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A fuzzy controller with singleton defuzzification can be considered as the association of a regionwise
constant term and of a regionwise non linear term, the latter being bounded by a linear controller. Based
on the regionwise structure of fuzzy controller, the state space is partitioned into a series of disjoint sets.
The fuzzy controller parameters are tuned in order to ensure that the ith set is included into the domain of
attraction of the preceding sets of the series. If the first set of the series is included into the region of
attraction of the equilibrium point, the overall fuzzy controlled system is stable. The attractors are
estimated with the help of the comparison principle, using Vector Norms, which ensures the robustness
with respect to uncertainties and perturbations of the open loop system.
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1 INTRODUCTION

Whereas the robustness properties of fuzzy controllers have been shown experimentally,
[1, 2], a theoretical analysis of their stability and performances is a more difficult task ([3] and
the references therein); in particular, it is difficult to find an appropriate domain for the fuzzy
controllers parameters which guaranties that the controlled system is stable, owing to the
locality and non-linearity of control.

The fuzzification algorithm partitions the controller input variables space into a set of
regions, where the local controls designed therein are combined to make up the final global
control. A fuzzy controller has been shown to behave as a non linear controller with a varying
gain [4, 5], and a partition of the state space can be found where the controller has region-
wise constant parameters [6].

A previous study has shown that a fuzzy controller with singleton defuzification and
trapezoidal input membership functions can be split up into a non-linear state space feedback,
with regionwise bounded parameters, and a regionwise valued constant term. The phase
plane has been partitioned into two semi-planes by means of a switching line, a negative
output has been generated above the switching surface and a positive below it. An admissible
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domain for the fuzzy controller parameters can be found for which the stability of the closed
loop controlled system is ensured [7, 8]. These stability conditions are not very conservative,
the controller behaviour is similar to a variable structure control with a boundary layer such
as shown in Ref. [9, 10]. This approach is somewhat limited and does not explores all
possibilities of fuzzy controllers design, since the fuzzy controller is forced into a nonlinear
Variable Structure Controller.

Vector norms constitute a systematic mean of obtaining comparison systems, which help
to overevaluate and analyse non-linear systems [11-13]. An adequate choice of the stable
overevaluing system may prove the initial overvalued system stability. The method is robust
with respect to bounded perturbations, and a good choice of the vector norms may allow to
obtain little conservative stability conditions. The method can also provide an estimation of
the attractor with respect to an initial domain for a nonlinear system [14].

The general idea of the paper is to cut the state space into a domain where the fuzzy
controller will be tuned to ensure the closed-loop system stability, and a set of domains for
which the former domain will be an attractor.

Firstly, some definitions on comparison systems and vector norms will be recalled. The
general regionwise structure of fuzzy controllers will be presented, and in a third part, an
algorithm will be provided which leads to stable fuzzy controllers design for nonlinear systems,
using the previous stability theorems. An example will illustrate the method in the last section.

2 VECTOR NORMS AND OVERVALUING SYSTEMS

2.1 Vector Norms

DEFINITION 1 Let E=R" and E\,E,,...,Exk subspaces of the vector space E, with
E=EUEU---UE; and E;NE; #0Vi#j. Let x be an n vector defined on E and
x; = Pix the projection of x on E;, where P; is a projection operator from E into E;, p; is a
scalar norm (i =1,... k) defined on the subspace E; and p is a vector norm (VN) of
dimension k with ith component p;(x) = pi(x;), p(x): R" — Ri

Let y be another vector in space E with y; = P;y, we have:

pi(xi)) = 0, Vx;€E;, Yi=1,...,k
pi(x) =0 & x; =0, Vi=1,...,k

pitxi +yi) < piti) +pi(yi), Vxi,yi€E;, Yi=1,...,k
pi(Ax) = |A|pi(xi), VAeR, Vi=1,... .k

If k — 1 of the subspaces E; are insufficient to define the whole space E, the VN is surjective,
and if in addition, the subspaces are in disjoint pairs, the VN is said to be regular.

2.2 Overvaluing Systems and Attractors
2.2.1 Overvaluing Systems
Let us consider the equation
x = A(t, x, w)x + B(t, x, w), N

Let p be a regular vector norm (NV) of size k, and S a compact set of R” which includes
the origin. w represents the parameters of the perturbations on the state or the model, with
weP.
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DEFINITION 2 The pair (M,N)M:19 x § — R** N:tg x § — R, defines a non-
homogeneous pseudo-overvaluing system (NHOS) of system (1) on the compact set S,
relative to the VN p, if and only if:

D¥p(x) < M(t,x)p(x) + N(t,x), V(t x)€19xS. )
D*p(x) is the right-hand derivative taken along the motion of (S) into E, and ty = [ty, +00[
DEFINITION 3 4 matrix A is a M-matrix if all its off-diagonal elements are negative or zero,
and in addition, if all its eigenvalues have a positive real part. The last condition is

equivalent to all principal minor determinants of A are positive (Koteliansky criterion) [13].

