
On the Sensitivity of FPGA Architectural Conclusions to
Experimental Assumptions, Tools, and Techniques

Andy Yan, Rebecca Cheng, Steven J.E. Wilton
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, B.C., Canada

stevew@ece.ubc.ca

ABSTRACT
Recent years have seen a tremendous increase in the capacities
and capabilities of Field-Programmable Gate Arrays (FPGA’s).
Much of this dramatic improvement has been the result of changes
to the FPGAs’ internal architectures. New architectural proposals
are routinely generated in both academia and industry. For
FPGA’s to continue to grow, it is important that these new
architectural ideas are fairly and accurately evaluated, so that
those worthy ideas can be included in future chips. Typically, this
evaluation is done using experimentation. However, the use of
experimentation is dangerous, since it requires making
assumptions regarding the tools and architecture of the device in
question. If these assumptions are not accurate, the conclusions
from the experiments may not be meaningful. In this paper, we
investigate the sensitivity of FPGA architectural conclusions to
experimental variations. To make our study concrete, we evaluate
the sensitivity of four previously published and well-known
FPGA architectural results: lookup-table size, switch block
topology, cluster size, and memory size. It is shown that these
experiments are significantly affected by the assumptions, tools,
and techniques used in the experiments.

1. INTRODUCTION
Since their introduction in 1985, Field-Programmable Gate Arrays
(FPGA’s) have seen a phenomenal growth in their ability to
implement large complex digital circuits. Originally used
primarily for prototyping and small glue logic replacement,
FPGA’s are now used to implement entire systems containing
memory, embedded processors, and other embedded functionality.
A 1994 databook quotes a maximum gate count of 25,000; in July
2001, a part that can implement circuits containing six million
system gates was announced. The achievable clock frequency has
increased over the years as well.

Much of this dramatic improvement has been the result of
architectural improvements. There have been numerous academic
and industrial investigations including logic block studies
[1,2,5,6], routing architecture studies [7,11,14], and

Flexible CAD Tools

Area / Delay / Power
Models

Alternative
Architectures

Benchmark
Circuits

Technology
Information

Mapping ResultsEstimates

Run time

Area / Delay/
Power

Figure 1: Experimental Framework

memory block studies [9,10]. In general, each of these studies
considers one or a handful of architectural parameters in isolation,
and finds “good” values for those parameters using
experimentation. During the experiments, a handful of realistic
benchmark circuits are typically fed through a representative CAD
tool. Detailed models are then used to measure the area or delay
of the circuit, and, based on these results, one of the architectures
is deemed “the best”. This is summarized in Figure 1.

Relying on the results of this sort of experimentation is dangerous.
No matter how careful a researcher is, assumptions and
approximations must be made. In some cases, these assumptions
and approximations may affect the results of the experiments, and
possibly even change the conclusions of the experiments. Some
of these assumptions can be categorized as follows:

CAD Tools: Clearly, the CAD tools employed for the
architectural study will have a significant impact on the results.
This includes not only placement and routing tools, but also the
optimization and technology-mapping algorithms. In some cases,
companies will run experiments using a pre-release experimental
tool flow. The intention is that the final release software will be
similar, but there will likely be some changes, and these changes
may affect the architectural results. In academic studies,
representative tools, such as Flowmap [3] and VPR [11] are often
used to try to make the results as vendor-neutral as possible. Yet,
these tools could lead to results that would not be seen had
commercial tools been employed.

CAD Tool Settings: Most tools have numerous settings that can
be used to guide the optimization algorithms. The documentation
that accompanies VPR and T-VPACK has over six pages
describing the run-time switches available; many of these switches
will significantly affect the results of the optimization, and
perhaps the conclusions of architectural experiments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’02, February 24-26, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-452-5/02/0002…$5.00.

Ar
ea

Sweep of an Architectural Parameter

Experimental
Assumptions 1

Experimental
Assumptions 2X%

Y%

Margin = | X - Y |

Best Architecture

Experimental
Assumptions 2

Ar
ea

Sweep of an Architectural Parameter

Experimental
Assumptions 1

X%

Y%

Margin = MAX(X , Y)

Best Architecture

Best Architecture

a) Case 1: If the best architecture in each
 experiment is the same

b) Case 2: If the best architecture in each
 experiment is different

Figure 2: Illustration of Margin Metric used in this paper

Experimental Techniques: There are several ways to use a CAD
tool to evaluate an architecture. As an example, many researchers
allow the number of tracks in each FPGA channel to “float” [11].
That is, they find the minimum number of tracks needed in each
channel to successfully route a circuit, and use an FPGA with
exactly that number (or a fixed multiple of that number) in
comparisons. On the other hand, many commercial studies (in
which the researchers have a fixed device in mind) assume a fixed
number of tracks per channel. Each of these techniques may lead
to different results, and perhaps different conclusions. As another
example, many experiments are performed assuming the I/O
connections to each benchmark circuit can be assigned to any I/O
pin; others assume the pin assignment is predetermined and fixed.

Orthogonal Architecture Assumptions: When investigating the
effects of one architectural parameter, it is usually necessary to fix
several other parameters. As an example, when performing logic
block studies, the routing fabric architecture is often fixed. Yet, it
is conceivable that later changes in the routing fabric may
influence the optimum logic block architecture.

