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Abstract. Cosmologists have developed a phenomenally successfuirgpiof structure in the
universe based on the idea that the universe expanded exjmlyan its earliest moments. There
are three pieces of evidence for this exponential expansiorflation — from observations of
anisotropies in the cosmic microwave background. Firgt,dhape of the primordial spectrum is
very similar to that predicted by generic inflation modelsc&d, the angular scale at which the
first acoustic peak appears is consistent with the flat usévpredicted by inflation. Here | describe
the third piece of evidence, perhaps the most convincingdlotree phase coherence needed to
account for the clear peak/trough structure observed bYMWAP satellite and its predecessors. |
also discuss alternatives to inflation that have been pexpescently and explain how they produce
coherent phases.

1. OVERVIEW

Over the last several years, we have gradually been acctingévidence for a remark-
able theory of the early universe. This theory now accouottgiie observed structure in
the universe by invoking new fundamental physics at veria bigergy scales. The theory
Is so elegant and simple that it contains just a handful & frerameters. It is outlined
in Figure[1, which indicates how perturbations generataihdunflation evolve with
time. The observations today of anisotropies in the raaliedind inhomogeneities in the
matter therefore bear the imprint of:

« the potential of the field(s) which drive(s) inflation

« the abundances of different types of matter in the univdrae/pns, which interact
with radiation; dark matter, which does not; and neutrivaisich can freestream
out of overdense region2,, Qn,, andQ,,

- late time phenomena such as dark energy (parametrized mdabceQq and
equation of state/) and reionization

The most important observations confirming this model comenftwo segments
of the electromagnetic spectrum. First, radio receivexe hmaeasured the cosmic mi-
crowave background (CMB) to exquisite precision. Secoptical telescopes have cap-
tured light from distant galaxies and quasars which tellasuathe matter distribution
both around those objects |1, 2] and along the line of sightst¢3]. They have also
received light from distant objects such as galaxies andrsugwae, allowing us to mea-
sure distances and fill in a modern Hubble diagrami[4, 5].
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Coherent picture of formation of
structure in the universe

FIGURE 1. Outline of the evolution of structure in the universe. Pdraions are generated at very
early times during inflation (determined by the potendabdf the field ¢ which drives inflation), start to
evolve under the combined influence of pressure and gravigmvihe universe is of order 3@ears old,
and then bifurcate into inhomogeneities in matter (whiafititwe to grow due to gravity) and anisotropies
in the radiation (which remain constant).

Here | will focus on one observation and one aspect of the indaésotropies in the
CMB were first detected in 1992 by the COBE satellite [6]; werebed extensively in
the ensuing decade by more than thirty smaller scale expatsifi’]; and have now been
mapped exquisitely by the WMAP satellite [8]. These obsows have been celebrated
for measuring cosmological parameters to unpreceden®daxy (e.g..[9, 10]), and |
will briefly describe the progress on this front in 85. Butt the most part, | want to
focus on how the signal seen in the CMB is smoking gun evidéoicéhe theory of
inflation.

2. INFLATION

The theory of inflation was introduced over twenty years ddJ fo solve some of the
problems of the classical cosmology. For many years, pssgnas limited to theory
and to addressing the question of whether the density in tiveerse is indeed equal
to the critical density as inflation seems to predict. By fa@ most important, or at
least the most testable, aspect of inflation though is itshasgism for producing small
perturbations about a smooth background. These pertansatan be measured as long
as we account for their (straightforward) evolution aftétation ends.
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FIGURE 2. Evolution of the amplitudes of two Fourier modes with the sawavelength. After in-
flation, modes remain constant until they re-enter the lboriZAfter re-entry, they evolve under the
competing influences of pressure and gravity.

It is well known that inflation produces perturbations clteazed by a Harrison-
Zeldovich spectrum|[10,_12]. This means that the amplitofleé particular Fourier
mode is drawn from a distribution with mean equal to zero arthwce given by

(8(k)&*(K')) = (2m)38%(k —K')P(K) @)

where d is the fractional overdensity with power spectri@tk) proportional tok".

A Harrison-Zel'dovich spectrum correspondsrie= 1, and most inflationary models
predict something very close to this. You might think theattthe shape of the power
spectrum can be measured in observations, and this is whainces us that inflation
is right. Well, it is true that we can measure the power spectiboth of the matter and
of the radiation, and it is true that the observations agriéie thve theory. But this is not
what tingles our spines when we look at the data.

