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Fluid neural networks can be used as a theoretical framework for a wide range of complex systems as social insects.

In this article we show that collective logical gates can be built in such a way that complex computation can be

possible by means of the interplay between local interactions and the collective creation of a global field. This is
exemplified by a NOR gate. Some general implications for ant societies are outlined. © 1996 John Wiley & Sons, Inc.
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1. INTRODUCTION

he collective capabilities of social insects are known to

belargely the result of a nonlinear cooperative phenom-

enon [1, 2]. Typically, individual ants display a limited
repertoire of activity patterns [2-4]. Unlike individuals, the
colony as a whole display very complex patterns, involving
search, information transfer and some computational pro-
cesses. Examples of such computational habilities are task
allocation [5, 6] or the decision between two different food
sources [7, 8]. In this sense, when looking at an ant colony, we
perceive several properties in their organization which are
commonly shared with the brain and eventually with stan-
dard neural networks (NN). These common properties have
been listed in several studies [1, 9, 10] and are summarized
by: robustness of behavioral patterns against noise, collective
decision-making and emergent computation.

In ant colonies, a parallel distributed processing of infor-
mation is performed. Individuals gather information from the
environment as well as from their nestmates. As a conse-
quence, a given distribution of tasks is always present. As

pointed out by Hélldobler and Wilson [3], much of the struc-
ture of the ant colony is based on order parameters, defined
as the proportion of individuals existing in one state or an-
other. As they say: “the most striking social effects turn out to
be the holistic outcomes of mass communication combined
with the rise and decline of pheromones and foodstuffs.”

There is an important property that makes insect societies
rather different from brains: the system is fluid, i.e., informa-
tion transfer is gathered by moving entities. The “connection”
among individuals is a transient phenomenon, unlike synap-
tic connections, which are (more or less) fixed. It is well known
that in the last case, a neural network can (under some con-
straints) perform as an associative memory. The power of NN
is undiscussed, but how far can go, computationally, those
dynamical systems sharing some properties with NN but with
no fixed connectivity?

In ant colonies, information transfer is performed by the
colony as awhole. It is stored (atleast in a short-term), propa-
gated and processed. As a new source of energy or a danger is
discovered by an individual, it can be translated to the colony
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and then a collective decision is adopted. But interestingly,
this process is not necessarily deterministic: probabilistic be-
havior of individuals play a very important role [7].

Recent studies on order and chaos in ant colonies [9] have
shown that the analogies between neural nets and ant colo-
nies can be sucessfully introduced in a new class of models:
the so called fluid neural networks (FNN, see [11]). By using
this approach, some phenomena, as coherent global oscilla-
tions of colony activity have been fairly well reproduced, in
agreement with experimental observations [12, 13]. These
phenomena have been theoretically interpreted as computa-
tional processes close to phase transition points [6, 11].

his problem belongs to a class of models concerning

computation in distributed systems. Some nonlinear,

spatially-extended models have been suggested to be
able to perform computation. In particular coupled map lat-
tices (CMLs), amodel of spatially extended nonlinear systems,
have been explored [14]. It was shown that CMLs are a valid
model for a parallel deterministic analog machine. In this con-
text, excitable media would be candidates to computational
systems.

More recently, it has been claimed that ant colonies would
be, in principle, capable of universal computation [15]. This
isavery interesting suggestion and was based on a mathemati-
cal model. This model is defined through a set of master equa-
tions. Letus consider N ants. If p, is the fraction of ants in state
i (with i=1,..., M), then a set of master equations, i.e.,

d, M M
d_pt = ‘Z Ai(S)p; + z Aii(S)p; + F( By e, p))
= =

was used, where: i) Al.j(s) is the set of transition probabilities
of switching from task i to task j (for a given environmental
state §) and ii) B, is the probability that an ant in state i en-
counters an ant in state j (with some probability e and then
switch (because of the interaction) to state k. The whole set of
changes resulting from pair interactions is indicated by the
last term.