THEOREM 1 [14] If it is possible to define in a domain D a time-invariant linear NHOS of
(1) relative to a regular p VN:

D*p(x) < Mp(x) + N, V(t,x) €1 xS,
Jfor which M is the opposite of a (constant) M-matrix, and N is a non negative (constant)
vector, then, there is an asymptotically stable attractor Ly and the set:

L = {x € R"; p(x) < —M~'N} includes all the attractors of (1), if the outer frontier of D
encloses the outer frontier of L.

3 APPLICATION OF VECTOR NORMS TO
FUZZY CONTROLLERS STABILITY

3.1 Fuzzy Controller Structure

Let us consider a fuzzy controller with one output u and » input variables X;, X, ..., X, with
the corresponding m; predicates (membership functions) for every X;,i=1,2,...,n The
space vector is x = X}, X3, ..., X,. The predicates will be noted 4; withi =1,2,...,n and
j——- l,2,...,m,~.

The class of fuzzy controllers to deal with meets the following assumptions:

— Input membership functions will be chosen as trapezoidal functions of the inputs.

— The AND operator will be chosen as the min(-) operator,

— Rule Ry reads if X is 41 j, AND X, is 42 j, ... AND X, is 4, ;, THEN u is Uy, where
i= l,2,...,n,j,-= 1,2,...,m,~, and U € R.

— Singleton deffuzification will be undertaken.

It has been previously demonstrated [7, 8] that there exists a number of regions R, with
h=1,2,...,M, for which any active membership function attached to any variable X; is an
affine function of the variable X;. As the AND operator is chosen as the min(-) operator, the
membership function to rule Ry, which we will call y,, remains an affine function of the
variables Xj, X3, ..., X, in the hypervolumes R, (h=1,...,M).

In every region Ry, the control output u is the sum of a non linear state space feedback and
of a constant term Vj, (h =1, ..., M) that is a combination of the fuzzy output membership
functions Uy (k =1, ..., N) defined in (1) (see [7, 8]):

> Ui %X
uXp, Xo, ..., X,) = ==Lk gy , 3)
R I 10 (
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where both V;, and o, = (4.1, - - - » %p.n) are constant parameters in the region i, and depend
on the input membership functions and on the parameters Uj; x is the state vector,
x = (Xy,...,X,). Ny(x) is a linear bounded function of the state space x (there exist N, and
Nj, such that for every x, Nj < Ny(x) < Ny

Other regionwise structures can be found for different schemes of fuzzy controllers [4-6].

3.2 Design of Stable Fuzzy Controlled Systems
3.2.1 General Algorithm

Let us consider the continuous state-space system governed by a fuzzy controller:
x = A(t, x, w)x + B(t, x, 0)u, 4

with u = fj,(x), where the functions f, are nonlinear functions of x with constant parameters in
some disjoints regions iR, (in our application case, we have (X7, X2, ..., X,) = Vi + opx/Ny
in every region R, defined above, where the control is the sum of a non-linear term and of a
regionwise constant term).

The stability algorithm will be threefold:

1. Partition the state space into several subsets D;(i = 1,...,d), every subset being a
merging of some of the regions Ry,

2. Among these domains, find a domain D; containing the origin, where the closed-loop
system (4) is asymptotically stable,

3. For every D;(i =2,...,d), find a system of comparison (M;,N;) for the closed-loop
system (4), for which M; is the opposite of a (constant) M-matrix, N; is a non negative
(constant) vector, and every set L, defined in Theorem 1, containing the attractor of
D; (i=2,...,d) is included into D;_;.

From Theorem 1, it is straightforward to check that the fuzzy controlled system is stable;
every trajectory starting in D; arrives in L;, which is included into D;_;, and so forth, until
trajectories end into D, and converge to the equilibrium (implicitly, D; is a neighbourhood
of the equilibrium).

3.2.2 Design Considerations and Discussion

It is worthy to note that the last statement of the algorithm only means that
{0)cLycD CcLyCD,---Li_y C D;. It suffices to prove, then, that the controller is
stable for every trajectory starting in D.

Unlike some other design methods for the obtaining of stable fuzzy controlled systems,
such as turning these into a particular case of Variable Structure Fuzzy Controllers, the
algorithm respects the philosophy of fuzzy control, where local sets in the state space are
defined, and where trajectories go from set to set until reaching the origin.

As an example of the method, we can see in Figure 1 that domain Ds is a ring (domain
with horizontal hatchings), its attractor Lj (the interior of the dotted line) is included into
domain D, (the interior of the thick line). The attractor L, of domain D, is included into
domain D, where the system is stable (and thus the trajectory converges to the equilibrium).

