April 11, 2002, and b) announced
with an AS path of 701 at some point in the preceding 90 days.

For these experiments, we grouped prefixes with a time win-
dow of 30 seconds, a common minimum advertisement time in
BGP implementations. Experiments with a 60-second time in-
terval showed little difference. We filtered massive updates at
a 90% threshold—updates containing more than 90% of all of
the advertised prefixes for a particular origin AS were discarded.
This filtering removed about 20 half-minute intervals over a 90
day period, but removing these updates made the algorithm run
much more quickly.

Clustering produces a rooted tree of “similarity” pairings
where the intermediate nodes are meaningless (and implicit).
In contrast, traceroute and the underlying network have actual
routers at the intermediate nodes, and these routers are identi-
fied in network mapping. To evaluate our clustering, we must
compare these two different types of graphs. In general, evalu-
ating graph homomorphism is a hard problem. We first explore
the structure of the clusters we obtain. With an understanding of
that structure, we develop three general heuristics with which to
evaluate the clusters: (1) Are the clustered IP addresses adjacent
to each other? (2) Are the prefixes routed to the same desti-
nation? (3) How deep into the network do the prefixes share a
path? To put these heuristics in context, we anecdotally examine
some of the clustering decisions for which none of the heuristics
apply.

Important cluster decisions occurfirst. In single-linkage
clustering, the most important clustering decisions are made
early, when joining the most strongly connected prefixes. Fig-
ure 5 shows the number of prefixes processed and the number of
clusters formed, as a function of the number of pairwise prefix
comparisons examined. UUNET ends up with 6 clusters after
2.3 million comparisons; AT&T with 5 clusters after � 800K
comparisons. We note that correlation-based clustering main-

3These numbers are larger than those from the static routing table snapshot
because they’re aggregated over 90 days of routing updates. AT&T appears to
have fewer prefixes because they make many allocations from an internal class-
A netblock, 12/8.

0

500

1000

1500

2000

2500

0 10000 20000 30000 40000 50000 60000

N
um

be
r

of
 c

lu
st

er
s

Number of pairwise comparisons

UUNET - correlation
UUNET - weighted sum

AT&T - correlation
AT&T - weighted sum

Figure 5. The evolution of the clustering over time. We begin
with each of the 2338 nodes in an individual cluster. Clus-
ter formation speed drops off rapidly — the most important
low-level clustering decisions are made after considering
the most closely paired prefixes.

tains a larger number of distinct clusters earlier in the clustering
process. We interpret this as showing that the correlation score
results in more intra-cluster linkages. This is a good thing—
it indicates that correlation-based clustering is more internally
consistent, though it says nothing about the relationship of these
consistent subgraphs to other external metrics. In contrast, a
random grouping of the AT&T nodes would be expected to con-
verge to a single giant component in under 2n logn = 30; 000
comparisons, whereas here it has 179 distinct sub-clusters [9].
For the remainder of the paper, we focus only on correlation-
based clustering, which outperformed score-based clustering on
nearly all metrics.

There are many metrics for evaluating a cluster. We ob-
serve a large number of “obvious” good clusterings — prefixes
that are adjacent to each other and routed to the same customer,
or even to the same router. These are generally easy to identify
via traceroute information. The less easily identified cases are,
however, more informative about the results that failure-based
clustering produces. Before presenting automated analyses of
our clusters, we discuss some examples.

A. Selected Prefixes in the Same Cluster

The prefixes 200.50.192.0/19 and 196.3.153.0/24 appear to
have little to do with each other. Their traceroutes only stay
together for 10 hops, to New York. An examination of whois
data, however, reveals that both are in the Caribbean — one in
Jamaica, the other in Haiti.

199.230.128.0/23 and 204.154.48.0/21 are located about 45
miles away from each other in Illinois — but traceroute doesn’ t
reveal this, because the default route to one now goes through
a different provider, with a backup link to UUNET. This rela-
tionship was only exposed by using the historical data of BGP
updates.

205.159.243.0/24 and 204.86.96.0/24 share only 10 tracer-
oute hops, but they both end up in the same UUNET PoP in
Chicago 18 hops later, following a parallel load-balanced path.