The model was shown to be able of amplification and os-
cillations (though not in terms of limit cycles, as it should be
in natural dissipative systems). Finally, a NOR gate was con-
structed. All these results were obtained by considering mac-
roscopic properties defined through the ratio of the ant num-
bers in different states. Since any boolean circuit can be built
up using the NOR gate, universal computation (see below) is
in principle possible.

Some of the assumptions of the Lachmann and Sella model
[15] are, in our view, quite ad hoc. Each component (the am-
plifier, the oscillator and the NOR gate) are defined through a
different set of nonlinear equations. On the other hand, sev-
eral equations are of the type dp,/dr = 0, which makes the
underlying assumptions unlikely to translate to real systems.

Here we want to address the problem of how complex the
computational capacity of a FNN can be. As a theoretical

framework, we consider the idea of universal computation. It
will be shown, by means of a simple model, that ant colonies
can act as some type of (collective) logic gates and in particu-
lar that the NOR gate can easily be constructed in a natural
way. In this framework the amplifier and the NOR gate, to-
gether with a characteristic temporal scale of response are all
obtained into the basic mechanism (see below).

2. FLUID NEURAL NETWORKS
A general formalism has been recently proposed for the study
of groups of social insects [6, 11] as well for collectives of ro-
bots or the immune system. This approach has been called
fluid neural networks. We consider a set of N entities (which
we will call “automata” or “ants”) defined, in the general
case, by a set of elements each one represented by m bits,
i.e., S,(1) = (S'(0,..., S"(1)). Here we take S/ 0 3 = {+1,-1}.
In previous papers, these entities moved at randomona LX L
grid, and this rule introduces the fluidity on the network, but
other ways of random change of connections are allowed. For
simplicity, we consider single-bit individuals (i.e., m = 1). The
density of ants will be indicated by p= N/L% Each time step,
all elements will move at random towards one of the eight
nearest lattice positions (if available).

The dynamics of this network is described by means of a
transition rule defined by the transition probability:

PLS; ~ =5) =5 [1-tanh(B (0) 0)-©,) M

where hi is the local field, defined as:

h@©= % J;S;0 @

JOB;(p)

being the sum extended over the “neighbors” of S (#). The
neighborhood is indicated by B,(p) and here the eight nearest
positions are taken (Moore neighborhood). ©, is a given
threshold, also known as the “external field”. Here the strength
and type of connection is given by]i]_ =A (S0, Sj(t)) OR,ie,a
state-dependent connection.

For our study, where §,0% ={+1,-1}, the connection ma-
trix reduces to the following 2 x 2 table:

A++H) A0
B 3)
=+ Al=-)n

Ata given time step, the interaction ]i]. between the ith and
the jth elements is equal to )\(Si(t), Sj(t)) O A by depending
on the current states of the given elements. More precisely,
]ij = A(+,+) if S,= Sj = +1,]l.]. =A(+,-) if S,=+1 and Sj =-1andso
on. For our previous model [6, 11] (where active and inactive
ants were considered) some experimental studies have shown
that the sign of the matrix elements can be determined ex-

perimentally (B. Cole, personal communication).
For the particular case where )\ij =1for all cases (ferromag-
netic FNN) it is not difficult to show (Delgado and Solé, un-
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published) that the macroscopic state defined by m({S}) = 3
S, /N evolves following the mean-field equation:

r %" = —m +tanh] fo(m + ) o)

where h is the so called external field and I is a constant rate,
defining the characteristic time scale of relaxation. ljor h=0,
the stable attractors of this system will be: i) m, = 0 for
J=Bp<0=] and mz # 0 (with mi =- mf) for J>J .We say that

symmetry breaking occurs at J = 0, where two new states
emerge. In terms of information, we can say that the original
information is doubled because two new attractors become
available [16]. These attractors can be visualized as the minima
of a free-energy ®(m,h) of the system, i.e.,

IP(m*,h) _

5
e (5)

One possible free-energy function (also called Ginzburg-
Landau potential) compatible with the previous equation for
m(z) is:

d(m,h) = @m,h) = Bpm +pln{cosh[ﬁ(pm+h)]} (6)

in such a way that our dynamics is defined by a gradient sys-
tem, i.e.:

r 6_m = ——acp(m’h)

o om @

and so a relaxation towards mi or m’ (depending on the ini-
tial state m(0)) will occur.

