
Fine grained Process Modelling:

An Experiment at British Airways�

Wolfgang Emmerich

City University London
Computer Science

Northampton Square
London, EC1V 0HB, UK

we@city.ac.uk

Sergio Bandinelli

ESI
Parque Tecnol�ogico, 204
48170 Bizkaia, Spain

Sergio.Bandinelli@esi.es

Luigi Lavazza

Politecnico di Milano
and CEFRIEL
Via Emanueli 15

20126 Milano, Italy
lavazza@mailer.cefriel.it

Jim Arlow

8a Butler Ave.
Harrow

Middx, HA1 4EH, UK
100010.401@compuserve.com

Abstract

We report on the experimental application of process
technology at British Airways (BA). We used SLANG
to model BA's C++ class library management process,
and we constructed an experimental process-centred
software engineering environment (PSEE) based on
SPADE. BA required processes to be automated at a
�ner degree of granularity than tool invocation. We
have demonstrated that SLANG and SPADE o�er the
basic mechanisms for modelling these �ne-grained pro-
cesses. We have also shown that it is feasible to gener-
ate tools for dedicated processes and integrate them with
a SLANG model so as to facilitate �ne-grained process
automation. However, our experience highlighted some
open problems. For instance, SLANG process models
are tuned to e�cient enactment, thus containing very
detailed process fragments. These are not the most ap-
propriate representation for humans trying to under-
stand the process model. A more comprehensible nota-
tion is needed for design and documentation purposes.
Although the airline did not deploy the PSEE in its pro-
duction environment, the experiment proved bene�cial
for BA. The modelling uncovered serious aws in the
existing process, and the BA engineers improved their
knowledge of process technology.

�This work has been partly funded by the CEC within
ESPRIT-III project 6115 (GOODSTEP). The work was done
while W. Emmerich was with University of Dortmund (Ger-
many), S. Bandinelli was with CEFRIEL (Italy) and J. Arlow
was with British Airways (UK).

1. Introduction

During the past decade, a great deal of research
has been devoted to process technology. Process mod-
elling languages have been de�ned in order to spec-
ify software processes on a formal basis. Exam-
ples of these languages are extensions to program-
ming languages (e.g. extensions of Ada [24] and Pro-
log [21]), Petri net based approaches (FUNSOFT [15]
and SLANG [4]) and multi-paradigm approaches in-
tegrating several high-level descriptions (such as ES-
CAPE [18]). Process modelling environments have
been constructed for these languages so as to edit, sim-
ulate, analyse, enact and evolve process models. Exam-
ples include the Merlin environment [20], the SPADE
environment [2], Melmac [10] or Marvel [6]. A central
component of these environments is a process engine
that interprets a process model. A number of attempts
have been made to build environments that, in addi-
tion to process modelling components, include tools for
the actual software development. These tools are inte-
grated with the process engine so as to provide services
for process automation and to inform the engine about
process-relevant events that they have captured. We
refer to such an environment as a process-centred soft-
ware engineering environment (PSEE).

While development of process technology has at-
tracted a vast amount of e�ort, only a small amount
of attention has been paid so far to the industrial ap-
plication of the facilities developed. A notable excep-
tion is [12] where FUNSOFT nets have been applied to
large-scale business processes in the area of real estate
management. The nature of these business processes,
however, is considerably simpler than those of software
processes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/209473822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The contribution of this paper is an account of the
experience that we gained when we applied the SLANG
process modelling formalism and the SPADE environ-
ment to the modelling and enactment of a software
process in an industrial setting, namely at British Air-
ways. British Airways is a large software developer in
the UK, with some 2,000 IT sta�. An increasing num-
ber of operations research programs (such as eet or
crew allocation) are now being developed with object-
oriented techniques. To increase productivity and qual-
ity, BA have founded a group called Infrastructure who
is in charge of maintaining the design, implementation
and documentation of reusable C++ class libraries.
SLANG was used to capture, model and improve the
class library development and maintenance process.

The process was not only modelled, but also sup-
ported with a customised PSEE, the British Airways
SEE. It integrates the SPADE process engine with tools
for the development of Booch class diagrams, C++
class interface de�nitions, C++ class implementations
and class documentations. These tools were gener-
ated from a high-level speci�cation written in GTSL
(the GOODSTEP Tool Speci�cation Language). An
account of this tool construction e�ort is given in a
companion paper [14]. The integration of tools and
process model was done in a way that facilitates pro-
cess guidance at a �ner level of granularity than tool
invocation.

The paper is structured as follows. Section 2 out-
lines the goals of our process modelling experiment. It
is followed by a discussion of the baseline of the ex-
periment, i.e. the existing process at British Airways,
the BA SEE tools that have been generated and the
SLANG process modelling language. Section 4 presents
the way the process modelling experiment was con-
ducted. Section 5 summarises the experiment results.
We then conclude with a summary of the lessons that
we have learned from this process modelling experi-
ment in Section 6.

2. Goals of the Experiment

The goals for this experiment were manifold and
can be considered from the point of view of technol-
ogy providers and technology users.

The motivation of technology providers in this ex-
periment was to evaluate process technology in an in-
dustrial setting. The goals of the experiment are re-
ected by the following questions:

Feasibility: Is it feasible with the language primitives
available in SLANG and GTSL to decrease the
level of granularity of process models, in order to
improve process automation?

Scalability: Is SLANG su�ciently scalable to han-
dle complex processes such as those that occur
in industrial practice? Are the resulting process
models of any use for supporting communication
among the developers involved?