Rather, the truly striking aspect of perturbations gemeraturing inflation is that
all Fourier modes all have the same phase. To understandthibaheans and how it
develops, consider Figl 2 which shows a cartoon view of tléuéion of the amplitudes
of two Fourier modes. Both oscillate quantum mechanicallyird) inflation. Before
inflation ends, though, botleave the horizonthat is, their wavelengths get stretched so
much that no causal physics can alter the@nce this happens, their amplitudes remain
constant. They stay constant up until the time much latefamniodes of interest this
might typically happen when the universe is 100,000 yead¥ when the modes re-
enter the horizon, at which time causal physics can oncenagtct their amplitudes.
The crucial point here is that as the modes re-enter thedmrdzis small. If we think
of each Fourier mode as a linear combination of a sin and a cale ninflation excites

1 Technically this occurs when the wavelength of the mode Imesogreater than the Hubble radiag.
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FIGURE 3. Evolution of four Fourier modes of the temperature of theiatidn as a function of
conformal timen (= n. at recombination). Largest scale mode (labeled “Supeizdnot) is still constant

at recombination. A slightly smaller scale mode (labelenistpeak”) has begun its acoustic oscillation,
and has maximal amplitude at recombination. An even smsdlale mode began oscillating earlier; its
amplitude is zero at recombination. The smallest scale nsbhden here (“Second Peak”) has gone
through one full oscillation, so its amplitude will be at axifaum. From [10].

only the cos modes. It is difficult to envision any other thyaeith this striking feature.

3. ACOUSTIC OSCILLATIONS

How do perturbations evolve once they re-enter the horiZoeartoon version of the
equation governing them is )
d—c2%5=F (2)

wherecs is the sound speed aifdis a forcing function due to gravity. The perturbations
obey the wave equation as one expects physically: a regiachvidvery overdense is
driven by gravity to become more overdense, but driven tdwlae average density by
pressure.

At this point, you might come to the conclusion that the speutof anisotropies in the
radiation today will exhibit a series of peaks and trouglss @ a guitar string produces
a series of higher harmonics. In fact, the spectrum of the GtiBs remarkably like
that of a guitar string. However, underlying the similaigya pair of differences which
are essential to the argument that inflation is the origifmefgerturbations.

A guitar string produces a set of harmonics because it isd@un at its ends. So
there are only a discrete set of frequencies at which it caill@t®. There is no such
restriction for perturbations in the early universe, so vdoywe see anisotropies at
certain frequencies but not at others?
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FIGURE 4. The evolution of an infinite number of modes all with the sanav@length. Left panel
shows the wavelength corresponding to the first peak, rigthte first trough. Although the amplitudes of
all these different modes differ from one another, sincg gtart with the same phase, the ones on the left
all reach maximum amplitude at recombination; the ones emitfht all go to zero at recombination.

To understand this, consider Hg. 3 which shows the evaluifdour Fourier modes
in the time leading up to recombinatfohe mode with the largest wavelength cannot
be affected by causal physics so its amplitude remains aohs$maller scale modes
have entered the horizon, and so have begun their acousiitatigens. The smaller
the wavelength of a mode, the earlier it will have enteredhtbezon, and the more
oscillations it will have undergone by the time of recombio. Thus, the amplitude of
the mode labeled “First Peak” is maximal at recombinationl &we expect to see large
anisotropies on angular scales which subtend this dis{@ogghly a degree). The mode
labeled “First Trough” has oscillated for a longer time tgbuand its amplitude is zero
at recombination. Therefore, we expect very small anipaoon the corresponding
angular scales. And on it goes, a succession of peaks anghgquesent not because
no excitations are allowed at the frequencies in the trofgsss the case for the guitar
string). Rather, perturbations are present at all wavéhesadput we happen to see only
some of them, depending on the phase of the oscillation atremation.

It is now very important to remember that there are many, nraagles with nearly
identical wavenumbers. Think of the number of arrows thatpmaint from the center of
a sphere to a fixed radius, keeping in mind that two arrows egpldred infinitesimally
close to each other. In fact, since the universe is effdgtiéinite, there are an infinite
number of modes for any wavenumber. All of these get excitethd inflation and we
must sum over all of them to compute the anisotropy ampliatdegiven scale. Thus,
when | drew the single line corresponding to the “First Pealdde in Fig[B, this was
really shorthand for an infinite number of modes all with eliéint amplitudes, as in
Fig.[d. The amplitudes may differ, but as Hiyl. 4 shows, thespbare all the same. All
modes enter the horizon with constant amplitude. Thus, atles with the “First Peak”
wavenumber have maximal amplitude (left panel in the figatelecombination: they

2 After recombination, photons freestream though the usi/ggo we see their distribution today as it was
at the time of recombination.
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FIGURE 5. Modes corresponding to the same two wavelengHEnst Peakand First Trough as in
Fig.[4, but this time with initial phases scrambled. The afmpies at the angular scales corresponding to
these wavelengths would have identical rms’s if the phasze vandom.

have all undergone half an oscillation, so their sign singblgnges. Similarly, all modes
corresponding to “First Trough” have gone througld ®f an oscillatior; since they all
are cosine modes and ¢8#r/2) = 0, all have zero amplitude at recombination (right
panel).

