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ABSTRACT 
Recent years have seen a tremendous increase in the capacities 
and capabilities of Field-Programmable Gate Arrays (FPGA’s).  
Much of this dramatic improvement has been the result of changes 
to the FPGAs’ internal architectures.  New architectural proposals 
are routinely generated in both academia and industry.  For 
FPGA’s to continue to grow, it is important that these new 
architectural ideas are fairly and accurately evaluated, so that 
those worthy ideas can be included in future chips. Typically, this 
evaluation is done using experimentation.  However, the use of 
experimentation is dangerous, since it requires making 
assumptions regarding the tools and architecture of the device in 
question.  If these assumptions are not accurate, the conclusions 
from the experiments may not be meaningful.  In this paper, we 
investigate the sensitivity of FPGA architectural conclusions to 
experimental variations.  To make our study concrete, we evaluate 
the sensitivity of four previously published and well-known 
FPGA architectural results: lookup-table size, switch block 
topology, cluster size, and memory size.  It is shown that these 
experiments are significantly affected by the assumptions, tools, 
and techniques used in the experiments. 

1. INTRODUCTION 
Since their introduction in 1985, Field-Programmable Gate Arrays 
(FPGA’s) have seen a phenomenal growth in their ability to 
implement large complex digital circuits.  Originally used 
primarily for prototyping and small glue logic replacement, 
FPGA’s are now used to implement entire systems containing 
memory, embedded processors, and other embedded functionality.  
A 1994 databook quotes a maximum gate count of 25,000; in July 
2001, a part that can implement circuits containing six million 
system gates was announced.  The achievable clock frequency has 
increased over the years as well. 

Much of this dramatic improvement has been the result of 
architectural improvements.  There have been numerous academic 
and industrial investigations including logic block studies 
[1,2,5,6], routing architecture studies [7,11,14], and 
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Figure 1: Experimental Framework 

memory block studies [9,10].  In general, each of these studies 
considers one or a handful of architectural parameters in isolation, 
and finds “good” values for those parameters using 
experimentation.  During the experiments, a handful of realistic 
benchmark circuits are typically fed through a representative CAD 
tool.   Detailed models are then used to measure the area or delay 
of the circuit, and, based on these results, one of the architectures 
is deemed “the best”.   This is summarized in Figure 1.  

Relying on the results of this sort of experimentation is dangerous.  
No matter how careful a researcher is, assumptions and 
approximations must be made.  In some cases, these assumptions 
and approximations may affect the results of the experiments, and 
possibly even change the conclusions of the experiments.  Some 
of these assumptions can be categorized as follows:  

CAD Tools:  Clearly, the CAD tools employed for the 
architectural study will have a significant impact on the results.  
This includes not only placement and routing tools, but also the 
optimization and technology-mapping algorithms.  In some cases, 
companies will run experiments using a pre-release experimental 
tool flow.  The intention is that the final release software will be 
similar, but there will likely be some changes, and these changes 
may affect the architectural results.  In academic studies, 
representative tools, such as Flowmap [3] and VPR [11] are often 
used to try to make the results as vendor-neutral as possible.  Yet, 
these tools could lead to results that would not be seen had 
commercial tools been employed. 

CAD Tool Settings:  Most tools have numerous settings that can 
be used to guide the optimization algorithms.  The documentation 
that accompanies VPR and T-VPACK has over six pages 
describing the run-time switches available; many of these switches 
will significantly affect the results of the optimization, and 
perhaps the conclusions of architectural experiments.  
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Experimental Techniques:  There are several ways to use a CAD 
tool to evaluate an architecture.  As an example, many researchers 
allow the number of tracks in each FPGA channel to “float” [11].  
That is, they find the minimum number of tracks needed in each 
channel to successfully route a circuit, and use an FPGA with 
exactly that number (or a fixed multiple of that number) in 
comparisons.  On the other hand, many commercial studies (in 
which the researchers have a fixed device in mind) assume a fixed 
number of tracks per channel.  Each of these techniques may lead 
to different results, and perhaps different conclusions.  As another 
example, many experiments are performed assuming the I/O 
connections to each benchmark circuit can be assigned to any I/O 
pin; others assume the pin assignment is predetermined and fixed.  

Orthogonal Architecture Assumptions:  When investigating the 
effects of one architectural parameter, it is usually necessary to fix 
several other parameters.  As an example, when performing logic 
block studies, the routing fabric architecture is often fixed.  Yet, it 
is conceivable that later changes in the routing fabric may 
influence the optimum logic block architecture.   