We have introduced this particular case because it illus-
trates the early suggestions by Haken [16, 17] about informa-
tion processing in complex systems. To store information, the
system has to be able to stabilize the attractors in deep enough
minima (i.e., those defined by ® (m,h)) . But in order to pro-
cess information, switching among attractors is necessary. If,
through some self-regulated mechanism, a switch among
attractors is available, processing becomes possible. Though
it has been suggested that complex computation takes place
in systems poised at critical points, here we suggest a differ-
ent strategy. The system can store information by means of
attractors and switch among them by moving through critical
points.

3. TASK ALLOCATION AND GLOBAL ATTRACTORS

A particularly relevant observation about ant colonies (and
relevant in our study) is the existence of a distribution of tasks
in the colony. In this sense, some given numbers of individu-
als engaged in different activities are observed. These num-
bers can be determined by genetic constraints, linked with
morphological traits [2, 3] or, more frequently, be the result of
a self-organizing pattern emerging from the local interaction
among individuals. In this sense, the final distribution of tasks

will be an “attractor” of the ant colony dynamics [10].

Following this observation, we can consider several par-
ticular situations described by our FNN model. By an adequate
choice of the connectivity matrix, we can reach a particular
global state by means of local interactions. Assuming that
J>]J_then the matrix

Ao = a 10 8a)
"TH
which defines the ferromagnetic FNN, is in fact the discrete
counterpart of the previous mean-field model (see Section 2).
For B =0, half of the automata will be in state +1 and half in
—-1. When 3> 0, symmetry breaking takes place. One of the
possible attractors { m+, } will be chosen.

Another possibility in order to reach a particular attractor
can be to provide an external field /2> 0. Then an assymetry is
introduced from the beginning and the system will be in one
of the global states mi or mf . But there is an additional pos-
sibility. We take > 0 and an appropiate A matrix such that
transitions towards a particular state are more likely to occur.
As an example, we can take:

_0 1-&0
w7 - (@)

(where €0 (0,1)) is such that leads to a FNN where almost all
elements move towards the state S, =+1, and so m - mi In
this way, we can storeinformation. This is just a particular case,
but is easily extended to FNN with several tasks [10].

ow the basic problem in order to perform computation

is to have a mechanism of switching among attractors.

In this way, we process information. One possibility, as
stressed by Haken [16, 17], is to be able to switch by means of
fluctuations, which are larger as we approach J = I, the criti-
cal point where fluctuations diverge. But in this state the reli-
ability of the system is lowered precisely due to fluctuations.
So what we need is an additional mechanism which should
be modified by the own system (say the ants), and able to reach
different attractors under suitable inputs. This mechanism,
chemical communication, is discussed in the next section.

4. CHEMICAL COMMUNICATION

The previous mechanism of communication, which involves
direct contact among neighbors, is just part of the story.
Chemical communication in ants play a very important role
and will be also considered in our study. Some general com-
ments are of interest:

a) Ants interact among themselves both by direct contact
(being contact rates very important in colony organization,
see Gordon,[18]) and by means of chemical substances [2].

b) By means of both phenomena, the ant behavior can
switch from the current state (task) to another. In any case,
the ant can respond to the chemical signal and reinforce it. As
aconsequence, there is a nontrivial global behavior sustained
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by means of the individual activity of ants, being this activity
simultaneously modified by the chemical field. This is an
emergent phenomenon, and is represented in Figure 1, fol-
lowing [16]. The individual ants and the global activity pat-
tern are related in two directions: from top to bottom and from
bottom to top.