In this work, we examine the sensitivity of FPGA architectural
research to experimental variations. In order to make our study
concrete, we focus on four previously-published fundamental
FPGA architectural experiments:

 1. What is the optimum lookup-table (LUT) size? [1,2,5]
 2. What sort of switch block works well? [7,9,11]
 3. How many lookup-tables should be included in a logic block
 or cluster? [2]
 4. How large should the memory arrays in an FPGA be? [10]

For each of these experiments, we investigate how sensitive the
conclusions are to experimental variations. It is important to note
that we are not setting out to actually answer these questions; they
have been answered well in the previous works, and in most
cases, the conclusions are well known. Our goal is to determine
how sensitive these conclusions are to experimental variations.
Also note that it is the conclusions we care about; in this paper,
we will see many cases when the raw data changes significantly,
but the overall conclusions of the study are the same.

In this paper, we will focus on the first two questions. These
questions speak to the very basic architecture elements within an
FPGA (lookup-tables and routing). Results for Questions 3 and 4
will be summarized, but details will not be presented.

2. EVALUATION METRICS
Before focusing on each experiment in detail, this section

describes how we will evaluate the sensitivity of an experiment on
the assumptions, tools, and techniques. Consider a company
which is considering increasing the size of the memory arrays on a
given architecture. Suppose that experiments have shown that the
larger memory array size will lead to better packing density. The
fact that the new architecture would be better is not enough – the
company also cares about how much better the new architecture
is. Redesigning the memory arrays would require a significant
engineering effort, and is only justified if the expected gains are
significant.

This example illustrates the need to examine the effects of the
experimental assumptions, tools, and techniques on not only
which architecture is deemed the best, but also the margin by
which that architecture is better than the others. Thus, in this
paper, for each experiment, we will present graphs which show
how the selection of the best architecture depends on experimental
parameters, as well as measurements indicating how the margin is
affected by the experimental parameters. We will quantify the
latter as follows:

(1) First consider experiments in which the best architecture
remains the same for different experimental assumptions, tools,
and techniques. As an example, consider the fictitious area-
optimization example in Figure 2(a). This figure shows a sweep
of an architectural parameter on the horizontal axis, with
measured area results on the vertical axis. Two experiments are
shown; the experiments differ in the experimental assumptions
that were made (perhaps one experiment uses the VPR routing
tool, and one uses a different routing tool, for example). For
several values of

LUT Size

32 4 5 6 7
3x106

4x106

5x106

6x106

7x106

8x106

Ar
ea

 (M
TE

's
) Chortle

Flowmap
(Baseline)

Cutmap

LUT Size

32 4 5 6 7
10 ns

Chortle

Flowmap
(Baseline)

Cutmap15 ns

20 ns

25 ns

30 ns

35 ns

40 ns

C
rit

ic
al

 P
at

h
D

el
ay Chortle

Flowmap
(Baseline)

Cutmap

C
rit

ic
al

 P
at

h
D

el
ay

 (s
) *

Ar
ea

 (M
TE

's
)

LUT Size

32 4 5 6 7

0.30

0.25

0.20

0.15

0.10

0.05

0

a) Area Results b) Delay Results c) Area*Delay Results

Figure 3: LUT Size Experimental Results for three different technology-mappers

the architectural parameter, area measurements are made and are
represented by dots and connected by dotted lines in the graph. In
this example, the best architecture is in the same location for each
experiment. For each experiment, we measure the percentage
difference between the area of the best result and the next-best
area result is measured (labeled X% and Y% in the diagram). The
margin is then defined as the absolute value of the difference
between X and Y. Note that a margin for the delay results can be
defined similarly.

(2) Now consider an experiments in which the best architecture is
not the same as the experimental assumptions are changed.
Figure 2(b) shows a fictitious example. Again, we have two
experiments, this time giving different conclusions. Suppose the
two best areas are at points A (for experiment 1) and B (for
experiment 2). For experiment 1, we work out the percentage
difference between the area at points A and B (this is labeled X%
in the diagram). We then do the same for experiment 2 (labeled
Y%). The margin, in this case, is the maximum of X and Y.
Again, note that a margin for the delay results can be defined
similarly.

Intuitively, this definition leads to a high margin if the
experimental conclusions are significantly affected by a change in
the experimental assumptions, and a low margin if the conclusions
are not significantly affected. The definition suffers from the fact
that the margin depends on the number of values considered for
the architectural parameter (the spacing between points in Figures
2(a) and 2(b)). Despite this, we can still draw significant
conclusions from the margin metric, and thus will use it in this
paper.

3. LOOKUP-TABLE SIZE
Most FPGA’s use lookup-tables as their basic logic units. One of
the fundamental decisions an FPGA architect must make is what
size these lookup tables should be (size is usually measured in
terms of the number of inputs to each lookup-table). In this
section, we consider an experiment to find the best lookup-table
size for an FPGA. Such experiments have been reported in [6]
and later [2]. Intuitively, a smaller lookup table consumes less
chip area and is faster, however, more lookup-tables (and the
associated routing) are required to implement a circuit. Previous
experiments have suggested that lookup-tables with 4-6 inputs
provide the best balance between these competing factors. In this

section, we seek to determine how sensitive these conclusions are
to various experimental assumptions, tools, and techniques.

In this section, we consider the following “baseline” experiment.
Twenty circuits were optimized using SIS (choosing the best of
script.rugged and script.algebraic) and technology-mapped to
LUT’s using Flowmap and Flowpack [3]. The circuits were then
placed and routed on an FPGA using VPR [11]. An FPGA with
four lookup-tables per cluster, and routing segments of length 4
was targeted. For each circuit, the minimum number of tracks per
channel was found, this number was increased by 30%, and the
routing repeated. The critical path delay and the area, in terms of
Minimum Transistor Equivalents (MTE’s), was measured. This
flow is similar to that used in many previous architecture studies
[2,10,11].