In this work, we examine the sensitivity of FPGA architectural 
research to experimental variations.  In order to make our study 
concrete, we focus on four previously-published fundamental 
FPGA architectural experiments: 

 1. What is the optimum lookup-table (LUT) size?  [1,2,5] 
 2. What sort of switch block works well?  [7,9,11] 
 3. How many lookup-tables should be included in a logic block  
     or cluster?  [2] 
 4. How large should the memory arrays in an FPGA be?  [10] 
 

For each of these experiments, we investigate how sensitive the 
conclusions are to experimental variations.  It is important to note 
that we are not setting out to actually answer these questions; they 
have been answered well in the previous works, and in most 
cases, the conclusions are well known.  Our goal is to determine 
how sensitive these conclusions are to experimental variations.  
Also  note that it is the conclusions we care about; in this paper, 
we will see many cases when the raw data changes significantly, 
but the overall conclusions of the study are the same.   

In this paper, we will focus on the first two questions.  These 
questions speak to the very basic architecture elements within an 
FPGA (lookup-tables and routing).  Results for Questions 3 and 4 
will be summarized, but details will not be presented. 

2. EVALUATION METRICS 
Before focusing on each experiment in detail, this section 

describes how we will evaluate the sensitivity of an experiment on 
the assumptions, tools, and techniques.  Consider a company 
which is considering increasing the size of the memory arrays on a 
given architecture.  Suppose that experiments have shown that the 
larger memory array size will lead to better packing density.  The 
fact that the new architecture would be better is not enough – the 
company also cares about how much better the new architecture 
is.  Redesigning the memory arrays would require a significant 
engineering effort, and is only justified if the expected gains are 
significant.   

This example illustrates the need to examine the effects of the 
experimental assumptions, tools, and techniques on not only 
which architecture is deemed the best, but also the margin by 
which that architecture is better than the others.  Thus, in this 
paper, for each experiment, we will present graphs which show 
how the selection of the best architecture depends on experimental 
parameters, as well as measurements indicating how the margin is 
affected by the experimental parameters.  We will quantify the 
latter as follows: 

(1) First consider experiments in which the best architecture 
remains the same for different experimental assumptions, tools, 
and techniques.  As an example, consider the fictitious area-
optimization example in Figure 2(a).  This figure shows a sweep 
of an architectural parameter on the horizontal axis, with 
measured area results on the vertical axis.  Two experiments are 
shown; the experiments differ in the experimental assumptions 
that were made (perhaps one experiment uses the VPR routing 
tool, and one uses a different routing tool, for example).  For 
several values of  
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Figure 3: LUT Size Experimental Results for three different technology-mappers

the architectural parameter, area measurements are made and are 
represented by dots and connected by dotted lines in the graph.  In 
this example, the best architecture is in the same location for each 
experiment.  For each experiment, we measure the percentage 
difference between the area of the best result and the next-best 
area result is measured (labeled X% and Y% in the diagram).  The 
margin is then defined as the absolute value of the difference 
between X and Y.  Note that a margin for the delay results can be 
defined similarly. 

(2)  Now consider an experiments in which the best architecture is 
not the same as the experimental assumptions are changed.  
Figure 2(b) shows a fictitious example.  Again, we have two 
experiments, this time giving different conclusions.  Suppose the 
two best areas are at points A (for experiment 1) and B (for 
experiment 2).  For experiment 1, we work out the percentage 
difference between the area at points A and B (this is labeled X% 
in the diagram).  We then do the same for experiment 2 (labeled 
Y%).  The margin, in this case, is the maximum of X and Y.   
Again, note that a margin for the delay results can be defined 
similarly. 

Intuitively, this definition leads to a high margin if the 
experimental conclusions are significantly affected by a change in 
the experimental assumptions, and a low margin if the conclusions 
are not significantly affected.  The definition suffers from the fact 
that the margin depends on the number of values considered for 
the architectural parameter (the spacing between points in Figures 
2(a) and 2(b)).    Despite this, we can still draw significant 
conclusions from the margin metric, and thus will use it in this 
paper. 

3. LOOKUP-TABLE SIZE 
Most FPGA’s use lookup-tables as their basic logic units.  One of 
the fundamental decisions an FPGA architect must make is what 
size these lookup tables should be (size is usually measured in 
terms of the number of inputs to each lookup-table).  In this 
section, we consider an experiment to find the best lookup-table 
size for an FPGA.  Such experiments have been reported in [6] 
and later [2].  Intuitively, a smaller lookup table consumes less 
chip area and is faster, however, more lookup-tables (and the 
associated routing) are required to implement a circuit.  Previous 
experiments have suggested that lookup-tables with 4-6 inputs 
provide the best balance between these competing factors.  In this 

section, we seek to determine how sensitive these conclusions are 
to various experimental assumptions, tools, and techniques. 