User Acceptance: Does the resulting process model
provide developers with su�cient freedom to ex-
press their creativity or does it impose strict con-
straints that could make the development harder
and less productive?

Performance: Is the performance of a �ne-grained
process enactment appropriate or does it slow
down users more than it helps?

The main motivation of technology users was to un-
derstand what process technology can do for them.
They were interested in:

Process Understanding: The Infrastructure group
wanted to check whether it had reached a common
(i.e., consistent) understanding of the process, af-
ter having worked for two years on the mainte-
nance of class libraries.

Process Improvement: The group knew aws of
their process and wanted to remove them. They
were curious to see how formal process modelling
could help.

Process Automation: Several tasks of the group
were done manually and the group was fascinated
by the idea that an environment customised to
their particular needs might automate a relevant
part of the work.

3. Baseline of the Experiment

3.1. Existing Library Development Process at BA

The Infrastructure group has created a process
handbook entitled Standard Development and Release
Procedures. It elaborates on the process to be used for
class library development and maintenance. The hand-
book suggests, in a rather informal manner, the vari-
ous actions to be taken for class library development
and maintenance. It identi�es a number of document
types, including Booch class diagrams, C++ class in-
terface de�nitions, C++ class implementations, class
documentation, Make�les, con�gurations for dynamic
linkage and the like.

Di�erent developers in Infrastructure have di�erent
roles. Some developers are programmers responsible
for implementing and documenting classes in particular



libraries. To date, one developer is a QA engineer, who
is in charge of approving new or changed libraries. A
librarian administers the di�erent versions contained in
library con�gurations.

Two main problems were identi�ed by Infrastructure
with their approach to process management. The �rst
problem is that their informal de�nition of the process
easily leads to misunderstandings. Two Infrastructure
developers, who have worked in the same o�ce for two
years, discovered a serious misunderstanding of a key
concept de�ned in the handbook when we discussed
their process in a meeting. It turned out that they
did not have a shared understanding of the semantics
of a library con�guration in beta test as opposed to
development mode. The second problem is mentioned
in the following quote from Infrastructure members:

\Within Infrastructure, we have had to ap-
ply an excessive amount of e�ort to estab-
lish change control procedures, but these pro-
cedures are only partially e�ective as they are
not enforceable by our current toolset. As
BA's stock of reusable components grows, the
problems of e�ective change control will be-
come more and more pronounced." [1]

An obvious approach to enforcing the change con-
trol procedures is to model them with a process mod-
elling language and to guide the process by enacting
the model. This requires development tools to be in-
tegrated into the process environment in a way that
tools cannot be abused to circumvent the process that
has been modelled. Moreover, tool integration, at least
partially, has to be �ne-grained so that the process
model can react to the execution of individual tool com-
mands, rather than complete tool sessions. The reason
is that there are usually documents, such as Booch dia-
grams, whose components represent other documents.
Inter-document consistency constraints require the cre-
ation, modi�cation or deletion of documents whenever
components are created, modi�ed or deleted. When-
ever a new class icon is created in a Booch diagram,
for instance, a corresponding class interface de�nition
document has to be created. Since documents are gen-
erally considered as �rst class process modelling con-
cepts, the process model should at least be noti�ed
about document creation, if not be responsible for the
creation itself. Therefore, a tool command for the cre-
ation of a component in one document that represents
another document has to be integrated with the pro-
cess model.

We modelled the BA class library development and
maintenance process with SLANG. Then a dedicated
set of tools tailored towards the particular needs of In-

frastructure was generated. This toolset was integrated
with the SLANG process model to enforce the process
and to support process automation at the required lev-
els of granularity.

3.2. Tool Specification and Generation

The need for rapid tool construction through a tool
generator is motivated by the observation given above
that enforcement of process de�nitions, such as change
control procedures, require process sensitive tools to
be used. Process sensitive tools interact with a pro-
cess model through a joint communication protocol,
and thus contribute to the implementation of a pro-
cess model.

A exible tool construction mechanism is required
to develop tools for use with particular process models.
GTSL was de�ned as a high-level language to accom-
plish rapid tool customisation and construction. Tools
for the BA SEE have been generated from GTSL spec-
i�cations [14]. While the basic concepts of GTSL have
been presented in [13], language primitives for the de-
scription of �ne-grained process integration of GTSL
based tools are illustrated in Section 3.2.2, after a brief
presentation of the functionality of tools to be inte-
grated with the process model.

3.2.1 BA SEE Tools

The Booch class diagram editor, whose user inter-
face is shown in the upper left corner of Figure 1, en-
ables users to decompose libraries hierarchically into
categories and classes. A category is a set of related
classes and/or nested categories. Top-level categories
represent libraries. Di�erent types of relationships are
supported to facilitate inheritance, aggregation and ref-
erence relations between classes.

The C++ class interface editor supports syntax-
directed editing of C++ class de�nitions. The editor
includes structure-oriented and free textual editing fa-
cilities that enforce syntactic correctness of class def-
initions. Moreover, the editor checks for correctness
of the C++ static semantics while the user edits and
visualises errors by underlining. Checking is done in-
crementally and transparently to the user. The C++
class interface editor has been speci�ed in a way that
it is integrated with the Booch editor so that, for in-
stance, the creation of a new relationship in the Booch
class diagram is reected automatically in the C++
class interface de�nition.