c) Computation takes place collectively. The ant colony
perceive external signals and monitors its environment, be-
ing then able to make decisions. These decisions result from
different inputs which can be conflicting (two different
food sources, enemies, etc.). Local inputs must be processed
collectively in order to obtain an adequate global output.
As stated by Wilson: “(local information) is judged princi-
pally, and perhaps exclusively, by the “electorate” response
of the colony through all-or-none “voting” by the individual
ants” [2].

d) The ant colony needs to be flexible. Once a given infor-
mationis detected, chemical communication (as trails) makes
possible the global response. The stability of the chemical sig-
nalis thus relevant for colony behavior. But after a given source
of information is gone, the colony has to be able to switch
again towards the “normal” state, defined by means of some
task distribution. Again by Wilson: “the level of accuracy (of
chemical communication) has been arrived at a compromise
between the utmost effort of the ant’s chemosensory appara-
tus to follow trails accurately and, simultaneously, the need
to reduce the quantity and increase the volatility of the trail
substance in order to minimize overcompensation in the mass
response” [2].

The last two comments can be well represented by means
of a simple diagram, which uses the idea of attractors, as
shown in Figure 2 (see also Ref. [10]). We can imagine the stan-
dard distribution of tasks as a given set of numbers of indi-

viduals engaged in different activities [10]. This distribution
is, in our approach, an “attractor” of the dynamical state. In
Figure 2(a), it is shown by an energy landscape (defined for
example in [10], based on the standard approach to neural
nets) where the minimum represents the most probable dis-
tribution of states. Here a is the deepest valley, defining the
most probable distribution, though may be other small val-
leys (B) could be present. As an external signal is detected, the
system should be able to switch towards other attractors (i.e.,
a - B, by changing the landscape) in order to perform new
tasks [19].

In our study, we consider a given chemical concentration
C(i,j) which can be detected and reinforced by the ants. This
substance, in absence of ants, will have a simple dynamical
evolution given by the diffusion equation (DE):

%%:—uc+DD%1 9)

Here p stands for the spontaneous rate of decay, D is the dif-
fusion coefficient, and

0% =97 +0,

is the two-dimensional Laplace operator. A discretization of
the previous DE will be used, where we will use the following
numerical approximations:

0%CG, j,t) =
Ci+1,j,0)+C(i-1,j,)+CG,j+1,t)+C(, j—1,t) - 4C(, j, 1)
dxz

where we take dx = 1, and time is also discretized as:

CG, j tea) —CG, jioty)
or

o ...
_C’,[:
o SO

Collective Behavior

Emergent computation in social insects. Ants interact among them through direct contact and through chemical fields. Then the global behavior (the activity
pattern) acts over the single ants as an order parameter. These emergent patterns cannot be reduced to the sum of the activities of the basic units (the ants).
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where 1 < j,j < L and t,_ = k&t (here we use
0=107). Clearly, our numerical calculation
of dynamics of the chemical component
defines two distinct time scales for indi-
viduals and the chemical field.

If ants are present. a new term should
be included in the previous PDE, involving
the reinforcement of the chemical signal,
as will be done in the following section. It
is interesting to mention here that chemi-
cal communication, together with tactile
stimuli, is able to provide strong cohesive-
ness even to large societies. Army ants,
which are among the largest societies, show
spatially self-organized swarm raids that
cover 1000 m* in a day [4]. It is one of the
best examples of collective decision mak-
ing without centralized control of any kind.

Switching between attractors. The numbers of individuals engaged in different tasks defines the
global (colony) states. For each combination, an “energy” function is defined. The system spontane-
ously evolves towards those states characterized by the deepest valleys. As some external signal is
introduced, the system can amplify it; by changing the landscape, a computational process can take
place.