In this section, we consider the following “baseline” experiment.  
Twenty circuits were optimized using SIS (choosing the best of 
script.rugged and script.algebraic) and technology-mapped to 
LUT’s using Flowmap and Flowpack [3].  The circuits were then 
placed and routed on an FPGA using VPR [11].  An FPGA with 
four lookup-tables per cluster, and routing segments of length 4 
was targeted.  For each circuit, the minimum number of tracks per 
channel was found, this number was increased by 30%, and the 
routing repeated.  The critical path delay and the area, in terms of 
Minimum Transistor Equivalents (MTE’s), was measured.  This 
flow is similar to that used in many previous architecture studies 
[2,10,11]. 

3.1 CAD Tool Effects 
There are two sets of CAD tools used in the baseline experiments 
described above.  First, consider the role of the technology-
mapper.  This tool packs logic into lookup-tables.  We repeated 
the above baseline experiment, but replaced Flowmap with two 
other technology mappers [4][16].  Figure 3 shows the area, 
critical path delay, and the product of the area and the critical path 
delay as a function of LUT size, averaged (geometric average) 
over twenty large circuits, for each of the technology-mappers.  
The margin metric, as described in Section 2, is summarized in 
Table 1 and will be discussed in Section 3.5. 

As stated in the introduction, the purpose of the data in Figure 3 is 
not to compare the quality of the technology-mapping tools, nor is 
it to actually determine the best lookup-table size.  These have 
been well studied in previous work.  Instead, the purpose of the 
data in Figure 3 is to determine whether or not the choice of LUT-
size (the conclusions of the experiments) would be influenced by 
the technology-mapper used in the experimentation.  As the data 
shows, the choice of LUT size is significantly affected by the 
technology-mapper. If Chortle is used, the most area-efficient 
LUT has 3 inputs, while if Flowmap or Cutmap is used, the most 
area-efficient LUT has 5 inputs.  In terms of delay, the 
conclusions are also very different: if Chortle is used, a smaller 
LUT is preferred, while if Flowmap or Cutmap are used, a larger 
LUT is a better choice.  Although Chortle has been around for 
several years, and we would not expect it to perform as well as 
Flowmap or Cutmap, it is still available, and 
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Figure 4: LUT Size Experimental Results for two different 

circuit optimization schemes 

thus it is conceivable that we would see experimental results 
gathered using this CAD tool.  The above graphs suggest that 
such architectural conclusions should be viewed with suspicion. 

Figure 4 shows another interesting comparison.  In the baseline 
experiment, we optimized each circuit using SIS and then 
technology-mapped the circuit with Flowmap.  We repeated this 
experiment, but after running Flowmap, we re-optimized the 
Flowmap’ed circuits (using the same SIS scripts) and re-
technology-mapped each circuit using Flowmap (in other words, 
each circuit was optimized and mapped twice).  As shown in 
Figure 4, this has a significant effect on the area conclusions: in 
the baseline experiment, the most area-efficient LUT has 5 inputs, 
while if the circuits are optimized twice, the most area-efficient 
LUT has 4 inputs (and a 5-input LUT is a particularly bad 
choice).  Delay results are virtually the same for both experiments, 
and are thus not shown.  Very few published architectural results 
make any more than a brief mention of how the benchmark 
circuits were optimized; the results in Figure 4 show that this 
optimization is important, and must be considered carefully. 

A place and route tool is also an integral part of the experiment.  
We repeated the experiment using three alternative place and 
route algorithms (in addition to VPR run in it’s “normal” mode): 

(1) VPR in “fast” mode, in which fewer placement and routing 
iterations are performed, (2) VPR in “routability-driven” mode, in 
which timing is not one of the primary optimization goals, and (3) 
the Ultra-Fast Placer (UFP) described in [13] which places 
circuits using a constructive algorithm followed by a low-
temperature anneal followed by a standard timing-driven VPR 
routing algorithm.  Figure 5 shows the results.  The most area-
efficient LUT size is 6 if VPR in “fast mode” or the Ultra-fast 
placer is used, while the most area-efficient LUT-size is 5 if 
normal VPR is used, and 4 if the routability-driven router is used.  
The delay results show a dramatic difference between the 
routability-driven results and the results from the other place and 
route tools.  This illustrates the danger when using routability-
driven tools and measuring timing results. 