The C++ method implementation editor supports
programming of methods, which have been identi�ed
during the C++ class interface design. This editor is



Figure 1. User Interface of BA SEE Tools

integrated with the C++ class interface editor in a way
that any changes to, for instance, a method signature
are automatically reected in the implementation.

The class documentation editor implements the
British Airways documentation standard, which re-
quires a description for any method within a class to-
gether with an example of its application. The editor
is also integrated with the C++ class interface editor,
so that stubs are generated for each method identi�ed
in the class interface and users only have to complete
these stubs. OS/2 IPF hypertexts and HTML �les are
generated from class documentations without requiring
further actions of the developer. These two representa-
tions enable users of a class library to access documen-
tation as on-line help facilities with standard browsers,
i.e. without having to use the BA SEE.
3.2.2 Integration Facilities in GTSL

GTSL speci�cations of environments use the object-
oriented paradigm to de�ne the tools and documents,
which are internally represented as project-wide ab-
stract syntax graphs [16]. An environment speci�ca-
tion is structured into a number of tool con�gurations.
Each of these consists of a number of classes that de�ne

the di�erent node types that occur in project-wide ab-
stract syntax graphs. Di�erent sections are provided to
de�ne properties of a class such as attributes, abstract
syntax and semantic relationships. The available oper-
ations to modify graph nodes are de�ned in a method
section. The invocation of operations from commands
and their availability are speci�ed as patterns in inter-
action sections. Multiple inheritance enables properties
from super classes to be reused in subclasses.

Tools generated from GTSL speci�cations can not
only be used through a user interface, but also o�er
services to their environment. These services can be
used for tool integration purposes and, in particular,
for the integration of tools with a process model. We
distinguish generic and tool-speci�c services. GTSL de-
�nes some 20 generic services, examples of which are
the creation of a document, the opening a particular
version of a document or the computation of a print-
able representation of a document. Generic services are
supported by any tool generated from a GTSL speci-
�cation and are implemented by the GTSL run-time
system. Tool-speci�c services have to be speci�ed by
the tool builder. They are declared in tool con�gura-



tions [13] and implemented in the same style as GTSL
interactions.

Events allow the tool to inform the environment
about certain incidents as opposed to services, which
enable the environment to communicate with a tool.
An event can either be a request or a noti�cation. A
request is sent to a consumer, who either grants the
request or rejects it. Requests are used in interactions
of BA SEE tools to ask the process engine for the per-
mission necessary to perform certain activities. A no-
ti�cation informs the receiver about a certain action,
but does not await its response.

As examples consider service and event declarations
from the Booch and INT tool con�gurations given be-
low. The �rst declaration is a request that asks the
process engine for permission to create a new library.
The request is used as a condition in the interaction
that implements the tool command for creating a new
library. The second declaration is a speci�c service
of the class interface editor for the creation of an in-
heritance relationship between two C++ class interface
de�nitions. It is invoked from the Booch editor as soon
as a user creates an inheritance relationship in the di-
agram and then the relationship will also be reected
in the a�ected C++ class interface de�nitions.

TOOL CONFIGURATION Booch;

EVENT CrLibraryRequest(name:STRING):ERROR;

...

END CONFIGURATION Booch.

TOOL CONFIGURATION INT; ...

SERVICE CrInheritance(inh_from : STRING;

visibility : STRING;

virtual: BOOLEAN):ERROR;

...

END CONFIGURATION INT.

The GTSL language and, in particular, events and
services are therefore powerful facilities to specify
tools that are customised for use with particular pro-
cess models. They accomplish process automation
at a much �ner degree of granularity than tool en-
velopes [25], because multiple events and services can
be exchanged during the execution of a tool.

3.3. SPADE and SLANG

SPADE (Software Process Analysis, Design and En-
actment) is a project that was carried out at CEFRIEL
and Politecnico di Milano. Two results of this project
were the SLANG (Spade LANGuage) process mod-
elling language and its implementation in SPADE-1.
We do not explain SLANG and SPADE here and as-
sume that the reader is familiar with the concepts. A
language reference manual is available in [7]. Detailed
descriptions of SLANG can also be found in [2, 4, 3].

In the next subsection we describe how SLANG was
used to model the BA process.

3.3.1 SLANG

Use of SLANG Activities

SLANG allows complex process to be decomposed
into a structured set of fairly independent activities.
The activity construct was also used to model the
BA process. Figure 2 presents the overall process
model (the root activity), which contains sub-activities
SessionManager, AccessControl, ConfManagement, and
VersionManager, each modeling a speci�c sub-process.
According to the principles of information hiding, an
activity de�nition has an interface and an implementa-
tion part. The activity interacts with other activities
through its interface, while the implementation part
remains hidden.

Activity invocations are represented graphically by
embedding an activity interface into a SLANG net. Ac-
tivity interfaces are provided with interface transitions,
i.e., starting transitions (placed on the upper side of the
activity box) and ending transitions (on the lower side).
When a starting transition �res, a new instance of the
activity (called active copy) is created. Active copies
are executed in parallel; this feature was used to model
the concurrent work of BA engineers. For instance, two
tokens in place LoginMsg cause the starting transition
of activity Session Manager to �re twice, thus creating
two instances of that activity. These active copies are
executed in parallel with the root activity. When an
ending transition �res, it deposits the resulting tokens
into some output places (e.g., SessionManEnd), belong-
ing to the calling activity, then the terminated active
copy is deleted. An activity can also exchange data
with the calling activity through shared places. For
instance, the SessionManager sends CMRequests to the
root activity and receives CMAnswers.