Contrast this with the situation one might otherwise expeatdom phases, as de-
picted in Fig[b. If the phases were truly random, so that Himtsine and cosine modes
were excited, then at recombination, there would not be #fereince at all between the
rms amplitudes of th€&irst PeakandFirst Troughwavenumbers. So we would not see
a sequence of peaks and troughs in the anisotropy spectday. fd/e would see sim-
ply a flat spectrum with no features. If not for inflation, weuld see a flat spectrum.
How else could the phases have been set well before the mbddsrest entered the
horizon?

Therefore, when we look at the anisotropy spectrum recemtigsured by WMAR (8]
and we see the first and second peaks and troughs very cleagyg), we are really
observing inflation doing the work of coordinating the plsasé all Fourier modes.
Without this coherence, there would be no peaks and troughs.

4. POLARIZATION

The bottom panel of Figuild 6 shows the cross-correlatiowdet the temperature and
polarization anisotropies. This cross-correlation wast fletected by the DASI experi-
ment in late 2002 [13], so our measurements of polarizatiemauch less established
than those of temperature. Yet the WMAP results already amei@al part of the co-

herence argument for inflation. The peaks and troughs inrtis®giopy spectrum all are
on angular scales smaller than a degflee 200); all of these scales were within the

3 You might expect the mode which has gone through af a full oscillation to be the first trough.
However, there are other effects (the dipole and the Intedi®achs-Wolfe effect) which fill in this trough.
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FIGURE 6. Top panelTemperature anisotropies in the CMB as a function of angudale [3] (smaller
scales toward the right). The series of peaks and troughsciea indication of phase coherence,
presumably coordinated during inflatiddottom panelCross correlation between the temperature and the
polarization as a function of angular scale. The anti-dati@n at 100< | < 200 and positive correlation
from 200< | < 400 are also due to phase coherence generated during inflatio

horizon at the time of recombination. So you might imagire thne could concoct a
theory of structure formation which obeyed causality aiftrstinaged to produce only
the cosine modes. If you could concoct such a thelory![14,th8]) you could explain
the peaks and troughs without appealing to inflation. It seentikely, but it is at least
logically possible.

This logical possibility evaporates when confronted witle fpolarization data. In
particular, the negative cross-correlation between teatpee and polarization on scales
100< | < 200 is also the result of phase coherence, as we will sh@a#lyand the scales
involved werenotwithin the horizon at recombination. So there is no causalrarism
that could have produced this anti-correlation:wastappeal to inflation to understand
it.

To understand why the temperature and polarization arecantelated on scales of
order a degree, we first must establish that polarizatiantseBom Compton scattering
of a radiation field with a quadrupole moment. To see this ic@msFig. [ which
depicts incoming radiation in tlee= 0 plane and shows the polarization of the outgoing
radiation along the positive-axis. Since the radiation has a quadrupole, incoming
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FIGURE 7. Incoming unpolarized radiation along thxe and y- axes produces outgoing polarized
radiation along the-axis only if the initial distribution has a non-zero quaplole moment (figure from

(ad].)

radiation along the-axis is hotter than that along the axis. Only they-component
of the polarization of the incoming-ray gets transmitted (thecomponent is parallel
to the outgoing direction, and polarization is transvecsthé direction of propagation)
and only thex-component of the incoming-ray gets transmitted. Hence the outgoing
X-component is cooler than the outgoipgomponent. A quadrupole in an unpolarized
radiation field produces polarized radiation after Com#cattering.

Therefore, the polarization today should be proportion&éhe quadrupole at the time
of recombination. The photons just before recombinatian taghtly coupled to the
electrons. This tight coupling tends to suppress the quuedieu Consider an observer
measuring incoming photons, and for simplicity assumeethgronly a single plane
wave perturbation. When the observer looks perpendicaldrd direction along which
the density is varying, he sees no perturbation. When heumngsmsalong this direction,
he measures a Doppler shift, which can be Taylor expanded as

oT
T = V+V,Amfp 3)
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FIGURE 8. The monopole and dipole of the radiation field at recombamadis a function of wavenum-
berk (from [10]). A perturbation with wavenumbdrshows up on angular scalés- kng whereng is