3.2 Benchmark Circuits 
The architectural conclusions are also dependent on the circuits 
employed.  The data presented in the previous subsection was 
gathered using 20 large combinational and sequential benchmark 
circuits obtained from the Microelectronics Center of North 
Carolina (MCNC).  We repeated the experiments, but used 8 large 
benchmark circuits synthesized directly from VHDL or Verilog.  
As shown in Figure 6, the synthesized circuits show the same 
trends, although the area results show a significantly steeper slope 
below and above the best area architecture.  In many cases, 
architectural decisions are made based on the product of area and 
delay results; the third graph in Figure 6 shows that if the 
synthesized circuits were used in experimentation, a LUT size of 4 
would likely be chosen, while if the MCNC circuits were used, a 
larger LUT size would appear to be a better choice.  This may 
indicate why commercial FPGAs typically have small (3 or 4-
input) lookup tables, even though academic studies predict that 
larger lookup-tables would be better; most FPGA companies have 
access to a large number of user circuits, beyond the MCNC 
circuits. This highlights the need for a new suite of benchmark 
circuits that better reflects the types of circuits used by today’s 
FPGA customers. 
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Figure 5: LUT Size Results for four different placement and routing tools
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3.3 Experimental Method 
Equally important as the CAD tools and the benchmark circuits is 
the manner in which these tools and circuits are used in the 
experimentation.  We investigated two modifications to the above 
baseline experimental flow.  In the baseline flow, we find the 
minimum number of tracks needed to route each circuit, multiply 
this number by 1.3, and re-route the circuit to obtain timing 
numbers.  In Figure 7(a), we show the area*delay results for 
several values of this multiplier.  As the graph shows, this 
multiplier has little effect on the architectural conclusions.  Figure 
7(b) shows the area delay results if we repeat the baseline 
experiments, but fix the pins randomly before place and route.  
Again, there is little effect on the architectural conclusions. 

3.4  Orthogonal Architecture Assumptions 
Intuitively, the best architecture for a logic block will depend on 
the routing fabric.  A routing fabric that is flexible means smaller 
lookup-tables are a better choice, since cascading them to 
implement larger functions is easier.  On the other hand, the larger 
and slower the routing fabric, the larger the best LUT size, since 
more logic can be packed into each logic block.  We repeated the 
baseline experiment, first varying the number of accessible tracks 
per logic block pin (Fc in the terminology of [11]), and then 
varying the length of each wiring segment (the length of a wiring 
segment is the number of logic blocks spanned by the segment).  
Figure 8 shows the area results for both sets of experiments.  
Clearly, the choice of the most area-efficient LUT does depend on 
the value of Fc and the segment length.  The baseline experiment 
indicates that a LUT size of 4 or 5.  On the other hand,  the most 
area-efficient choice is 6 if Fc is 1.0 (meaning every track in a 

neighbouring channel is accessible by every logic block pin), or if 
Fc is 0.3 (meaning only 30% of the tracks in a neighbouring 
channel are accessible to each logic block pin).  The best choice is 
also very slightly affected by the choice of segment length; if the 
segment length is 8, the most area-efficient LUT size is 4, while if 
the segment length is 1, the most area efficient LUT size is 6.   
Note that the vertical scale on these graphs is relatively small; 
Section 3.5 will show that the margin (as defined in Section 2) is 
small for these experiments.  The delay results are not shown;  the 
delay conclusions show little sensitivity to either the value of Fc 
or the segment length. 

3.5  Summary:  Quantitative Measurements 
Table 1 summarizes the margin (as defined in Section 2) for each 
experiment.  Each experiment is categorized as “not sensitive” 
(margin less than 2%), “slightly sensitive” (margin between 2% 
and 5%), “sensitive” (margin between 5% and 10%), “very 
sensitive” (margin between 10% and 100%), or “extremely 
sensitive” (margin more than 100%) based on the area*delay 
margin measurement.  Clearly, the boundaries between these 
categories is subjective, however, the categories do help give an 
intuitive feel for how sensitive the conclusions are to the various 
experimental assumptions.  It is interesting that no significant 
trend is seen: experiments labeled “very sensitive” appeared when 
the CAD tool was varied, the benchmark circuits were varied, the 
experimental techniques were varied, and the orthogonal 
architecture assumptions were varied.  The large number of these 
“very sensitive” experiments clearly indicates that the LUT size 
conclusions are quite sensitive to the architectural assumptions, 
tools, and techniques.  
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Figure 8: LUT Size Results for several different orthogonal architecture assumptions
 

Margin (compared to Baseline 
Experiment) 