White transitions represent elementary steps of pro-
cesses. Their execution is atomic, in the sense that no
intermediate state of the transition execution is visible
outside the transition. Each transition is associated
with a guard and an action. The guard is a predicate
indicating whether the transition is enabled to �re or
not. The action speci�es how output tokens are com-
puted. An example is the Restart transition in the root
activity of the BA model.

Use of SLANG Integration Facilities

Besides normal places, SLANG includes user places.
The contents of normal places are changed by tran-
sitions, while changes on user places are triggered by



UserPlace

Init

Start

ShutDownComplete

EndCMSessionManEndAccessControlEnd

AccessControlStart

EndedVM

LoginMsg StartCM

First

CountResult

Count

StartEnact
*

����
����
����
����

*

*

Restart

*

*
CMRequest

CMAnswer

EnableShutdown

Version
Manager

Session
Manager

Conf
Management

VersionRep

RestoreEnable

CentralRep

ACRequest

ACAnswer

EnactCounter

Enable
Save

ConfigSCI

Access
Control

Figure 2. Root Activity

external events. Normal places are graphically repre-
sented by a single circle, user places are represented
by double circles. User places have been exploited to
model communication of events between tools and pro-
cess model. Whenever a Booch editor is started, for
instance, it creates a login message token on the user
input place LoginMsg.

Process steps involving e�ects in the user environ-
ment (e.g., launching a tool or changing a tool state)
are called black transitions. They are represented as
�lled rectangles. An example is the ConfigSCI tran-
sition that con�gures the SPADE Communication In-
terface to route messages in a given way (see below).
Black transitions are also exploited in the BA process
model for the de�nition of the invocation of tool ser-
vices.

3.3.2 SPADE

Process Enactment Environment

The Process Enactment Environment is the bottom
layer of the SPADE architecture displayed in Figure 31.
It is the run-time support that drives the execution
of the BA process model. It is composed of a multi-
threaded process engine (PE) based on the O2 object
database [11]. Process data (tokens) are stored in the

1Figure 3 reports only the components used in the BA model.
The current implementation of SPADE o�ers also bridges for
DEC FUSE and OLE2 tools, in addition to the possibility of
invoking black-box tools.

O2 database, thus the SPADE process engine is an O2

client, which uses the O2 run-time system as the back-
bone for the execution of SLANG interpreters. During
process execution, each process engine executes one or
more SLANG interpreter threads, each managing a set
of active copies.

Us
er
 I
nt
er
ac
ti
on
 E
nv
ir
on
me
nt

Pr
oc
es
s 
En
ac
tm
en
t 
En
vi
ro
nm
en
t

Re
po
si
to
ry

Booch Editor Interface
Editor

Implementation
Editor

SL
AN
G 
In
te
rp
re
te
r

SL
AN
G 
In
te
rp
re
te
r

SL
AN
G 
In
te
rp
re
te
r

Process Engine

O2

SCI

ToolTalk
bridge Monitor display

SPADE shell

SPADE
Monitor

ToolTalk
message server

Documentation
Editor

Figure 3. Customisation of SPADE

User Interaction Environment

The user interaction environment is composed of the
tools used by process agents to perform their work.
Tools are seen by the SPADE-1 environment as service-
providers that can possibly share data with the process
engine: a tool exhibits a control interface indicating
the o�ered services and a data interface specifying the
structure of used data. The di�erences among tools
are basically di�erences of the granularity between the
o�ered services.

Tools can be classi�ed into two classes: black-box
tools and service-based tools. Black-box tools o�er a
single service that takes an input and produces some
output. There is no way to control the execution of
the tool. Examples of black-box tools are UNIX pro-
grams such as vi and cc. Service-based tools provide
several services, each of which can be requested indi-
vidually. Integration of service-based tools can be ob-
tained easily through the mechanism of message pass-
ing: tools send messages to a message server that for-



wards them to the recipient tools according to a given
strategy. This mechanism, originally proposed by Reiss
for the FIELD environment [22] is becoming very pop-
ular and has been used in several commercial products
(including DEC FUSE [8], HP SoftBench [17], and SUN
ToolTalk [23]).

SPADE Communication Interface

The SPADE Communication Interface (SCI) is respon-
sible for communication between the User Interaction
Environment (UIE) and the Process Enactment En-
vironment(PEE). Thus, the SCI provides facilities for
converting the communication protocol de�ned for the
PEE into a speci�c protocol tools in the UIE can under-
stand. The SCI acts as a communication server used
by two kinds of clients:

� PEE clients: These are SLANG Interpreters that
use the SCI as a means to communicate and inter-
act with the \outside world", i.e., the User Inter-
action Environment.

� UIE clients: These are the BA SEE tools that pro-
vide services and noti�cations of relevant events to
the SCI and (through the SCI) to the PEE.

Communication between the SCI, tools and the pro-
cess enactment environment is based on the message
passing paradigm [22] and follows the SCI Protocol.
Tools that are able to communicate through the SCI
protocol are directly connected to the SCI, while other
tools can be connected to the SCI through a sort of
gateway (that we call a bridge). Since GTSL gener-
ated tools send and receive Sun ToolTalkmessages, the
ToolTalk bridge is exploited in the BA SEE.