3.1 CAD Tool Effects
There are two sets of CAD tools used in the baseline experiments
described above. First, consider the role of the technology-
mapper. This tool packs logic into lookup-tables. We repeated
the above baseline experiment, but replaced Flowmap with two
other technology mappers [4][16]. Figure 3 shows the area,
critical path delay, and the product of the area and the critical path
delay as a function of LUT size, averaged (geometric average)
over twenty large circuits, for each of the technology-mappers.
The margin metric, as described in Section 2, is summarized in
Table 1 and will be discussed in Section 3.5.

As stated in the introduction, the purpose of the data in Figure 3 is
not to compare the quality of the technology-mapping tools, nor is
it to actually determine the best lookup-table size. These have
been well studied in previous work. Instead, the purpose of the
data in Figure 3 is to determine whether or not the choice of LUT-
size (the conclusions of the experiments) would be influenced by
the technology-mapper used in the experimentation. As the data
shows, the choice of LUT size is significantly affected by the
technology-mapper. If Chortle is used, the most area-efficient
LUT has 3 inputs, while if Flowmap or Cutmap is used, the most
area-efficient LUT has 5 inputs. In terms of delay, the
conclusions are also very different: if Chortle is used, a smaller
LUT is preferred, while if Flowmap or Cutmap are used, a larger
LUT is a better choice. Although Chortle has been around for
several years, and we would not expect it to perform as well as
Flowmap or Cutmap, it is still available, and

2 3 4 5 6 7
LUT Size

SIS + Flowmap
(Baseline)

(SIS + Flowmap)*2

3.0x106

3.5x106

4.0x106

4.5x106

5.0x106

5.5x106
Ar

ea
 (M

TE
's

)

Figure 4: LUT Size Experimental Results for two different

circuit optimization schemes

thus it is conceivable that we would see experimental results
gathered using this CAD tool. The above graphs suggest that
such architectural conclusions should be viewed with suspicion.

Figure 4 shows another interesting comparison. In the baseline
experiment, we optimized each circuit using SIS and then
technology-mapped the circuit with Flowmap. We repeated this
experiment, but after running Flowmap, we re-optimized the
Flowmap’ed circuits (using the same SIS scripts) and re-
technology-mapped each circuit using Flowmap (in other words,
each circuit was optimized and mapped twice). As shown in
Figure 4, this has a significant effect on the area conclusions: in
the baseline experiment, the most area-efficient LUT has 5 inputs,
while if the circuits are optimized twice, the most area-efficient
LUT has 4 inputs (and a 5-input LUT is a particularly bad
choice). Delay results are virtually the same for both experiments,
and are thus not shown. Very few published architectural results
make any more than a brief mention of how the benchmark
circuits were optimized; the results in Figure 4 show that this
optimization is important, and must be considered carefully.

A place and route tool is also an integral part of the experiment.
We repeated the experiment using three alternative place and
route algorithms (in addition to VPR run in it’s “normal” mode):

(1) VPR in “fast” mode, in which fewer placement and routing
iterations are performed, (2) VPR in “routability-driven” mode, in
which timing is not one of the primary optimization goals, and (3)
the Ultra-Fast Placer (UFP) described in [13] which places
circuits using a constructive algorithm followed by a low-
temperature anneal followed by a standard timing-driven VPR
routing algorithm. Figure 5 shows the results. The most area-
efficient LUT size is 6 if VPR in “fast mode” or the Ultra-fast
placer is used, while the most area-efficient LUT-size is 5 if
normal VPR is used, and 4 if the routability-driven router is used.
The delay results show a dramatic difference between the
routability-driven results and the results from the other place and
route tools. This illustrates the danger when using routability-
driven tools and measuring timing results.

3.2 Benchmark Circuits
The architectural conclusions are also dependent on the circuits
employed. The data presented in the previous subsection was
gathered using 20 large combinational and sequential benchmark
circuits obtained from the Microelectronics Center of North
Carolina (MCNC). We repeated the experiments, but used 8 large
benchmark circuits synthesized directly from VHDL or Verilog.
As shown in Figure 6, the synthesized circuits show the same
trends, although the area results show a significantly steeper slope
below and above the best area architecture. In many cases,
architectural decisions are made based on the product of area and
delay results; the third graph in Figure 6 shows that if the
synthesized circuits were used in experimentation, a LUT size of 4
would likely be chosen, while if the MCNC circuits were used, a
larger LUT size would appear to be a better choice. This may
indicate why commercial FPGAs typically have small (3 or 4-
input) lookup tables, even though academic studies predict that
larger lookup-tables would be better; most FPGA companies have
access to a large number of user circuits, beyond the MCNC
circuits. This highlights the need for a new suite of benchmark
circuits that better reflects the types of circuits used by today’s
FPGA customers.