Modifications to 
Experimental Assumptions 

Area Delay Area*Delay 

Qualitative Comment 

Use Chortle instead of Flowmap 18 % 47 % 76 % Very sensitive 
Use Cutmap instead of Flowmap 1.1 % 0.57 % 4.2 % Slightly sensitive 
Optimize and Technology Map Circuits Twice 7.3 % 4.4 % 8.5 % Sensitive 
Use Fast Option of VPR 2.9 % 2.4 % 3.6 % Slightly sensitive 
Use Ultra-Fast Placer [13] 3.3 % 3.6 % 0.08 % Not sensitive  
Use Routability-Driven Place and Route 1.5 % 344 % 301 % Extremely sensitive 
Used Synthesized Circuits rather than MCNC 14 % 3.8 % 11 % Very Sensitive 
Measure results using minimum channel width 1.5 % 7.3 % 1.0 % Not Sensitive 
Multiply minimum channel width by 1.1 0.25 % 1.3 % 5.4 % Sensitive 
Multiply minimum channel width by 1.2 0.77 % 2.1 % 4.8 % Slightly Sensitive 
Multiply minimum channel width by 1.4 0.39 % 1.4 % 2.1 % Slightly Sensitive 
Multiply minimum channel width by 1.5 0.21 % 3.4 % 1.4 % Not Sensitive 
Use Fixed, Predetermined Pin Locations 0.70 % 3.9 % 0.22 % Not Sensitive 
Use Fc=0.3 rather than Fc=0.6 2.7 % 0.46 % 5.7 % Sensitive 
Use Fc=0.4 rather than Fc=0.6 23 % 2.9 % 11 % Very Sensitive 
Use Fc=0.5 rather than Fc=0.6 2.4 % 1.7 % 3.7 % Slightly Sensitive 
Use Fc=0.7 rather than Fc=0.6 0.26 % 2.0 % 5.5 % Sensitive 
Use Fc=0.8 rather than Fc=0.6 1.0 % 6.6 % 11 % Very Sensitive 
Use Fc=0.9 rather than Fc=0.6 0.37 % 4.4 % 2.7 % Slightly Sensitive 
Use Fc=1.0 rather than Fc=0.6 2.4 % 2.6 % 4.8 % Slightly Sensitive 
Use Segments of length 1 rather than length 4 2.9 % 4.6 % 8.5 % Sensitive 
Use Segments of lengt 2 rather than length 4 0.58 % 2.0 % 0.028 % Not Sensitive 
Use Segments of length 8 rather than length 4 1.5 % 3.4 % 4.3 % Slightly Sensitive 

Table 1: Margin Results for LUT size experiments

 

4. SWITCH BLOCK 
Another fundamental question when designing an FPGA is how 
the logic blocks should be connected.  The development of a 
flexible, yet fast and small routing fabric is important, and has 
been well studied [7,9,11,14].  A key question is what sort of 
switch block works well.  A switch block is a flexible interconnect 
block that lies at the intersection of every horizontal and vertical 
channel [11].  The switch block can be configured to connect each 
incoming track to some number (typically three) of outgoing 
tracks.  The topology of the switch block, ie. exactly which three 
output tracks are accessible from a given input track, has a 

significant effect on the routability of the chip, and hence the area 
and delay of circuits implemented on the FPGA. 
Four switch blocks have been proposed in previous literature: the 
Disjoint switch block [12], the Wilton switch block [9], the 
Universal switch block [14], and the Masud switch block [7].  
The first three switch block topologies are summarized in Figure 
9; a dotted line represents a potential programmable connection 
between incident tracks.  The Masud block uses the Disjoint 
pattern for all segments that pass through a switch block and the 
Wilton pattern for all segments that terminate at a switch block 
see [7] for details). 



a) Disjoint b) Universal c) Wilton  
Figure 9: Switch Block Types

 
The first three switch block patterns are well compared in [11].  
That work concluded that the Wilton switch block worked well 
for architectures which contained only single-length segments (ie. 
routing segments that span only one logic block), however, for 
FPGAs with larger segments (which are the norm), the Disjoint 
block works better.  The Masud block was compared to the other 
blocks in [7]; that paper concluded that the Masud block provided 
an improvement in density without any significant effect on 
speed. In this section, we seek to determine how well these 
conclusions hold for a variety of architectural tools, techniques, 
and assumptions. 
The baseline experiment consists of placing and routing 20 large 
benchmark circuits using timing-driven VPR.  The circuits were 
optimized as in Section 3.0.  For each pattern and for each circuit, 
the minimum channel width required to route the circuit was 
found.  For each circuit, the minimum channel width was then 
increased by 30%, and the routing repeated.  Detailed area and 
delay models were used to evaluate each implementation. A 
routing fabric consisting of segments of length four was assumed, 
and it was assumed that 50% of the routing switches contain re-
powering buffers, and 50% are simply pass transistors (this was 
shown to work well in [11]).  Fc, the proportion of the tracks in an 
adjacent channel to which each logic block pin can be connected 
was set to 60%.  This is the same methodology used in [11] and 
[7]. 
Figure 10(a) shows the area*delay results for four different 
placement and routing tools (the same tools used in Section 3.1).  
As the data shows, the choice of the placement and routing tool 
has little impact on the conclusions of the experiment, with one 
notable exception.  If the routability-driven placement and routing 
tool is used, the area*delay of the Disjoint switch block is well 
over twice that of any of the other switch blocks, a behaviour not 
seen when using any of the other tools.  As explained in [11], the 
pattern of the disjoint block is such the routing fabric is divided 
into “domains”; each connection between logic blocks can only 
use tracks within a single domain.  As explained earlier, we 
assumed an architecture with 50% pass transistors and 50% re-
powering buffers.   The architecture generator in VPR is such that 
all switches within a given domain are either all pass transistors or 
all re-powering buffers.  The routability-driven router does not 
understand the difference between pass transistors and re-
powering buffers, and hence may choose to use a domain 
consisting of only pass transistors for a long wire, leading to very 
slow circuits.  The other three switch blocks do not divide the 
routing fabric into segments, however, so this behaviour is not 
seen (in those cases, there will be some pass-transistors and some 
re-powering buffers on any long path between logic blocks).  The 