PEE clients can request the invocation of an inte-
grated service-based tool. The invoking SLANG inter-
preter provides the command to be executed (a com-
mand uniquely identi�es a tool and a service) and the
name of the host computer on which the tool must be
executed. When the SCI receives an invocation request
message from a SLANG Interpreter, it invokes the tool
on the speci�ed host and, in case of successful invoca-
tion, returns the tool identi�er in the message reply,
thus enabling further direct reference to the same tool.

4. The Experiment

The BA experiment is the �rst case study where the
SPADE environment was used to model and enact an
industrial-scale process model with the purpose of be-
coming the "heart" of a PSEE. The experiment had
a total duration of nine months, starting in November

1994. Three parties participated: CEFRIEL, where
the process model was developed, University of Dort-
mund, where development tools were generated and
integrated into the BA SEE and BA's Infrastructure
group, from whom the process was elicited.

It is worthwhile to note that the skills of BA In-
frastructure engineers were not su�cient to exploit
SLANG nets for process modelling. The development
e�ort was, therefore, mainly carried out full time by
two Master students at CEFRIEL and University of
Dortmund, who were supervised by experts in process
modeling. When the development started, the students
and their supervisors had a su�cient degree of knowl-
edge of the languages used.

4.1. Process Elicitation and Modelling

The starting point for process modelling was the BA
process handbook. It provided an appropriate scenario
from which other information regarding roles, respon-
sibilities and library structure could be elicited during
the �rst (kick-o�) meeting. From there, process elici-
tation and modelling proceeded in a parallel and incre-
mental way.

We started the formalisation of the process in the
kick-o� meeting using state transition diagrams, a no-
tation Infrastructure members were familiar with. The
result of this discussion is shown in Figure 4. It was
during the development of this state transition diagram
that the two participating Infrastructure members dis-
covered the misunderstanding mentioned in Section 3.

The modelling activity continued by enriching the
state chart with other context information regarding
roles, library attributes, access restrictions etc. The
state transition diagram was then formalised in a com-
plete process program written in SLANG and in a
protocol speci�cation for the messages exchanged with
tools through the SCI.

An important result that evolved from the develop-
ment of this state transition diagram was the require-
ment that one developer should be responsible for a
complete library and that only one developer at a time
should work on a library. This implied that the gran-
ularity of documents considered by the process model
had to be at the level of libraries rather than individual
classes.

4.2. Architecture of the Integration

Di�erent alternatives were proposed for the inte-
gration between process model and the development
tools. For instance, an alternative was to link all
tools to the SCI. This alternative was rejected because



EditingReady to
edit

Loadlib

Loadlib

Testing
Ready to

test

Release

Released

Ready to
release

Createlib

Derive_M

Derive_m

(locked)

(locked)

(locked)(locked)

(unlocked)

(unlocked)

LWS

ReleaseRep

LWS

CRep

CRep

CRep

Gototest Gotoedit

Gotorelease

Storelib

Storelib

Unlock

Unlock

Figure 4. State Transitions during Library
Management

it would have unnecessarily complicated the process
model, since the process model needed only to manage
whole libraries, not data (like class interfaces) at a �ner
granularity. In other words, the interface, implementa-
tion and documentation editor could be integrated in
a static way among themselves, without involving the
process environment.

Therefore the architecture that was �nally adopted
is based on the observation that only the Booch Ed-
itor tool needs to exchange control information with
the process engine. Initially the Booch editor was
directly integrated with the SCI. The interface edi-
tor, implementation editor and documentation editor
were locally integrated with the Booch editor through
a ToolTalk based message server. Later, when the
ToolTalk bridge was released, the �nal architecture was
established, as shown in Figure 3.

Based on this architecture, the next step in the mod-
elling was to develop an appropriate communication
protocol between the process engine and the Booch
editor. A �rst version of this protocol took into ac-
count only services for session management and access
control. Then the protocol was extended to capture
the semantics of class library management at BA and
the �rst enactable process model prototype was demon-
strated in a meeting with BA Infrastructure members.
The availability of an enactable prototype in this meet-
ing proved very useful and triggered valuable feedback
from Infrastructure members.

5. Results

5.1. Integration of Tools and Process Program

Process-sensitive events, such as the creation of a
new library, are captured by tools and the process
model needs to be informed about them. This means
that, from a modelling perspective, GTSL events are
associated with SLANG user input places. Likewise,
the invocation of tool services of a particular tool has
to be expressed in the process model. During mod-
elling this means that some of the black transitions are
associated with GTSL services.

From an architectural point of view, the SCI has
been successfully employed for implementing the asso-
ciation of GTSL events with user input places as well
as for implementing black transition occurrences that
invoke GTSL services. An event declared in the Booch
editor speci�cation is transformed into a Sun ToolTalk
message, which is then sent via the ToolTalk bridge to
the SCI. The SCI transforms the message into tokens,
which include the message data, and user input places
are marked with these tokens. Vice versa, a black tran-
sition causes the SCI to create a message that is then
translated into a Sun Tooltalk message created by the
ToolTalk bridge. Receipt of the message by the Booch
editor causes the GTSL run-time system to invoke the
services that is associated with the message.

5.2. Protocol Specification

The tools and the process model have to agree on
some common message protocol. This involves syntac-
tic and semantic concerns. From a syntactic point of
view, tools and process model have to agree on the
messages and their parameters. From a semantic point
of view the meaning of messages and their parameters
must be de�ned as well as the actions that they cause.

For the British Airways process model, an informal
protocol speci�cation has been de�ned that includes 22
di�erent messages. An example is the create message
below.