20 ns

40 ns

C
rit

ic
al

 P
at

h
D

el
ay

60 ns

80 ns

100 ns

120 ns

140 ns

0

Routability-Driven

UFP

Normal VPR
(Baseline)

Fast

4x106

5x106

6x106

7x106

Ar
ea

 (M
TE

's
)

Fast

UFP

Normal VPR (Baseline)

Routability-Driven

Routability-Driven

UFP

Normal VPR (Baseline)

Fast

C
rit

ic
al

 P
at

h
D

el
ay

 (s
) *

Ar
ea

 (M
TE

's)

0.30

0.20

0.10

0

0.60

0.50

0.40

0.70

LUT Size
32 4 5 6 7

LUT Size
32 4 5 6 7

LUT Size
32 4 5 6 7

a) Area Results b) Delay Results c) Area*Delay Results

Figure 5: LUT Size Results for four different placement and routing tools

4x106

5x106

6x106

7x106

8x106

Ar
ea

 (M
TE

's
)

LUT Size
32 4 5 6 7

9x106

1x107

MCNC
(Baseline)

Synthesized

LUT Size
32 4 5 6 7

10 ns

MCNC
(Baseline)20 ns

30 ns

40 ns

C
rit

ic
al

 P
at

h
D

el
ay

50 ns

60 ns

70 ns

Synthesized

MCNC
(Baseline)C

rit
ic

al
 P

at
h

D
el

ay
 (s

) *
Ar

ea
 (M

TE
's

)

LUT Size
32 4 5 6 7

0.30

0.20

0.10

0

0.60

0.50

0.40

Synthesized

b) Delay Resultsa) Area Results c) Area*Delay Results
Figure 6: LUT Size results for two different benchmark suite

3.3 Experimental Method
Equally important as the CAD tools and the benchmark circuits is
the manner in which these tools and circuits are used in the
experimentation. We investigated two modifications to the above
baseline experimental flow. In the baseline flow, we find the
minimum number of tracks needed to route each circuit, multiply
this number by 1.3, and re-route the circuit to obtain timing
numbers. In Figure 7(a), we show the area*delay results for
several values of this multiplier. As the graph shows, this
multiplier has little effect on the architectural conclusions. Figure
7(b) shows the area delay results if we repeat the baseline
experiments, but fix the pins randomly before place and route.
Again, there is little effect on the architectural conclusions.

3.4 Orthogonal Architecture Assumptions
Intuitively, the best architecture for a logic block will depend on
the routing fabric. A routing fabric that is flexible means smaller
lookup-tables are a better choice, since cascading them to
implement larger functions is easier. On the other hand, the larger
and slower the routing fabric, the larger the best LUT size, since
more logic can be packed into each logic block. We repeated the
baseline experiment, first varying the number of accessible tracks
per logic block pin (Fc in the terminology of [11]), and then
varying the length of each wiring segment (the length of a wiring
segment is the number of logic blocks spanned by the segment).
Figure 8 shows the area results for both sets of experiments.
Clearly, the choice of the most area-efficient LUT does depend on
the value of Fc and the segment length. The baseline experiment
indicates that a LUT size of 4 or 5. On the other hand, the most
area-efficient choice is 6 if Fc is 1.0 (meaning every track in a

neighbouring channel is accessible by every logic block pin), or if
Fc is 0.3 (meaning only 30% of the tracks in a neighbouring
channel are accessible to each logic block pin). The best choice is
also very slightly affected by the choice of segment length; if the
segment length is 8, the most area-efficient LUT size is 4, while if
the segment length is 1, the most area efficient LUT size is 6.
Note that the vertical scale on these graphs is relatively small;
Section 3.5 will show that the margin (as defined in Section 2) is
small for these experiments. The delay results are not shown; the
delay conclusions show little sensitivity to either the value of Fc
or the segment length.

3.5 Summary: Quantitative Measurements
Table 1 summarizes the margin (as defined in Section 2) for each
experiment. Each experiment is categorized as “not sensitive”
(margin less than 2%), “slightly sensitive” (margin between 2%
and 5%), “sensitive” (margin between 5% and 10%), “very
sensitive” (margin between 10% and 100%), or “extremely
sensitive” (margin more than 100%) based on the area*delay
margin measurement. Clearly, the boundaries between these
categories is subjective, however, the categories do help give an
intuitive feel for how sensitive the conclusions are to the various
experimental assumptions. It is interesting that no significant
trend is seen: experiments labeled “very sensitive” appeared when
the CAD tool was varied, the benchmark circuits were varied, the
experimental techniques were varied, and the orthogonal
architecture assumptions were varied. The large number of these
“very sensitive” experiments clearly indicates that the LUT size
conclusions are quite sensitive to the architectural assumptions,
tools, and techniques.

LUT Size
32 4 5 6 7

C
rit

ic
al

 P
at

h
D

el
ay

 (s
) *

Ar
ea

 (M
TE

's
)

0.10

0.12

0.14

0.16

0.06

0.08

0.18

Floating Pins
(Baseline)

Fixed Pins

LUT Size
32 4 5 6 7

C
rit

ic
al

 P
at

h
D

el
ay

 (s
) *

Ar
ea

 (M
TE

's
)

0.10

0.12

0.14

0.16

0.06

0.08

1.0

1.3
(Baseline)

1.5

a) Channel Multiplier b) Fixed vs. Floating Pins
Figure 7: LUT Size Results for several different experimental methodology changes

LUT Size
32 4 5 6 7

Ar
ea

 (M
TE

's
)

4.5x106

5.0x106

5.5x106

6.0x106

Fc=1.0

Fc=0.6
(Baseline)

Fc=0.3

LUT Size
32 4 5 6 7

Ar
ea

 (M
TE

's
)

4.5x106

5.0x106

5.5x106

6.0x106

SegLen=1

4.0x106

6.0x106

6.0x106

SegLen=4

SegLen=8

SegLen=2

(baseline)

a) Connection Block Flexibility b) Segment Length

Figure 8: LUT Size Results for several different orthogonal architecture assumptions

Margin (compared to Baseline
Experiment)