198.51.238.0/24 and 192.150.253.0/24 shouldn’ t be in our
data set: they both have Internet2 routes. During an outage,
however, their backup route was announced through UUNET.
Both of these netblocks go through Sandia National Labs to get
to their final destinations. In fact, we discovered a small cluster
of 6 such prefixes.

66.220.192.0/20 and 208.23.232.0/21 route through different
ISPs (UUNET and Sprint). They’re both assigned to Carrot
Technologies; their supernets go through Sprint, but Carrot ad-
vertises both prefixes specifically through UUNET, without an
autonomous system number.

199.242.4.0/23 and 198.22.254.0/24 share the same PoP, so
why are they interesting? One is allocated to a company in New
York, and one to a company in Delaware—both of which are a
component of the same institutional fund management company.

More intriguingly, 135.36.0.0/16 and 135.12.0.0/14 have al-
most nothing to do with each other—but have almost identical
patterns of updates and withdrawals. More investigation reveals
that the companies, Agere Systems and Lucent Technologies,
spun off in July 2000—but their networks still behave surpris-
ingly similarly.

Some of these relationships are clear from network data —
traceroutes, or examining DNS names. Other relationships only
show up when examining data such as IP address allocation
databases, or even the companies’ web pages. From these ex-
amples, we know that we sometimes cluster based upon non-
network features; however, we also frequently cluster in ways
that have a strong relationship to the underlying network.

B. Network-based Heuristics

Krishnamurthy and Wang use the last two traceroute hops to a
client and the last 2 or 3 components of the client DNS name to
validate their clustering [3]. Because we frequently cluster pre-
fixes belonging to different organizations, we generalize these
validation methods slightly. We consider three network metrics:
� IP address similarity
� Ratio of shared to unshared traceroute path length
� DNS-based Point of Presence (PoP) comparison

For the geographic comparisons, we extract router location
from the ISP’s naming convention. These techniques generalize
reasonably to other networks, though with some manual effort
required [10], [4]. For our dataset, we assigned 97% of internal
UUNET hops to a PoP, and a slightly smaller fraction of AT&T
hops.

We evaluate each metric’s score of the cluster whenever
two clusters are merged. Recall that clustering is achieved by
traversing an ordering of pairwise comparisons, and merging
these in order. At each merge, we examine the sum of the pair-
wise scores for that metric that have been placed into the cluster
at that point in time. This gives us an idea of how accurate the
clustering is with respect to that metric. As the number of clus-
ters reaches its minimum, the average value of the metric should
drop to its actual average value; a good clustering will initially
keep the average value high. For some graphs, where noted, we
show an exponential weighted moving average instead of the
total average, to better show the variation.

IP address space distance.It seems likely that adjacent
netblocks may often be allocated “near” each other, for some

2^10

2^12

2^14

2^16

2^18

2^20

2^22

2^24

2^26

2^28

0500100015002000N
um

er
ic

 d
is

ta
nc

e
be

tw
ee

n
cl

us
te

re
d

IP
 a

dd
re

ss
es

Number of clusters

AT&T
UUNET

Figure 6. A moving average (q=0.995) of the numeric distance
between the clustered IP address ranges. Two adjacent net-
blocks have a distance of zero. Two netblocks separated by
a ’class C’ netblock would have a distance of 28, and so on.

metric. We examine the distance between netblocks to see if
the clustering groups netblocks that are close, numerically. We
count the number of IP addresses that fall between adjacent net-
blocks, without accounting for the size of the blocks involved.
Two adjacent netblocks (of any size) have a distance of zero.
Two blocks separated by a “ /24” (or an old-style “class C” net-
block) have a distance of 28. Figure 6 shows these distances for
AT&T and UUNET. The first few clustering decisions cluster
prefixes that are numerically close to each other; the next 1/4 or
so cluster prefixes that are closer than average. This is intuitively
compatible with the idea that providers allocate IP addresses in
a logical, hierarchical fashion.

Shared traceroute distance.The number of hops two paths
have in common gives us one approximation of “network local-
ity.” Figure 7 shows the number of shared traceroute distances
between pairs as clustering progresses. From this figure, we
conclude that temporal clustering produces a grouping of pre-
fixes that is accurate to several more network hops than a ran-
dom grouping would be, at least, for the first few hundred clus-
ters. By comparing with the length of the longest traceroute, we
confirm that this effect is not simply due to clustering prefixes
that are farther away.