Syntax: create(lib_name:string)

Parameters: lib_name is the name of the library

to be created

Return: OK: library <lib_name> created

ERROR: library <lib_name> already

exists

ERROR: agent is not a librarian

Messages like this are sent from the Booch class dia-
gram editor to the SLANG process model to implement
events. Likewise SLANG black transitions send mes-
sages to the Booch editor to invoke certain services.



5.3. The Process Model

The whole process model developed for the experi-
ment consisits of �ve activities, the root activity, as dis-
played in Figure 2, plus other four activities invoked by
the root. All the activities contain, in total, 50 places
and 65 transitions. The translation of the graphical
representation of the model into a textual representa-
tion generates a �le of about 4 KLOC. This provides a
quantitative idea of the model size.

One of the activities invoked by the root activity
is SessionManager, whose de�nition is displayed as the
net shown in Figure 5. Whenever a user starts the
Booch editor, the editor will notify a start-up event
to the process model, which will appear as a token
on place LoginMsg. This token enables StartSM, which
will eventually �re, thus creating a new active copy
of activity SessionManager. A component of the token
identi�es the user who has logged into the environment
and this component is �red on place Owner. From there
on, the activity awaits messages from the user inter-
action environment. These will appear as tokens on
places MsgFromSS or MsgFromBE. After the net has done
some consistency checks on the message and approved
the message, the message tokens will appear on place
UserMsg. Consequently, transitions are in conict over
these tokens and guards are used to determine the tran-
sition that �res. DispatchToCM, for instance, �res if the
guard identi�es the message as a con�guration manage-
ment message and transfers it to the place CMRequest

from where it is consumed by the ConfManagement ac-
tivity.

SessionManager is a SLANG implementation of a
command interpreter. Messages can be seen as com-
mand strings and the SLANG net checks the appro-
priateness of the command (for instance in transitions
BECommandError and NotBEMess). The implementation
of SessionManager required a considerable amount of
time. This was because SLANG provides low-level con-
cepts for expressing computations on the basis of O2C,
but it does not provide high-level constructs, such as
ordered-attribute grammars [19], that would be more
appropriate for specifying command interpreters. This
caused the e�ect that even minor changes to the mes-
sage protocol were quite time-consuming to implement.

The process model development has been directed
towards e�cient enactment of the BA software process
and its integration with tools from the user interaction
environment. During the process of its development,
BA Infrastructure members learned quite a lot about
their process. The process of eliciting and modelling
the development process was probably more useful for
understanding than its result. Unexperienced readers

*

StartSM
SSCommandError

BECommandError

MsgFromBE
MsgFromSS

BEMess

DisplayCM

DispatchToCM

UserMsg
Owner

CheckRole

Shutdown

ShowAcList

Items

DisplayList

RoleOK

Configured

NS

EndSM

LoginAccepted

Registered

Unregistered

ACAnswer

ACAnswer
OwnerLoggedOut

LoggedOut

ShowACError

SSKill

Logout

Exit

Ending

BEKill

BEKilled
Started

StartSS

CMRequest

ACRequest

CMAnswer

NotBEMEss
SSMess NotSSMess

ShutErr

DispatchToAC

Dummy

SSLogin

ConfigSSLogin

ConfigSSMsg

SessionManEnd

LoginMsg

Figure 5. Refinement of Session Manager

will �nd it di�cult to understand the SLANG model of
the process. One reason is that activity de�nitions do
not distinguish between net components that are criti-
cal to understanding the overall process (e.g. CheckRole
in Figure 5) and those included for enacting the model
(e.g. Dummy).

Decomposition of the overall net into activities com-
plicates further an understanding of the model. Cer-
tain transitions that belong together from the point of
view of control ow have been separated by decompo-
sition into activities. The next transition that will �re
in SessionManager after DispatchToAC has occurred will
either be LoginAccepted, or Registered, Unregistered
or LoggedOut. This, however, is not evident from just
reviewing the SessionManageractivity or the root activ-
ity. To resolve this problem, activity interfaces should
not only be de�ned from a structural viewpoint, but
should also provide a behavioural perspective. Such a
perspective would have to show, at the activity invoca-
tion level, that marking ACRequest leads to a token at
ACAnswer and that marking CMRequest produces a token
on CMAnswer.

6. Lessons Learned

The main result of the experiment carried out at
British Airways was our demonstration that process
technology could reduce the gap between the process
that was actually happening and the process described
in the Infrastructure group's process handbook. This
goal was achieved by modelling this process partially



and enacting it by a �ne-grained integration of devel-
opment tools and process engine. We now revisit the
experiment goals presented in Section 2 and examine
the lessons that we have learned.

6.1. Experience of Technology Provider

A �rst concern was to assess the expressiveness for
process automation of both the process modelling con-
cepts of SLANG and its support environment SPADE.
The language was deliberately designed to have two
very simple and powerful means for modelling commu-
nication between process and tools: black transitions
and user places. These two basic mechanism made it
feasible to model virtually any interaction policy, pro-
vided an appropriate message protocol is previously
agreed.

Through the BA experiment, we learned how com-
plex process policies can be in industry. Policy im-
plementation has an impact on tools, on the commu-
nication protocol between tools and on the process
model fragment managing that protocol. This intro-
duced additional complexity to the already complex
process model. SLANG provides abstraction mecha-
nisms that facilitated the hiding of complexity at the
lower levels of the process model. For instance, activ-
ity SessionManager is completely independent from the
access policy, which is hidden in the AccessControl ac-
tivity and in the de�nition of owner data. However,
industrial scale process modelling also requires high-
level, easily combinable, process-oriented abstractions
or building blocks, which are missing in SLANG.