other tools don’t show this kind of behaviour, even with the 
Disjoint block is used, since they are intelligent enough to not use 
routing domains consisting only of pass transistors for long 
connections.  We repeated the experiment, but for different mixes 
of pass transistors and re-powering buffers, and found that the 
behaviour illustrated in Figure 10(a) disappears.  This is an 
excellent example of the main thesis of this paper: small changes 
in the experimental tools can significantly effect the conclusions 
of an architecture study.    
Another interesting observation can be made by comparing the 
results of the baseline experiment in Figure 10(a) to the 
conclusions in [7].  Although it is difficult to deduce from the 
graph, the baseline experiment shows that the Disjoint switch 
block is slightly better than the Masud block, while [7] concluded 
the opposite.  The difference is, again, due to the assumption 
regarding the mix of pass-transistors and buffers.  In [7], it was 
assumed all segments are buffered.  Figure 10(b) shows the delay 
results if we repeat our baseline experiment (a) when all switches 
are unbuffered and (b) all switches are buffered. The rightmost set 
of bars (the buffered results) matches those in [7].  The fact that 
the other two sets of bars lead to different conclusions strengthens 
our position that the experimental results in this particular 
experiment can be affected by small changes in the experimental 
assumptions – in this case, small changes in the assumptions 
regarding buffered/unbuffered switches. 
We also investigated the impact of using different experimental 
methodologies (as in Section 3.2) and different orthogonal 
assumptions (including values of Fc) but found that the 
conclusions were not strongly affected by these results.  The 
graphs are not shown here, but are summarized in Table 2 which 
shows the margin for the experimental variations that we 
investigated. Again, each experimental variation was labeled as 
“not sensitive”, “slightly sensitive”, “sensitive”, “very sensitive” 
and “extremely sensitive”, depending on the area*delay margin.  
Note that most changes were deemed “not sensitive” or “slightly 
sensitive”.  The only entry labeled “extremely sensitive” was 
when the routability-driven place and route tool is used instead of 
the timing-driven VPR, as was explained above.  
 

5. CLUSTER SIZE 
In most FPGA’s, lookup-tables are grouped into clusters (called 
CLB’s in the Xilinx parts and LAB’s in Altera parts).  
Connections between LUT’s within a cluster are significantly 
faster than connections between clusters.  Intuitively, the larger 
the cluster, the fewer cluster-to-cluster connections required, 
leading to a more area-efficient and faster architecture.  On the  
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Figure 10: Switch Block Results

Margin (compared to Baseline) Modifications to 
Experimental Assumptions Area Delay Area*Delay 

Qualitative Comment 

Use Fast Option of VPR 9.3 % 3.4 % 6.8 % Sensitive 
Use Ultra-Fast Placer [13] 1.5 % 13 % 1.2 % Not Sensitive 
Use Routability-Driven Packing, Place & Route 1.7 % 330 % 320 % Extremely Sensitive 
Used Synthesized Circuits rather than MCNC 1.0 % 7.9 % 7.5 % Sensitive 
Measure results using minimum channel width 0.21 % 16 % 2.0 % Slightly Sensitive 
Multiply minimum channel width by 1.5 0.23 % 2.4 % 2.2 % Slightly Sensitive 
Implement on a double-sized FPGA 0.03 % 2.5 % 7.5  % Sensitive 
Use Fc=0.3 rather than Fc=0.6 1.9 % 1.2 % 1.8 % Not Sensitive 
Use Fc=0.5 rather than Fc=0.6 0.5 % 2.3 % 1.8 % Not Sensitive 
Use Fc=0.7 rather than Fc=0.6 1.0 % 1.2 % 1.1 % Not Sensitive 
Use Fc=0.9 rather than Fc=0.6 1.0 % 3.0 % 1.0 % Not Sensitive 
Use Segments of length 1 rather than length 4 6.3 % 18 % 33 % Very Sensitive 
Use Segments of length 2 rather than length 4 2.2 % 4.6 % 1.2 % Not Sensitive 
Use Segments of length 8 rather than length 4 0.64 % 4.5 % 3.8 % Slightly Sensitive 
Assume all switches buffered  4.6 % 5.3 % 6.8 % Sensitive 
Assume all switches unbuffered  9.6 % 3.2 % 4.5 % Slightly Sensitive 