Modifications to
Experimental Assumptions

Area Delay Area*Delay

Qualitative Comment

Use Chortle instead of Flowmap 18 % 47 % 76 % Very sensitive
Use Cutmap instead of Flowmap 1.1 % 0.57 % 4.2 % Slightly sensitive
Optimize and Technology Map Circuits Twice 7.3 % 4.4 % 8.5 % Sensitive
Use Fast Option of VPR 2.9 % 2.4 % 3.6 % Slightly sensitive
Use Ultra-Fast Placer [13] 3.3 % 3.6 % 0.08 % Not sensitive
Use Routability-Driven Place and Route 1.5 % 344 % 301 % Extremely sensitive
Used Synthesized Circuits rather than MCNC 14 % 3.8 % 11 % Very Sensitive
Measure results using minimum channel width 1.5 % 7.3 % 1.0 % Not Sensitive
Multiply minimum channel width by 1.1 0.25 % 1.3 % 5.4 % Sensitive
Multiply minimum channel width by 1.2 0.77 % 2.1 % 4.8 % Slightly Sensitive
Multiply minimum channel width by 1.4 0.39 % 1.4 % 2.1 % Slightly Sensitive
Multiply minimum channel width by 1.5 0.21 % 3.4 % 1.4 % Not Sensitive
Use Fixed, Predetermined Pin Locations 0.70 % 3.9 % 0.22 % Not Sensitive
Use Fc=0.3 rather than Fc=0.6 2.7 % 0.46 % 5.7 % Sensitive
Use Fc=0.4 rather than Fc=0.6 23 % 2.9 % 11 % Very Sensitive
Use Fc=0.5 rather than Fc=0.6 2.4 % 1.7 % 3.7 % Slightly Sensitive
Use Fc=0.7 rather than Fc=0.6 0.26 % 2.0 % 5.5 % Sensitive
Use Fc=0.8 rather than Fc=0.6 1.0 % 6.6 % 11 % Very Sensitive
Use Fc=0.9 rather than Fc=0.6 0.37 % 4.4 % 2.7 % Slightly Sensitive
Use Fc=1.0 rather than Fc=0.6 2.4 % 2.6 % 4.8 % Slightly Sensitive
Use Segments of length 1 rather than length 4 2.9 % 4.6 % 8.5 % Sensitive
Use Segments of lengt 2 rather than length 4 0.58 % 2.0 % 0.028 % Not Sensitive
Use Segments of length 8 rather than length 4 1.5 % 3.4 % 4.3 % Slightly Sensitive

Table 1: Margin Results for LUT size experiments

4. SWITCH BLOCK
Another fundamental question when designing an FPGA is how
the logic blocks should be connected. The development of a
flexible, yet fast and small routing fabric is important, and has
been well studied [7,9,11,14]. A key question is what sort of
switch block works well. A switch block is a flexible interconnect
block that lies at the intersection of every horizontal and vertical
channel [11]. The switch block can be configured to connect each
incoming track to some number (typically three) of outgoing
tracks. The topology of the switch block, ie. exactly which three
output tracks are accessible from a given input track, has a

significant effect on the routability of the chip, and hence the area
and delay of circuits implemented on the FPGA.
Four switch blocks have been proposed in previous literature: the
Disjoint switch block [12], the Wilton switch block [9], the
Universal switch block [14], and the Masud switch block [7].
The first three switch block topologies are summarized in Figure
9; a dotted line represents a potential programmable connection
between incident tracks. The Masud block uses the Disjoint
pattern for all segments that pass through a switch block and the
Wilton pattern for all segments that terminate at a switch block
see [7] for details).

a) Disjoint b) Universal c) Wilton
Figure 9: Switch Block Types

The first three switch block patterns are well compared in [11].
That work concluded that the Wilton switch block worked well
for architectures which contained only single-length segments (ie.
routing segments that span only one logic block), however, for
FPGAs with larger segments (which are the norm), the Disjoint
block works better. The Masud block was compared to the other
blocks in [7]; that paper concluded that the Masud block provided
an improvement in density without any significant effect on
speed. In this section, we seek to determine how well these
conclusions hold for a variety of architectural tools, techniques,
and assumptions.
The baseline experiment consists of placing and routing 20 large
benchmark circuits using timing-driven VPR. The circuits were
optimized as in Section 3.0. For each pattern and for each circuit,
the minimum channel width required to route the circuit was
found. For each circuit, the minimum channel width was then
increased by 30%, and the routing repeated. Detailed area and
delay models were used to evaluate each implementation. A
routing fabric consisting of segments of length four was assumed,
and it was assumed that 50% of the routing switches contain re-
powering buffers, and 50% are simply pass transistors (this was
shown to work well in [11]). Fc, the proportion of the tracks in an
adjacent channel to which each logic block pin can be connected
was set to 60%. This is the same methodology used in [11] and
[7].
Figure 10(a) shows the area*delay results for four different
placement and routing tools (the same tools used in Section 3.1).
As the data shows, the choice of the placement and routing tool
has little impact on the conclusions of the experiment, with one
notable exception. If the routability-driven placement and routing
tool is used, the area*delay of the Disjoint switch block is well
over twice that of any of the other switch blocks, a behaviour not
seen when using any of the other tools. As explained in [11], the
pattern of the disjoint block is such the routing fabric is divided
into “domains”; each connection between logic blocks can only
use tracks within a single domain. As explained earlier, we
assumed an architecture with 50% pass transistors and 50% re-
powering buffers. The architecture generator in VPR is such that
all switches within a given domain are either all pass transistors or
all re-powering buffers. The routability-driven router does not
understand the difference between pass transistors and re-
powering buffers, and hence may choose to use a domain
consisting of only pass transistors for a long wire, leading to very
slow circuits. The other three switch blocks do not divide the
routing fabric into segments, however, so this behaviour is not
seen (in those cases, there will be some pass-transistors and some
re-powering buffers on any long path between logic blocks). The