People who were not involved in the process mod-
elling experiment are little able to understand the en-
actable process model. For instance, during process
elicitation it was necessary to use simple state transi-
tion diagrams (as the one shown in Figure 4). Actu-
ally, this did not surprise us, since SLANG was initially
conceived mainly to support process enactment. The
BA experience showed, however, that it is important
to provide di�erent views, which may require di�er-
ent levels of abstraction, di�erent ways of structuring
the process model and di�erent formalisms to express
them. This evidence supports the claims of [9, 18].
However, there are no satisfactory answers yet as to
how such views may be kept consistent during both
modelling and enactment.

British Airways did not deploy the BA SEE devel-
oped in GOODSTEP. One of the reasons was that the
impact of the deployment was too radical a change.
The BA SEE contains completely new development
tools, such as the Booch editor and the C++ class in-
terface editor, and explicit process constraints, such as

a library code cannot be modi�ed if the correspond-
ing Booch diagram is not modi�ed �rst. In addition,
the modelled processes were not fully understood and
institutionalised at British Airways. The lessons that
we have learned from this is that process technology
adoption has to be done in an evolutionary rather than
a revolutionary way and should focus on mature pro-
cesses �rst. For the purpose of bringing process tech-
nology into industrial practice, it would have been more
appropriate to start with partial process monitoring
support which, for instance, provided context-sensitive
process guidance on user demand, rather than support
that attempted to completely control and automate the
process. After some period of technology assimilation
and process maturation, it might have been possible
to introduce process automation and more advanced
tools.

SLANG and SPADE would have supported this evo-
lutionary introduction of process technology in several
ways. Firstly, the introduction of process technology
does not necessarily require the user interface to be
changed. As a matter of fact, users can continue using
tools they are familiar with without having to learn
a new user interface. Secondly, the level of process
enforcement is adjustable in the process model. There-
fore, it can range from a simple process monitoring to
complete process automation, depending on the char-
acteristics of the organisation. Finally, the mechanisms
available in SPADE for process evolution could be used
to change the process model, even during its enact-
ment.

The enactment experience has shown that, during
process model execution, the process engine is idle for
most of the time. The engine works as a reactive
system, which wakes up whenever a process relevant
event occurs. This observation seems to support the
argument that performance issues are not relevant in
process engines. However, �ne-grained tool integration
implies that the process engine becomes active dur-
ing interactions of users with tools. To avoid low user
acceptance of such an environment, response time con-
straints below a second have to be met.

Being a pre-commercial prototype, the BA SEE has
very reasonable performance characteristics with re-
sponse times between 0.5 and 2 seconds on a Sparc-
Station-20. However, the environment would need to
be re-engineered to be used as a commercial develop-
ment environment in industrial applications. Much of
the overhead introduced in the process engine execu-
tion is due to the evolution mechanisms provided by
the SPADE environment.



6.2. Experience of Technology Users

Much process understanding was gained through the
process modelling process. The use of a formal pro-
cess modelling language has lead to the removal of
inconsistencies in the \O�cial Process", represented
by Infrastructure's process handbook, and in the \Ob-
served Process" [5], represented by what process agents
thought the actual process was. In addition, the mod-
elling activity was accomplished in considerable detail
in order to obtain an enactable process representa-
tion. This facilitated discussions on solid ground and
prompted the removal of ambiguities in the process
model.

The process modelling activity highlighted aws in
the process, o�ering an opportunity to improve the pro-
cess. In some cases, the introduction of process tech-
nology naturally leads to changing the process during
modelling. To a certain degree, this process improve-
ment was achieved by the BA experiment. However, to
reduce the risk inherent to the introduction of process
technology, it is advisable to apply it to already stable
and well understood processes.

Although process automation has initially been per-
ceived as a fascinating idea, not all processes are
amenable to complete automation. Automated pro-
cesses are less adaptable to unforeseen situations and,
as pointed out above, their execution may introduce
some performance overhead. Thus, while established
administrative processes are better suited to process
automation, less clearly de�ned creative processes can
only be supported by, for example, providing guidelines
or help information on demand.

Acknowledgements

Mark Phoenix provided us with valuable insights into
daily development practice at British Airways. Ric-
cardo Rodriguez re�ned the BA process with SLANG
to a degree that it could be enacted. J�org Brunsmann
designed and implemented most of the integration be-
tween the Booch tool and the process model. We are in-
debted to Alain Ainsworth, for pointing us to the prob-
lems of the BA Infrastructure group, and to Alfonso
Fuggetta, Carlo Ghezzi, Wilhelm Sch�afer and Roberto
Zicari for providing the support within GOODSTEP to
undertake this e�ort. Finally, we thank Stephen Morris
for comments that helped us to improve the presenta-
tion of this paper.

References

[1] J. Arlow, M. Phoenix, and B. Pryce. The British

Airways Application Scenario for GOODSTEP.
Deliverable ESPRIT Project GOODSTEP 26P,
Commission of the European Union, DG III, 1994.

[2] S. Bandinelli, A. Fuggetta, and C. Ghezzi. Pro-
cess Model Evolution in the SPADE Environ-
ment. IEEE Transactions on Software Engineer-
ing, 19(12):1128{1144, 1993.