Table 2: Margin Results for Switch Block Experiments

other hand, if the cluster is too large, the local connections within 
a cluster will become slow.  Previous work has found that a good 
choice for the cluster size is between 4 and 10 [2].  In this work, 
we revisited this conclusion to find out how well it holds for a 
range of experimental assumptions.  
We considered the following “baseline” experiment.  Twenty 
circuits were optimized using SIS (choosing the best of 
script.rugged and script.algebraic) and technology-mapped to 4-
input LUT’s using Flowmap [3].  The circuits were then packed 
into clusters using T-VPACK and placed and routed on an FPGA 
using VPR [11].  An FPGA with routing segments of length 4 was 
targeted.  The Disjoint switch block was assumed, and it was 
assumed that each logic block pin can connect to 60% of the 
tracks in an adjacent channel (Fc=0.6 using the terminology of 
[11]). For each circuit, the minimum number of tracks per channel 
was found, this number was increased by 30%, and the routing 
repeated.  The critical path delay and the area, in terms of 
Minimum Transistor Equivalents (MTE’s) [11], was measured, 
for several values of the cluster size.  The number of inputs to 
each cluster was scaled up with the cluster size.  From this data, 
the cluster sizes that resulted in the best area and delay 
implementations were deemed “the best”. 

Table 3 summarizes our results.  As before, each experiment is 
categorized as “not sensitive” (margin less than 2%), “slightly 
sensitive” (margin between 2% and 5%), “sensitive” (margin 
between 5% and 10%), and “very sensitive” (margin more than 
10%).   Note that,  in all but two cases, the experiments are 
classified as “not sensitive” or “slightly sensitive”.  This is 
contrast to the LUT size results in Section 3, in which 
significantly more experiments are classified as “very sensitive” 
(or even “extremely sensitive”).  Thus, we conclude that, overall, 
the cluster size experiments are not nearly as sensitive to the 
experimental tools, techniques, and assumptions, compared to the 
LUT size experiments. 

6. MEMORY ARRAY SIZE 
On-chip storage has become an essential part of all modern 
FPGA’s.  Typically, current FPGA’s contain large memory arrays 
which provide a dense implementation of storage (compared to 
implementing storage in the flip-flops within each logic element). 
However, the use of embedded memory arrays require the FPGA 
vendor to partition the chip area into memory regions and logic 
regions when the chip is designed.  Since circuits have widely-
varying memory requirements, this “average case” partitioning 
may result in poor device utilizations for logic- 



Margin (compared to Baseline 
Experiment) 

Modifications to 
Experimental Assumptions 

Area Delay Area*Delay 

Qualitative Comment 

Use Chortle instead of Flowmap 2.6 % 2.3 % 1.5 % Not Sensitive  
Use Cutmap instead of Flowmap 6.5 % 3.4 % 2.6 % Slightly Sensitive 
Use Fast Option of VPR 9.5 % 3.7 % 1.5 % Not Sensitive 
Use Ultra-Fast Placer [13] 2.6 % 0.9 % 3.1 % Slightly Sensitive 
Use Routability-Driven Packing, Place & Route 2.6 % 2.8 % 9.8 % Sensitive 
Used Synthesized Circuits rather than MCNC 4.6 % 4.1 % 0.21 % Not Sensitive 
Measure results using minimum channel width 0.0036 % 2.7 % 3.7 % Slightly Sensitive 
Multiply minimum channel width by 1.5 0.30 % 1.9 % 2.2 % Slightly Sensitive 
Use Fixed, Predetermined Pin Locations 2.6 % 0.10 % 4.4 % Slightly Sensitive 
Use Fc=0.3 rather than Fc=0.6 4.9 % 4.6 % 5 % Slightly Sensitive 
Use Fc=0.4 rather than Fc=0.6 2.4 % 4.6 % 1.4 % Not Sensitive 
Use Fc=0.5 rather than Fc=0.6 0.69 % 4.6 % 1.7 % Not Sensitive 
Use Fc=0.7 rather than Fc=0.6 2.4 %  4.6 % 0.31 % Not Sensitive 
Use Fc=0.8 rather than Fc=0.6 4.4 % 3.4 % 1.7 % Not Sensitive 
Use Fc=0.9 rather than Fc=0.6 6.8 % 4.6 % 2.6 % Slightly Sensitive 
Use Fc=1.0 rather than Fc=0.6 5.7 % 4.6 % 1.5 % Not Sensitive 
Use Segments of length 1 rather than length 4 0.92 % 5.8 % 19 % Very Sensitive 
Use Segments of length 2 rather than length 4 0.48 % 2.1 % 3.6 % Slightly Sensitive 
Use Segments of length 8 rather than length 4 1.8 % 1.6 % 2.7 % Slightly Sensitive 