other tools don’t show this kind of behaviour, even with the
Disjoint block is used, since they are intelligent enough to not use
routing domains consisting only of pass transistors for long
connections. We repeated the experiment, but for different mixes
of pass transistors and re-powering buffers, and found that the
behaviour illustrated in Figure 10(a) disappears. This is an
excellent example of the main thesis of this paper: small changes
in the experimental tools can significantly effect the conclusions
of an architecture study.
Another interesting observation can be made by comparing the
results of the baseline experiment in Figure 10(a) to the
conclusions in [7]. Although it is difficult to deduce from the
graph, the baseline experiment shows that the Disjoint switch
block is slightly better than the Masud block, while [7] concluded
the opposite. The difference is, again, due to the assumption
regarding the mix of pass-transistors and buffers. In [7], it was
assumed all segments are buffered. Figure 10(b) shows the delay
results if we repeat our baseline experiment (a) when all switches
are unbuffered and (b) all switches are buffered. The rightmost set
of bars (the buffered results) matches those in [7]. The fact that
the other two sets of bars lead to different conclusions strengthens
our position that the experimental results in this particular
experiment can be affected by small changes in the experimental
assumptions – in this case, small changes in the assumptions
regarding buffered/unbuffered switches.
We also investigated the impact of using different experimental
methodologies (as in Section 3.2) and different orthogonal
assumptions (including values of Fc) but found that the
conclusions were not strongly affected by these results. The
graphs are not shown here, but are summarized in Table 2 which
shows the margin for the experimental variations that we
investigated. Again, each experimental variation was labeled as
“not sensitive”, “slightly sensitive”, “sensitive”, “very sensitive”
and “extremely sensitive”, depending on the area*delay margin.
Note that most changes were deemed “not sensitive” or “slightly
sensitive”. The only entry labeled “extremely sensitive” was
when the routability-driven place and route tool is used instead of
the timing-driven VPR, as was explained above.

5. CLUSTER SIZE
In most FPGA’s, lookup-tables are grouped into clusters (called
CLB’s in the Xilinx parts and LAB’s in Altera parts).
Connections between LUT’s within a cluster are significantly
faster than connections between clusters. Intuitively, the larger
the cluster, the fewer cluster-to-cluster connections required,
leading to a more area-efficient and faster architecture. On the

0

0.1

0.2

0.3

0.4

0.5

VPR
(Baseline)

UFP Routeability-
Driven

Fast

C
rit

ic
al

 P
at

h
D

el
ay

 (s
) *

Ar
ea

 (M
TE

's
)

Disjoint
Wilton
Universal
Masud

0
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Unbuffered Buffered

C
rit

ic
al

 P
at

h
D

el
ay

 (s
) *

Ar
ea

 (M
TE

's
)

50% Buffered
(Baseline)

Disjoint
Wilton
Universal
Masud

a) Place and Route Tool b) Buffered Assumptions
Figure 10: Switch Block Results

Margin (compared to Baseline) Modifications to
Experimental Assumptions Area Delay Area*Delay

Qualitative Comment

Use Fast Option of VPR 9.3 % 3.4 % 6.8 % Sensitive
Use Ultra-Fast Placer [13] 1.5 % 13 % 1.2 % Not Sensitive
Use Routability-Driven Packing, Place & Route 1.7 % 330 % 320 % Extremely Sensitive
Used Synthesized Circuits rather than MCNC 1.0 % 7.9 % 7.5 % Sensitive
Measure results using minimum channel width 0.21 % 16 % 2.0 % Slightly Sensitive
Multiply minimum channel width by 1.5 0.23 % 2.4 % 2.2 % Slightly Sensitive
Implement on a double-sized FPGA 0.03 % 2.5 % 7.5 % Sensitive
Use Fc=0.3 rather than Fc=0.6 1.9 % 1.2 % 1.8 % Not Sensitive
Use Fc=0.5 rather than Fc=0.6 0.5 % 2.3 % 1.8 % Not Sensitive
Use Fc=0.7 rather than Fc=0.6 1.0 % 1.2 % 1.1 % Not Sensitive
Use Fc=0.9 rather than Fc=0.6 1.0 % 3.0 % 1.0 % Not Sensitive
Use Segments of length 1 rather than length 4 6.3 % 18 % 33 % Very Sensitive
Use Segments of length 2 rather than length 4 2.2 % 4.6 % 1.2 % Not Sensitive
Use Segments of length 8 rather than length 4 0.64 % 4.5 % 3.8 % Slightly Sensitive
Assume all switches buffered 4.6 % 5.3 % 6.8 % Sensitive
Assume all switches unbuffered 9.6 % 3.2 % 4.5 % Slightly Sensitive

Table 2: Margin Results for Switch Block Experiments

other hand, if the cluster is too large, the local connections within
a cluster will become slow. Previous work has found that a good
choice for the cluster size is between 4 and 10 [2]. In this work,
we revisited this conclusion to find out how well it holds for a
range of experimental assumptions.
We considered the following “baseline” experiment. Twenty
circuits were optimized using SIS (choosing the best of
script.rugged and script.algebraic) and technology-mapped to 4-
input LUT’s using Flowmap [3]. The circuits were then packed
into clusters using T-VPACK and placed and routed on an FPGA
using VPR [11]. An FPGA with routing segments of length 4 was
targeted. The Disjoint switch block was assumed, and it was
assumed that each logic block pin can connect to 60% of the
tracks in an adjacent channel (Fc=0.6 using the terminology of
[11]). For each circuit, the minimum number of tracks per channel
was found, this number was increased by 30%, and the routing
repeated. The critical path delay and the area, in terms of
Minimum Transistor Equivalents (MTE’s) [11], was measured,
for several values of the cluster size. The number of inputs to
each cluster was scaled up with the cluster size. From this data,
the cluster sizes that resulted in the best area and delay
implementations were deemed “the best”.