Assignment to the same PoP. Because our clustering may
often aggregate network blocks that do not follow the same
path inside a customer, we next examine the Point-of-Presence
(PoP)-level accuracy of our clustering. Figure 8 shows that
correlation-based clustering groups the 2338 UUNET prefixes
into about 1200 distinct clusters while retaining over 95% PoP-
level accuracy. The 1310 AT&T prefixes group into about 900
clusters with about 97% accuracy. These numbers are quite in-
formative; they suggest that many BGP updates occur for mul-
tiple prefixes at the PoP level.

The examples we presented show that the relationships found
by failure-inspired logical clusters go beyond visible direct net-
work connections. The network-based heuristics show us that
even though our clusters arise from non-topological data, the re-
sulting groups are informed by their underlying networks. These

8

10

12

14

16

18

20

22

0500100015002000

N
um

be
r

of
 tr

ac
er

ou
te

 h
op

s

Number of clusters

UUNET shared hops
UUNET max hops

12

14

16

18

20

22

24

020040060080010001200

N
um

be
r

of
 tr

ac
er

ou
te

 h
op

s

Number of clusters

AT&T shared hops
AT&T max hops

Figure 7. The pairwise shared/total traceroute hops. Computed
with a moving average (q=0.995). The top line shows the
average length of the longest traceroute in a pair, and the
bottom line the number of hops that the two traceroutes
had in common. The first few hundred cluster have longer-
than-average shared paths to their prefixes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0500100015002000

A
vg

. F
ra

ct
io

n
of

 s
am

e-
P

O
P

 c
lu

st
er

in
g

Number of clusters

UUNET
AT&T

Figure 8. Number of clusters vs. the PoP-level accuracy of the
clustering. UUNET reduces well from 2337 to about 1200
clusters; AT&T from 1310 to 900.

results imply that the information we extract from the temporal
BGP signal has a strong basis in reality.

We speculate that BGP announcements for a particular prefix
tend to be correlated with failure events in cases where a pre-
fix has high geographic or topological specificity, as opposed to
faults in highly aggregated prefixes. This agrees with our obser-
vation that clusters that are announced and withdrawn together
tend to be located at the same POP.

V. RELATED WORK

CAIDA’s Skitter project is an ongoing, long-term collection
of traceroutes and probes to large parts of the Internet, together
with software to visualize and manipulate the data [1]. Like
Skitter, Cheswick et al.’s early Internet mapping work [11] has a
large visualization component to it. This early work traceroutes
to destinations found in Internet Routing Registry databases,
similar to using BGP-derived prefixes.

Mercator [2] uses “ informed random-address probing” with
traceroute-like probes to construct an Internet topology
map. To choose its next target, Mercator considers both IP ad-
dress allocation policies and the results of earlier probes.

Barford et al. examine the benefits from adding extra mea-
surement hosts and destinations while performing Internet map-
ping [12]. They find that the marginal gain of adding additional
sources drops off rapidly, but that the utility of adding additional
random destinations remains nearly constant—discovering ap-
proximately 3 new nodes and 4 new links per destination, up
to 1300 destinations. With this small number of destinations, it
is unclear how the marginal gain applies with the larger set of
target prefixes our work examines.

Chang et al. use traceroute data to infer relationships between
autonomous systems [13]. Compared to passively using BGP
tables, this active method can discover multiple links between
ASs, and see through aggregation at ISP borders. We have not
examined the ability of clustering to identify groups of prefixes
from remote ASs that are likely shared at the same peering link,
but it seems a promising avenue of exploration.

In an examination of routing table growth, Bu et al. claim that
load balancing is responsible for a large number of identically-
announced fragmented prefixes [5]. These prefixes present one
obvious target for automatic aggregation by our methods.

Krishnamurthy and Wang use BGP routing information to
cluster web clients [3]. They suggest that periodic traceroutes
can be used to determine if clusters are too large or too small. In
an analogous fashion, we propose a method for using BGP rout-
ing information to cluster clusters. We draw from this work’s
cluster validation methods to evaluate our own results in Sec-
tion IV.