In this context, a remarkable study by

Mikhailov [20] on mass communication in distributed systems
has been performed, involving the formal approach of neural
networks together with chemical mediators.

5. UNIVERSAL COMPUTATION

Spatially extended dynamical systems can be complex enough
to show interesting computational properties [14]. The possi-
bility of universal computation [21] can be proved in two ways.
One possibility is the direct way, i.e., showing that an Univer-
sal Turing Machine (UTM) can be simulated by the system
(see for example the approach by Holden et al. [14]). The indi-
rect way consists in showing that the system can emulate a
device with which a UTM can be constructed. The last ap-
proximation has been used in showing that some cellular au-
tomata models, as the Game of Life, can perform universal
computation [22]. In particular, if a NOR gate can be built,
then any other logic gate can be obtained by an adequate con-
nection of coupled NOR gates.

In this section, we show how a NOR collective gate can
be obtained in a simple way. First, we have to define the “nor-
mal” state of the network, which can be understood as a given
distribution of tasks. For simplicity, we will define a colony
state where the elements in our FNN are mainly in state
§,=+1.This can be achieved in several ways. Three situations
are considered in the following subsections.

9.1. Matrix A, Chemical Switch
This is the simplest collective NOR gate. Let us remind that
we want to obtain the following table:

Input 1 (11) Input 2 (IZ) Q
0 0 1
1 0 0
0 1 0
1 1 0

Where a properly defined “collective” response Q needs to be
introduced. Here we take 8 > 0 and the connectivity matrix
will be A, as defined in (8b). As a consequence of this par-
ticular choice, a given task distribution will be obtained, be-
ing the S, = +1 individuals the most abundant.

Now let us define the two external “inputs,” I and I, nec-
essary in order to construct the logical gate. Following our
previous discussion, they can be two signals placed at two dif-
ferent points of the lattice (the environment). Here we use two
opposite vertex. As a signal, we take a given fixed concentra-
tion C, which can (I, = 1) or cannot (I, = 0) be present. At a
given time step (and for some time 1) we fix the state’ of both
pointsto C,. Thenifa given ant detects, at a given lattice point,
a concentration C> 6, where 6 is a threshold, it reinforces the
local concentration by an amount (. The local concentration
acts on the local field in the following way:

h(t,C)= Y J;S,)-C; (10)

JjOB;(p)

here C, is the local concentration perceived by the single ant
(located at a given lattice point). We see that in this way, the
local field is modified, and the new transition probability
makes possible to switch towards a different state. Physiologi-
cally, this is nothing but a change in the excitability of the in-
dividual ants. As C, grows, it becomes more and more likely to
switch towards S, =~1. If the self-reinforcement of the chemi-
cal field is strong enough (and this will depend specially on u
and p) the whole system can switch. The local signals have
been amplified and a new attractor has been created (as it was
shown in Figure 2). In Figure 3 we show, for a particular set of
parameters, the evolution of the three main quantities defined
in our study: m, C and Q. Here Q is the discrete output ob-
tained from our collective computation, and it is defined as

© 1996 John Wiley & Sons, Inc.
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Collective NOR gate. An example of the dynamics of the three basic components of our
model is shown (see text). As an external signal is introduced (from step 100 to 150) a
chemical field is formed, and a switch is obtained. For this parameter combination, the
switch is a transient situation. After some time steps, once the chemical field decay to

10.0
5.0
1A
0.0 T T T T T T T T T T T T T T T T
0 50 100 150 200 250
time
40.0 3
20.0 3
0.0 3
-20.0 3
iB
0 50 100 150 200 250
time
2.0 3
1.0 3
0.0 3
-1.0 3
jcC
31 T T ———_——— R
0 50 100 150 200 250
time

zero, the previous state is recovered.

300

h@,C= 3 JS;0-0+C 12)

jcBp)

and the previous rules are the same as before. For an
adequate choice of parameters, a similar scenario is
obtained. This can also be obtained using a different
chemical field C;k , instead of a fixed threshold, ©. If no
external input is present, the ants can self-maintain this
new field. When the external signal is detected, the new
field would be more reinforced, and the transition can
take place.