Table 3 summarizes our results. As before, each experiment is
categorized as “not sensitive” (margin less than 2%), “slightly
sensitive” (margin between 2% and 5%), “sensitive” (margin
between 5% and 10%), and “very sensitive” (margin more than
10%). Note that, in all but two cases, the experiments are
classified as “not sensitive” or “slightly sensitive”. This is
contrast to the LUT size results in Section 3, in which
significantly more experiments are classified as “very sensitive”
(or even “extremely sensitive”). Thus, we conclude that, overall,
the cluster size experiments are not nearly as sensitive to the
experimental tools, techniques, and assumptions, compared to the
LUT size experiments.

6. MEMORY ARRAY SIZE
On-chip storage has become an essential part of all modern
FPGA’s. Typically, current FPGA’s contain large memory arrays
which provide a dense implementation of storage (compared to
implementing storage in the flip-flops within each logic element).
However, the use of embedded memory arrays require the FPGA
vendor to partition the chip area into memory regions and logic
regions when the chip is designed. Since circuits have widely-
varying memory requirements, this “average case” partitioning
may result in poor device utilizations for logic-

Margin (compared to Baseline
Experiment)

Modifications to
Experimental Assumptions

Area Delay Area*Delay

Qualitative Comment

Use Chortle instead of Flowmap 2.6 % 2.3 % 1.5 % Not Sensitive
Use Cutmap instead of Flowmap 6.5 % 3.4 % 2.6 % Slightly Sensitive
Use Fast Option of VPR 9.5 % 3.7 % 1.5 % Not Sensitive
Use Ultra-Fast Placer [13] 2.6 % 0.9 % 3.1 % Slightly Sensitive
Use Routability-Driven Packing, Place & Route 2.6 % 2.8 % 9.8 % Sensitive
Used Synthesized Circuits rather than MCNC 4.6 % 4.1 % 0.21 % Not Sensitive
Measure results using minimum channel width 0.0036 % 2.7 % 3.7 % Slightly Sensitive
Multiply minimum channel width by 1.5 0.30 % 1.9 % 2.2 % Slightly Sensitive
Use Fixed, Predetermined Pin Locations 2.6 % 0.10 % 4.4 % Slightly Sensitive
Use Fc=0.3 rather than Fc=0.6 4.9 % 4.6 % 5 % Slightly Sensitive
Use Fc=0.4 rather than Fc=0.6 2.4 % 4.6 % 1.4 % Not Sensitive
Use Fc=0.5 rather than Fc=0.6 0.69 % 4.6 % 1.7 % Not Sensitive
Use Fc=0.7 rather than Fc=0.6 2.4 % 4.6 % 0.31 % Not Sensitive
Use Fc=0.8 rather than Fc=0.6 4.4 % 3.4 % 1.7 % Not Sensitive
Use Fc=0.9 rather than Fc=0.6 6.8 % 4.6 % 2.6 % Slightly Sensitive
Use Fc=1.0 rather than Fc=0.6 5.7 % 4.6 % 1.5 % Not Sensitive
Use Segments of length 1 rather than length 4 0.92 % 5.8 % 19 % Very Sensitive
Use Segments of length 2 rather than length 4 0.48 % 2.1 % 3.6 % Slightly Sensitive
Use Segments of length 8 rather than length 4 1.8 % 1.6 % 2.7 % Slightly Sensitive

Table 3: Results for Cluster Size Experiments

Modifications to
Experimental Assumptions

Margin (compared to
Baseline Experiment)

Qualitative Comment

Use SMAP-d rather than SMAP 0.16 % Not Sensitive
Use EMBPACK rather than SMAP 53 % Very Sensitive
Use Blocking Factor 2 rather than 1 0.65 % Not Sensitive
Use Blocking Factor 4 rather than 2 2.8 % Slightly Sensitive
Use Blocking Factor 8 rather than 4 2.8 % Slightly Sensitive
Use Chortle instead of Flowmap 17 % Very Sensitive
Optimize and Technology Map Circuits Twice 1.4 % Not Sensitive
Assume FPGA has 3-LUTs rather than 4-LUTs 0.81 % Not Sensitive
Assume FPGA has 5-LUTs rather than 4-LUTs 1.1 % Not Sensitive

Table 4: Results for Memory Size Experiments
intensive or memory-intensive circuits. In particular, if a circuit
does not use all the available memory arrays to implement
storage, the chip area devoted to the unused arrays is wasted.
This chip area need not be wasted, however, if the unused
memory arrays are configured as ROM’s and used to implement
logic. Two tools have been published that map logic into unused
memory arrays: SMAP [8] and EMBPACK [15]. Regardless of
the tool used, the architecture of each memory array (in particular,
the number of bits in each array) will have a significant impact on
the ability of the tools to pack logic into the memories. If a
memory array is too large, the mapping tool may be unable to
effectively fill the memory array with logic. On the other hand, if
a memory array is too small, the area overhead due to the
decoders, sense amplifiers, etc., becomes significant.
In [10], a study was presented which seeks to find the best size of
a memory array used to implement logic. That paper concluded
that the best memory array size was 2Kbits. In this work, we
revisited this experiment and investigate how sensitive that
conclusion is to experimental techniques, tools, and assumptions.