(roughly) the distance to the last scattering surface @égl | 1 is equal to size of objedt ! divided
by distance to last scattering surface).

wherev is the electron velocityy its spatial derivative which is of ordef/A with A

the wavelength of the perturbation; ahgl, the distance the photon has traveled since
it last scattered, the mean free path. The first term heresepts the dipole seen by our
hypothetical observer, the second the quadrupole. Heroguadrupole is proportional
to VAmep/A . The quadrupole then is proportional to the electron véjodihe dipole of
the radiation is equal to the electron velocity, so the qupdle is proportional to the
dipole right before recombination. The proportionalitynstant is small, SinC&py, is
much smaller than the typical wavelength. Collecting tregeiments, we expect

)\mfp
P~D—— 4
; @)

whereP is the polarization an® the dipole. Incidentally, this explains why measure-
ments of polarization have lagged behind those of temperatnisotropies: the polar-
ization signal is a factor of ten smaller due to thgp/A suppression.

The polarization of the CMB today then is determined by thEolli at recombina-
tion. The temperature anisotropies on the other hand aeendited by the monopole at



recombinatiof The cross-correlation between the temperature anisotog the po-
larization anisotropy then is proportional to the cross-@ation of the monopole and
dipole at recombination. How is the monopole related to tipeld at recombination?
We can answer this simply by recalling the continuity equrati

Jp

ot +0-(pv)=0. (5)
The velocity then (or equivalently the dipole) is propontdto o, the time derivative of
the monopole. This is shown explicitly in FIg. 8. At recomdttion, this phase difference
causes the product of the two to be negative for £d0< 200 and positive on smaller
scales untill ~ 400. But this is precisely what WMAP has observed! We havarcle
evidence that monopole and dipole were out of phase with ethar at recombination.

This evidence is exciting for the small scale modes- 200). Just as the acoustic

peaks bear testimony to coherent phases, the cross-¢mmedé polarization and tem-
perature speaks to the coherence of the dipole as well.itifs®@s our picture of the
plasma at recombination. The evidence from the larger soabkes [ < 200) though is
positively stupendous. For, these modes were not withirtrgzon at recombination.
So theonly way they could have their phases aligned is if some primbrdechanism
did the job, when they were in causal contact. Inflation is $ush a mechanism.

5. COSMOLOGICAL PARAMETERS

| hope I have convinced you that we now have very good reasbelteve in the basic
framework of inflation as the seed of structure in the unee@nce we assume this
framework, we can go ahead and determine the free paranieties model. The first
and most renowned is that the first peak appears where itglfabtle universe is flat,
so let's assume that the universe is flat. Three of the egsesimeters to measure then
are the baryon densit,,, the matter densit@,, and the Hubble constaht Actually,
as indicated in Fid.]19, the CMB anisotropies are most seedit combinations of these
parameters.

Here is a rough guide to the sensitivity of the anisotropdbése three cosmological
parameters [10].

- Baryon densityQ,h?. The sound speed in Ed (2) goes down as more baryons are
added. The frequency of oscillation thus becomes smalléhedaryon density
goes up. A reduced frequency accentuates the effectivarigbe driving force,
making the oscillation more asymmetric. The result is thathieight of the second
peak is much smaller than the height of the first peak when &ngoln density is
high.

- Matter densityQ,h?. If there is a lot of radiation at recombination, the graitaal
potential changes with time, inducing a larger driving @Boand hence boosting

4 The monopoleis what normally thinks of when speaking of the temperatara given spot. It is the
average temperature of all photons hitting that spot corfriomg all directions.
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FIGURE 9. Dark solid curve is a model with 70% cosmological constamt tinirty percent baryons.
Lighter curves show how the anisotropies change when vadifferent parameters. Here the total density
is set to the critical density. Frorm [10].

anisotropies.

« Cosmological constarf,. The cosmological constaris a late time effect, so the
only impression it leaves on the CMB relates to the way plafsscales project
onto angular scales; i.€, changes the distance to the last scattering surface, so
the curves simply shift horizontally 25 changes.

The results from WMAPL|9] are shown in Fig.J10. We get a sensg¢ tthe CMB
has reduced parameter uncertainties by close to a factenofind this improvement
allows us to make several remarkable statements about ovwerse, based solely on
observations of the CMB. First, if one assumes the univessexactly flat, then the
CMB tells us that Hubble constant is= 0.72+ 0.05, in remarkable agreement with
direct determinations[4]. The ratio of the total matter signto the baryonic density is
about 6+ 1, which means the CMB alone requires significant non-bacyderk matter.
Finally, Qx = 1— Qn is equal to 071+ 0.07. The CMB, together with the flatness
assumption, requires a cosmological constant, or somedbdark energy. No wonder

5 In a flat universe with consta®,h? and Q,h?, reducingQp is equivalent to raising one of the other
Q’s and reducing the Hubble constdriio keep the product@;h? fixed.
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FIGURE 10. Allowed ranges for three cosmological parameters assuthiaginiverse is flat. Light
hatched bands are a rough estimate of numbers used ten gearshe dark solid bands are 1-sigma
errors from WMAP [9].

parameter determination has received so much publicity!