8.3. Matrix /\F, Two Chemicals

Thisis amore sophisticated situation. The system starts
with a small 8> 0 value and the A, matrix. If no exter-
nal inputs are present, both states S, = +1 are equally
likely to occur. Now let us assume that two different
types of inputs (which we can arbitrarily call “0” and “1”)
are allowed, with concentrations C” and C®. So now /,
=0 means that C"V is being introduced as an input, and
I,=1 means that C? is used. Then two different chemi-
cal substances are specified as a symbol of the
input alphabet. Both chemicals will have characteristic
rates of decay (VRTH and diffusion rates (D, D,).

Now the local field will read:

m, GG =Y 18-+

OB

13)

Where each chemical is acting, as we see, in opposite
ways. Again, as ants find locally any of the chemical
signals, they reinforce the local values (if C¥' >6®, as
before). The competition between both chemicals can
result in different global outputs. If the specific rate
constants are suitably chosen (for example, if y, > p,

O
Q=H ? S; (t)él an
Where H(z) is the Heaviside step function, defined as H(z) =
if z> 0 and H(z) = 0 otherwise. We can see that after the ap-
pearance of the external signal, the system is able to switch
towards the negative values and so Q = 0. In other cases (see
below) the self-reinforcement of the chemical field is strong
enough that the new state is maintained indefinitely. For very
slow densities, both fluctuations and small information trans-
fer makes the gate very unstable.

9.2. Matrix /\F, Nonzero Threshold

A different possibility is a FNN with ferromagnetic interac-
tions (as defined by the matrix A ) and where a given nonzero
threshold © is introduced. Again, ants will move towards m+
(here we take 8> 0). Now the local field is given by:

and D = D,) aNOR gate is obtained.

5.4. Parameter space
We have now to see how robust are these collective gates. Their
behavior depends upon the parameters involved, and here we
analyse the first type of gate. The following constants are used:
C, = 10, D = 0.2, 6 = 10 and ¢ = 0.5. Using a
L = 20 lattice, with € = 0.35 and 8 = 2, a detailed study of the
parameter space (p, ) has been performed. For each sample,
we have discarded T = 200 transients in order to reach the
colony attractor given by matrix A, and the external signals
are introduced over a short period of time (7 = 50 time steps).
Then we study whether or not the colony is able to switch to-
wards the new attractor and move back some time later. We
take as correct those samples where the colony is able to switch
and return to the initial distribution (here mj) into a period
of 150 time steps.

The phase space of our system, for the previous param-
eters, is shown in Figure 4. Three regions are observed. The
first one is the so called random network (RN, shaded area)
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obtained at very low densities of ants, is a domain where the
NOR gate cannot be built. Either random effects become
dominant (and the FNN is switching randomly) or only if the
two sources are present the system can switch. The dotted area
shows a domain where the NOR gate works, but no turning
back to the initial attractor is possible. The amplification of
the incoming signals is too strong and becomes self-sustained.
The white area is the most interesting: the NOR gate is built
and the system is flexible enough to move back to the previ-
ous attractor. This happens at intermediate densities. As far
as the collective gate can switch back to the previous state in
abounded interval of time, a characteristic time scale for com-
putation can be defined. The main properties of this param-
eter space (as the separation in three well defined areas) are
also obtained from the other implementations of the NOR
gate.

6. DISCUSSION

In this article we have analysed a particular problem involv-
ing the computational capacity of FNN. The underlying goal
is to explore the computational abilities of groups of social
insects, such as ant colonies. As a starting point we have con-
sidered the possibility of building a NOR collective gate. A sim-
plified situation was considered, where two external signals
{1, L} of some type are used, and a binary variable is assigned
to them. A binary variable is also defined over the colony states
in such a way that we can clearly construct a table for the gate.