Table 4 summarizes our results. As before, each experimental
modification is classified according to how sensitive the
conclusions are on that experimental modification. Overall, two
modifications were shown to be “Very Sensitive”: the use of
EMBPACK rather than SMAP, and the use of Chortle rather than
Flowmap. Thus, we conclude that if this experiment is used to
choose a memory array size for a commercial chip, it is important
that the CAD tool used in this experiment closely match the CAD
tool that will be used in the final production software.

7. CONCLUSIONS
The main message of this paper is this: experimental
assumptions, tools, and techniques can have a significant impact
on the conclusion of FPGA architectural experiments, and need to
be considered carefully when conclusions are presented. We have
shown, through several examples in this paper that some of the
“traditional”, well known architectural conclusions can be
significantly changed, just by changing some of the assumptions,
tools, and techniques used in the experimentation. A study that

presents an optimum architecture is not enough; there must be
some notion of how sensitive the results are.
In this paper, we have illustrated this using four well-known
architecture results. First, we examined how sensitive the lookup-
table size is to various experimental variations. Overall, we found
that the optimum LUT-size did depend on several factors: in
particular, we found that the CAD tools employed (both the
technology-mapper and the placement and routing tool) could
significantly skew the conclusions. The best LUT size could
range from three to seven, depending on the CAD tools used. It
was also determined that conclusions can be influenced by the
benchmark circuits used and the architecture of the FPGA’s
routing fabric.
We also examined how the choice of switch block could be
influenced by the experimental assumptions, tools, and
techniques. Overall, the conclusions of this experiment held up
better than the LUT size conclusions as various experimental
assumptions were changed, however, we did see an example of
how the experimental results could be severely impacted by using
a routability-driven tool rather than a timing-driven tool.
Finally, we investigated how the choice of the optimum cluster
size and memory array size is impacted by experimental
assumptions. The cluster size experiment was deemed to be not
as sensitive as the others, however the memory size experiment
was found to be very sensitive to the packing tools employed.

8. ACKNOWLEDGEMENTS
Funding was provided by the Natural Sciences and Engineering
Research Council of Canada, Altera, and Micronet. The authors
wish to thank Jason Cong for providing the RASP package, Yaska
Sankar for providing the ultra-fast placement tool, Bob Francis for
providing Chortle, and Vaughn Betz and Jonathan Rose for
providing VPR.

REFERENCES

[1] A. Marquardt, V. Betz, and J. Rose, Speed and Area Trade-
offs in Cluster-Based FPGA Architectures, IEEE Transactions on
VLSI Systems, vol. 8, pp. 84-93, Feb, 2000.

[2] E. Ahmed and J. Rose, "The Effect of LUT and Cluster Size
on Deep-Submicron FPGA Performance and Density," in
ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Feb. 2000, pp. 3-12.
[3] J. Cong and Y. Ding, Flowmap: An Optimal Technology
Mapping Algorithm for Delay Optimization in Lookup-Table
Based FPGA Designs, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 13, pp. 1-12, Jan,
1994.

[4] J. Cong and Y. Hwang, "Simultaneous Depth and Area
Minimization in LUT-Based FPGA Mapping," Proceedings of
ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 1995, pp. 68-74.

[5] J. Rose, R.J. Francis, D. Lewis, and P. Chow, Architecture
of Field-Programmable Gate Arrays: The Effect of Logic Block
Functionality on Area Efficiency IEEE Journal of Solid-State
Circuits, vol. 25, pp. 1217-1225, Oct, 1990.

[6] J. Rose, R.J. Francis, P. Chow, and D. Lewis, "The Effect of
Logic Block Complexity on Area of Programmable Gate Arrays,"
IEEE Custom Integrated Circuits Conference, May, 1989, pp.
5.3.1-5.3.5.

[7] M.I. Masud and S.J.E. Wilton, "A New Switch Block for
Segmented FPGAs," International Workshop on Field
Programmable Logic and Applications, August 1999.

[8] S.J.E. Wilton, Heterogeneous Technology Mapping for Area
Reduction in FPGAs with Embedded Memory Arrays IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 19, pp. 56-68, Jan, 2000.

[9] S.J.E. Wilton, Architecture and Algorithms for Field-
Programmable Gate Arrays with Embedded Memory, PhD Thesis,
University of Toronto, 1997.

[10] S.J.E. Wilton, "Implementing Logic in FPGA Embedded
Memory Arrays: Architectural Implications," IEEE Custom
Integrated Circuits Conference, May 1998.

[11] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD
for Deep-Submicron FPGAs, Kluwer Academic Publishers,
1999.

[12] Xilinx, Inc. XC4000E and XC4000X Field-Programmable
Gate Arrays Datasheet, v. 1.6. 1999.

[13] Y. Sankar and J. Rose, "Trading Quality for Compile Time:
Ultra-Fast Placement for FPGAs," ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Feb. 2000, pp.
157-166.

[14] Y. W. Chang , D. Wong , and C. Wong, Universal Switch
Modules for FPGA Design ACM Transactions on Design
Automation of Electronic Systems, vol. 1, pp. 80-101, Jan, 1996.

[15] J. Cong and S. Xu, "Technology Mapping for FPGAs with
Embedded Memory Blocks," Proceedings of ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays,
Feb 1998, pp. 179-187.

[16] R.J Francis, J. Rose, Z. Vranesic, "Technology Mapping
Lookup Table-Based FPGAs for Performance" Proc. 1991 IEEE
International Conference on Computer-Aided Design (ICCAD),
November 1991, pp. 568-571.