Table 3: Results for Cluster Size Experiments

Modifications to 
Experimental Assumptions 

Margin (compared to 
Baseline Experiment) 

Qualitative Comment 

Use SMAP-d rather than SMAP 0.16 % Not Sensitive 
Use EMBPACK rather than SMAP 53 % Very Sensitive 
Use Blocking Factor 2 rather than 1 0.65 % Not Sensitive 
Use Blocking Factor 4 rather than 2 2.8 % Slightly Sensitive 
Use Blocking Factor 8 rather than 4 2.8 % Slightly Sensitive 
Use Chortle instead of Flowmap 17 % Very Sensitive 
Optimize and Technology Map Circuits Twice 1.4 % Not Sensitive 
Assume FPGA has 3-LUTs rather than 4-LUTs 0.81 % Not Sensitive 
Assume FPGA has 5-LUTs rather than 4-LUTs 1.1 % Not Sensitive 

Table 4: Results for Memory Size Experiments
intensive or memory-intensive circuits.  In particular, if a circuit 
does not use all the available memory arrays to implement 
storage, the chip area devoted to the unused arrays is wasted. 
This chip area need not be wasted, however, if the unused 
memory arrays are configured as ROM’s and used to implement 
logic.  Two tools have been published that map logic into unused 
memory arrays: SMAP [8] and EMBPACK [15].  Regardless of 
the tool used, the architecture of each memory array (in particular, 
the number of bits in each array) will have a significant impact on 
the ability of the tools to pack logic into the memories.  If a 
memory array is too large, the mapping tool may be unable to 
effectively fill the memory array with logic.  On the other hand, if 
a memory array is too small, the area overhead due to the 
decoders, sense amplifiers, etc., becomes significant.   
In [10], a study was presented which seeks to find the best size of 
a memory array used to implement logic.  That paper concluded 
that the best memory array size was 2Kbits.  In this work, we 
revisited this experiment and investigate how sensitive that 
conclusion is to experimental techniques, tools, and assumptions. 

Table 4 summarizes our results.  As before, each experimental 
modification is classified according to how sensitive the 
conclusions are on that experimental modification.  Overall, two 
modifications were shown to be “Very Sensitive”: the use of 
EMBPACK rather than SMAP, and the use of Chortle rather than 
Flowmap.  Thus, we conclude that if this experiment is used to 
choose a memory array size for a commercial chip, it is important 
that the CAD tool used in this experiment closely match the CAD 
tool that will be used in the final production software. 
 

7. CONCLUSIONS 
The main message of this paper is this:  experimental 
assumptions, tools, and techniques can have a significant impact 
on the conclusion of FPGA architectural experiments, and need to 
be considered carefully when conclusions are presented.  We have 
shown, through several examples in this paper that some of the 
“traditional”, well known architectural conclusions can be 
significantly changed, just by changing some of the assumptions, 
tools, and techniques used in the experimentation.  A study that 



presents an optimum architecture is not enough; there must be 
some notion of how sensitive the results are.   
In this paper, we have illustrated this using  four  well-known 
architecture results. First, we examined how sensitive the lookup-
table size is to various experimental variations.  Overall, we found 
that the optimum LUT-size did depend on several factors: in 
particular, we found that the CAD tools employed (both the 
technology-mapper and the placement and routing tool) could 
significantly skew the conclusions.   The best LUT size could 
range from three to seven, depending on the CAD tools used.  It 
was also determined that conclusions can be influenced by the 
benchmark circuits used and the architecture of the FPGA’s 
routing fabric. 
We also examined how the choice of switch block could be 
influenced by the experimental assumptions, tools, and 
techniques.  Overall, the conclusions of this experiment held up 
better than the LUT size conclusions as various experimental 
assumptions were changed, however, we did see an example of 
how the experimental results could be severely impacted by using 
a routability-driven tool rather than a timing-driven tool.     
Finally, we investigated how the  choice of the optimum cluster 
size and memory array size is impacted by experimental 
assumptions.  The cluster size experiment was deemed to be not 
as sensitive as the others, however the memory size experiment 
was found to be very sensitive to the packing tools employed. 
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