The external signals are appropiately amplified by the ants,
and the self-reinforced field acts on the individual ant states
through a change in the transition probabilities. By depend-
ing on the density of ants and the rate of decay of the chemi-
cal field, the external inputs can be amplified.Then an emer-
gent pattern is obtained: a self-sustained chemical field is
created. As a consequence a global colony organization is
reached. Some parameter combinations (p, 1) makes the sys-
tem more or less flexible, eventually switching back towards
other attractors as the external inputs are removed. Follow-
ing this idea, we have obtained a NOR gate in several ways.
One or two chemicals can be used. They can act on all types
of ants or in different ways for different states.

The existence of a domain of densities (p) where maximum
flexibility is allowed is consistent with other experimental and
theoretical works involving networks of patrolling ants [23].
The encounter rates among ants has been shown to be of ex-
treme importance as an organizing factor for the colony be-
havior. In terms of dynamics, a low density makes possible to
enhance fluctuations and switching among attractors. If the
density is high enough, we can also ensure (atleast transiently)
the stability of the attractors. This compromise has also been
observed in other situations [6, 11].

This work can be extended to more general situations.
If an arbitrary set of chemical signals { C{¥} is involved (here
k=1,2,...,f) then the local field hi perceived by the individual
ants will be:

f
hi(t,{Ci(k]}) - z ]iij(t) r](k)ci(k) (14)

BT =1

where n® 0 {~1,+1} by depending on how each field behaves.
The previous results would be then generalized. Equation (12)
contains much of the ingredients of ant colony dynamics. Ant-
to-ant interactions and the creation and interaction through
chemical fields are both involved. The importance of each
term will be different for different species, but their sensitiv-
ity to fluctuations and how the colony behavior is tuned are
rather general problems. The appropriate transfer and pro-
cessing of information requires parameter combinations not
too far from phase transition points. In fact, recent theoreti-
cal studies show that such points would play a prominent role
in the evolution of social behavior [24], as early suggested by
Wilson [3].

Two final, particular comments have to be considered for
future studies:

a) The FNN model is robust against noise. Though some
deterministic cellular automata models (as the Game of Life)
have been shown to be able to support universal computa-
tion [25] they are not robust when noise is present (as it hap-
pens in natural conditions). A random change in a single au-
tomaton state can destroy the gate. AFNN finds the robustness
through the amplification of incoming information and is only

7
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w11

*'NOR -
~:(no switch):

NN EEEUN RS R EENEA RS RSN NSNS RN E N RN

| 0 B B S R B | I:'I::|:I‘ ||T| T T 1T '.I...‘
0.05 0.10 0.15 0.20
o)

o_k
=
=}

Phase space for the collective NOR gate (see text). Three qualitative

combinations unable to define a NOR gate: random fluctuations are do
nant. The dotted area is linked with a properly defined NOR gate, but

to the starting attractor once external signals are removed.

0.25

do-

mains are obtained. The dashed area (RN) is linked with those parameter

mi-
the

self-reinforcement of the chemical field is too strong (see text). The white
area corresponds to a properly defined NOR gate, and the system returns
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weakly dependent on failure of single units.

b) The FNN (like an ant colony) is a spatially-distributed
system. As a consequence, if different inputs enter to the FNN
at different spatial locations, competition and pattern forma-
tion can occur. We can easily build up other types of collec-
tive gates in response to different types of inputs. It will be of
interest to know how such, perhaps conflicting, inputs are
processed into the system and how complex these computa-
tions would be. This also opens new problems. Though the
NOR gate has been shown to be constructable, how several
gates could be coupled in order to simulate more complex
gates is far from trivial.
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NOTE

1. Many other possibilities are allowed, in such a way that the input
signals are not coupled with the chemical field. For example, if an ant
detects an input /, =1, it leaves a given amount of chemical. These
possibilities have also been explored, leading to similar results.
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