6. ALTERNATIVES

Itis perhaps not surprising that, as the evidence for inffettias firmed up, theoreticians
have been working harder than ever to find alternatives tatiofi. Here | want to focus
on the question of what alternatives are viable in light ef¢bherent phase argument.

It is instructive to start with two models that don’t quite keat. The first is the well-
known class of models with structure seeded by topologietdals. The phases of the
Fourier modes are not synchronized in defect models, so wetlexpect a coherent
series of peaks and troughs. This elegant argument was fatsadivanced by Albrecht
et al. [16] as a way of distinguishing defect models from tinflaand later confirmed in
detailed numerical studies |17,/18].

A second alternative has recently been proposed by ArmemBaron and Lim|[19].
They note that inflation works by producing perturbationgwthe modes of interest are



sub-horizon and then driving these modes to be larger theandtizon. Once outside the
horizon, the perturbations freeze-out, i.e. remain canistentil they re-enter the horizon
much later around the time of recombination. They point bat teally perturbations
freeze out once they leave tlseund horizon horizorfcs/H instead ofH1). Thus
instead of the Hubble rate remaining roughly constant (asndunflation wherein
cs = 1), freeze-out can also be accomplished if the sound spemsab adapidly. This
is a clever idea, one that might ultimately be part of a viaddternative. At present
though, it doesn’t quite work, because — as they point outlatian is still needed (after
perturbation production) to drive the scale beyond theZwofi Another way of saying
this is to notice that if not for inflation, the modes of intsrevould never have been
sub-horizon, so nothing could have been effective in prodyperturbations.

Indeed, the most basic requirement for coherent phaseati@tisome point is the
distant past (well before recombination), the modes ofrgsiehad to be within the
horizon. So, the coherent phases requirement is simplyeagitrened version of the
classical horizon problem. With that in mind, | come to a ficlaks of alternatives which
generate perturbations in a variety of ways, but all shagestime innovative approach
to the horizon problem.

One way to think of the horizon problem is in term of the conmomMyrid, wherein the
wavenumber of any mode remains constant with time. The camgdyubble radius is
(aH)~%, which typically increases with time. The classical honipsoblem is that, since
the comoving Hubble radius monotonically increases in thadard cosmology, these
modes must have all been outside the horizon before recatidamn The inflationary
solution is depicted in Fig_11, which shows that the neagsszquirement is that
aH must haveincreasedsometime in the past. Mathematically then we would seem
to require ,

d d<a

gt (aH) = e 0 (6)
at some point in the distant past. That is, we seem to requoil&ion (which can be
defined as a period in whicha = 0). The alternative models_[20] however evade this
constraint by using a contracting phase. The requiremeatt ttte comoving radius
decrease now id[—aH]/dt > O (since the Hubble radius isH™!) or & < 0. So the
horizon problem can be solved and the necessary coheres¢planerated if: (i) the
universe accelerates while it is expanding (inflation) QiRtfie universe decelerates
while it is contracting.

These alternatives and others are honing in on the questiatat we have really
learned from the observations. That is, it is no longer defficto solve the classical
horizon problem. While the scales of interest are sub-baria mechanism is needed to
generate perturbations with the proper amplitude and saag¢o drive these perturba-
tions beyond the horizon so they freeze out.

6 However, the since scale-invariant perturbations haveadly been generated, the requirements on
inflation are less severe than usual.
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7. CONCLUSIONS

Detailed observations of the CMB have solidified our confadeim a model of structure
formation based on inflation. The most striking evidencaeriflation is the phase coher-
ence of the primordial perturbations, which manifestdfiisethe peaks and troughs of
the temperature anisotropies and in the cross-correlattnween the temperature and
the polarization. Once this framework has been acceptedpassible to use it and ex-
tract cosmological parameters. This parameter estimatiggests that: the universe is
flat; there is non-baryonic dark matter; and dark energy dates the energy budget.

As the observations have improved, theorists have expatidedange of models
which can account for them. and proposed new alternativasflagion. The exciting
development is that these alternatives must solve a muck demanding version of
the horizon problem. And we are learning more about whatigecis necessary to
generate the coherent phases we have so unambiguouslyexdhser
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