Rocketfuel improves on prior techniques to greatly reduce the
number of traceroutes required for Internet mapping [4]. It uses
multiple BGP tables from the RouteViews database [14], and
attempts to map to both BGP-announced prefixes plus smaller
blocks of 256 addresses within those prefixes. Rocketfuel
stresses the import of doing the right traceroutes, instead of do-
ing all of the traceroutes. Like Rocketfuel, the Cluster Graphs
approach stresses the use of external information to guide In-
ternet topology formation [15]. In this case, the authors use IP
address activity information from other sources, such as WWW

logs, to group IP addresses into clusters. Our work similarly
presents a new source of information that can integrate with
topology discovery: the temporal structure of BGP traffic itself.

As a caveat, we note that Spring et al. find that it is necessary
to do probing at the sub-BGP prefix level to obtain complete
coverage of an ISPs internal links [4], something that our BGP-
only approach does not address.

VI. CONCLUSION

In this work, we have shown that the temporal structure of
BGP messages can reveal interesting and important relation-
ships between IP prefixes. Logical topologies derived from rout-
ing dynamics are also quite related to the underlying network
structure. A clustering of prefixes inside UUNET can reduce
the number of prefixes by about 50% while grouping 97% of
the prefixes into groups that represent the same ISP Point-of-
Presence. This data may prove useful for improving current In-
ternet mapping topologies.

Our investigation is preliminary; in the future, we intend to
analyze different distance metrics, examine other autonomous
systems, and evaluate our techniques on a clustering of the entire
Internet routing table. There is a great deal of information that
can be mined from these sources; this paper provides only a
glimpse at some of the relationships that can be inferred from
completely passive analysis of BGP traffic patterns.

ACKNOWLEDGMENTS

We would like to thank David Karger and David Gifford for
much information about clustering—but any errors are exclu-
sively of our own making. Jeff Schiller and Dorothy Curtis
kindly helped arrange the BGP feed we analyzed. Magdalena
Balazinska and Jaeyeon Jung provided valuable feedback on
drafts of this paper. Finally, we thank our IMW’02 reviewers
for their many good suggestions.

REFERENCES

[1] “Skitter,” http://www.caida.org/tools/measurement/skitter/,
2002.

[2] Ramesh Govindan and Hongsuda Tangmunarunkit, “Heuristics for internet map dis-
covery,” in IEEE INFOCOM 2000. IEEE, Mar. 2000, pp. 1371–1380.

[3] Balachander Krishnamurthy and Jia Wang, “On network-aware clustering of Web
clients,” in Proc. ACM SIGCOMM, 2000.

[4] Neil Spring, Ratul Mahajan, and David Wetherall, “Measuring ISP topologies with
Rocketfuel,” in Proc. ACM SIGCOMM, Aug. 2002.

[5] Tian Bu, Lixin Gao, and Don Towsley, “On routing table growth,” (Submitted for
review) http://www-net.cs.umass.edu/˜tbu/, 2002.

[6] Jure Zupan, Clustering of Large Data Sets, John Wiley and Sons, Ltd., 1982.
[7] “Gnu Zebra,” http://www.zebra.org/.
[8] Ratul Mahajan, David Wetherall, and Tom Anderson, “Understanding BGP miscon-

figuration,” in Proc. ACM SIGCOMM, Aug. 2002, (to appear) http://www.cs.
washington.edu/homes/ratul/bgp/bgp-misconfigs.ps.

[9] Bela Bollobas, Random Graphs, Academic Press, London, UK, 1985.
[10] Venkata N.Padmanabhan and Lakshminarayanan Subramanian, “An investigation of

geographic mapping techniques for internet hosts,” in Proc. ACM SIGCOMM, 2001.
[11] Bill Cheswick, Hal Burch, and Steve Branigan, “Mapping and visualizing the Inter-

net,” in Proc. USENIX Technical Conference, 2000.
[12] Paul Barford, Azer Bestavros, John Byers, , and Mark Crovella, “On the marginal

utility of network topology measurements,” in Proc. ACM SIGCOMM Internet Mea-
surement Workshop, Nov. 2001.

[13] Hyunseok Chang, Sugih Jamin, and Walter Willinger, “ Inferring AS-level Internet
topology from router-level path traces,” in Proc. of SPIE ITCom, Aug. 2001, pp.
19–24.

[14] University of Oregon, “RouteViews,” http://www.routeviews.org/.
[15] Balachander Krishnamurthy and Jia Wang, “Topology modeling via cluster graphs,”

in Proc. ACM SIGCOMM Internet Measurement Workshop, Nov. 2001.