[3] S. Bandinelli, A. Fuggetta, C. Ghezzi, and
L. Lavazza. SPADE: An Environment for Soft-
ware Process Analysis, Design and Enactment. In
A. C. W. Finkelstein, J. Kramer, and B. Nuseibeh,
editors, Advances in Software Process Technol-
ogy, pages 223{247. Research Study Press Lim-
ited, 1994.

[4] S. Bandinelli, A. Fuggetta, and S. Grigolli. Process
Modeling-in-the-large with SLANG. In Proc. of
the 2nd Int. Conf. on the Software Process, Berlin,
Germany, pages 75{83. IEEE Computer Society
Press, 1993.

[5] S. Bandinelli, A. Fuggetta, L. Lavazza, M. Loi,
and G. P. Picco. Modeling and Improving an In-
dustrial Software Process. IEEE Transactions on
Software Engineering, 21(5):440{454, 1995.

[6] N. S. Barghouti and G. E. Kaiser. Multi-Agent
Rule-Based Software Development Environments.
In Proc. of the 5th Annual Knowledge-Based Soft-
ware Assistant Conference, pages 375{387, 1990.

[7] Politecnico di Milano CEFRIEL. SLANG Pro-
cess Modeling Language Reference Manual version
2.2. Deliverable ESPRIT Project GOODSTEP 8P,
Commission of the European Union, December
1994.

[8] Digital Equipment Corporation. DEC-FUSE
Manual, 1992.

[9] W. Deiters. A View-based Approach to Software
Process Management. PhD thesis, University of
Dortmund, Dept. of Computer Science, 1993.

[10] W. Deiters and V. Gruhn. Managing Software
Processes in MELMAC. ACM SIGSOFT Software
Engineering Notes, 15(6):193{205, 1990. Proc. of
the 4th ACM SIGSOFT Symposium on Software
Development Environments, Irvine, Cal.

[11] O. Deux. The O2 System. Communications of the
ACM, 34(10), 1991.

[12] G. Dinkho�, V. Gruhn, A. Saalmann, and
M. Zielonka. Business Process Modeling in the



Workow Management Environment LEU. In
P. Loucopoulos, editor, Proc. of the 13th Entity-
Relationship Approach, number 881 in Lecture
Notes in Computer Science, pages 46{63. Springer,
1994.

[13] W. Emmerich. Tool Speci�cation with GTSL. In
Proc. of the 8th Int. Workshop on Software Speci�-
cation and Design, Schloss Velen, Germany, pages
26{35. IEEE Computer Society Press, 1996.

[14] W. Emmerich, J. Arlow, J. Madec, and M. Phoe-
nix. Tool Construction for the British Airways
SEE with the O2 ODBMS. Theory and Practice
of Object Systems, 1997. To appear.

[15] W. Emmerich and V. Gruhn. FUNSOFT Nets: A
Petri-Net based Software Process Modeling Lan-
guage. In Proc. of the 6th Int. Workshop on Soft-
ware Speci�cation and Design, Como, Italy, pages
175{184. IEEE Computer Society Press, 1991.

[16] W. Emmerich, W. Sch�afer, and J. Welsh.
Databases for Software Engineering Environ-
ments | The Goal has not yet been attained.
In I. Sommerville and M. Paul, editors, Software
Engineering ESEC '93 | Proc. of the 4th Euro-
pean Software Engineering Conference, Garmisch-
Partenkirchen, Germany, volume 717 of Lec-
ture Notes in Computer Science, pages 145{162.
Springer, 1993.

[17] C. Gerety. HP SoftBench: a new generation of
Software Development Tools. HP Journal, June
1990.

[18] G. Junkermann. A Dedicated Process Design Lan-
guage based on EER-Models, Statecharts and Ta-
bles. In Proc. of the 7th Int. Conf. on Software En-
gineering and Knowledge Engineering, Rockville,
Maryland, pages 487{496. Knowledge Systems In-
stitute, 1995.

[19] U. Kastens. Ordered Attributed Grammars. Acta
Informatica, 13(3):229{256, 1980.

[20] B. Peuschel and W. Sch�afer. Concepts and Im-
plementation of a Rule-based Process Engine. In
Proc. of the 14th Int. Conf. on Software Engineer-
ing, Melbourne, Australia, pages 262{279. IEEE
Computer Society Press, 1992.

[21] B. Peuschel, W. Sch�afer, and S. Wolf. A
Knowledge-based Software Development Environ-
ment Supporting Cooperative Work. International
Journal for Software Engineering and Knowledge
Engineering, 2(1):79{106, 1992.

[22] S. Reiss. Connecting Tools using Message Pass-
ing in the FIELD Program Development Environ-
ment. IEEE Software, pages 57{67, July 1990.

[23] Sun MicroSystems, Inc. Solaris Open Windows:
The ToolTalk Service, 1991.

[24] S. M. Sutton, D. Heimbigner, and L. Osterweil.
Language Constructs for Managing Change in
Process-Centred Environments. ACM SIGSOFT
Software Engineering Notes, 15(6):206{217, 1990.
Proc. of the 4th ACM SIGSOFT Symposium on
Software Development Environments, Irvine, Cal.

[25] G. Valetto and G. Kaiser. Enveloping "Persis-
tent" Tools for a Process-Centred Environment.
In W. Sch�afer, editor, Proc. of the 4th European
Workshop on Software Process Technology, Nord-
wijkerhout, The Netherlands, volume 913 of Lec-
ture Notes in Computer Science, pages 200{204.
Springer, 1995.