Owing to the number of existing vector norms and of domains that can be chosen for the
D;, it is difficult to obtain the “best” system of comparison for system (1). An adequate
change of vector base can be interesting to find a convenient comparison system [12].
The choice of the vector norm remains intuitive; the VN, as will be demonstrated in the
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Domain D; AttractorL; (small dots)
Domain D,
Attractor I, (thick dots)
Domain D,

FIGURE 1 Domains and their Attractors.

example section, can be taken to obtain a shape of the domains L; which is as close as
possible (homothetic at best) from the ultimate domain D,. For example, if D; is an
hypercube, it is convenient to take the VN |x| for which the domain |x| < V (where Vis a
vector) is also an hypercube. The estimate L; of the attractor of the domain D;, obtained with
Theorem 1, will be an hypercube.

For regions where V), = 0, the closed loop system is stable if a positive matrix P can be
found such that (4 + Ba] /N,)" P + P(4 + Bo} /N,) is negative (proof is immediate using
the Lyapunov function ¥ = xTPx. A practical choice for the domain D; might thus be the set
of regions where V;, = 0.

The robustness issue of fuzzy controllers will be enhanced into the example section. As
shown in the Vector Norm method [13], the perturbation or uncertainties @ need not to be
exactly known, but an upper bound has to be given. It is only needed, then, that a system of
comparison still exists for system (4) which verifies the assumptions of Theorem 1.
Parameters can be tuned so as to cope with these uncertainties. Stability conditions might
not be strongly conservative, for the system needs to be asymptotically stable only into D;.
A remark is that the number of regions H,, and the number of possible choices for the
domains D; increases with the number of fuzzy predicates of the inputs X;.

The method will be applied to the particular fuzzy controller structure of Section 3.1.
However, it can be extended to other schemes of fuzzy controllers, particularly to those with a
nonlinear structure with regionwise parameters.

4 EXAMPLE

4.1 Controller Structure

X = Ax + Bu with x = X We take A=
1 X

B = 05 and 0 < w < 0.5. The system output is X5.

Let us take the non linear system:
—3.54+0.5cos(f) 0.5+ 0.5cos(t)
1 542w ’

The membership functions are defined in Figure 2 and the rules in Table I (the Negative,
Zero and Positive predicates correspond to the 4; defined in Section 3.)

For example, rule R, reads “if X; is Negative AND X, is Positive then u is U;”. We
introduce x; = X /a, x, = X,/b.
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Negative 2  pocitive Negative Positive
X 1
KX nx) Al
X X
> >
-a a -b b

FIGURE 2 Input membership functions.

Let us consider the quadrant called Q; where —1 < x; < 0 and 0 < x, < 1; (the others are
called, turning clockwise, 0>, O3, Q4) where only rules Ry, R,, Ry and R4 are active.
The membership functions for these rules are respectively, using the operator min as AND:

pg, = min(—xy, X2), pg, = min(l + x1, x2),
Bg, = min(1 +x1, 1 —x3), pg, = min(—x;, 1 —x,).

We thus have 4 regions R, Ry, N3, R4, for which the expression of the membership func-
tions are all linear with respect to x; and x, and have constant parameters (see Fig. 3). For
example, if —x; > x5, 1 +x; < 1 —x; so that in region R, where x; + x, < 0, we obtain
Ug, = min(—x;, x2) = xz, and pp, = min(l +x;, 1 —x2) =1 +xy.

MRii—x; >x, and 1+4x <xy, Ry:—x1 <xp and 1+x <x,

MR3:—x; <xp; and 14+ x; > xp, My:—x; >x; and 14+x; > x;.

For example, for region M, we have: up = x5, pp, = 1 +x1, pig, = 1 +x1, pg, = 1 —xz,
which finally gives: The set of regions in light grey (Fig. 3) is called D,. The set of regions in
white is called D;.

Using Eq. (3), we have:

_Uxa + (1 +x)Uz + Up(1 +x1) + Us(1 — x3)

BT
e 34 2x;

TABLE T Lookup Table and Rule Number (in Parenthesis)
for the Fuzzy Controller Output U.

X
X2 Negative Zero Positive
Positive Ui(Ry) Ux(Ry) Us(R3)
Zero Us(R4) Uo(Ro) Us(Rs)

Negative Us(Re) Us(R7) Us(Rg)
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Q ‘ X2 Al Q
9‘3 R, <
-1 \ R R 1
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Rio Ris ‘ >
X
QRU mli‘ '
Qs
-1

FIGURE 3 Regions with constant parameters membership functions.

For the sake of simplicity, we suppose that Uy = 0, and we obtain:

(Uy = (2/3)Us)xy + (Uy — Ug)xy
3 +2x1 ’
with Ny =3 +4+2x; and 1 < N < 2,

1
m]:uzg(U2+U4)+

so as to obtain

1 2
= §(U2 + Us), o = (Uz —§U4, Uy - U4))-

The other controls are summarised Table II.

227

Remark This structure will remain the same for a 2-dimensional controller with the above
membership functions and a singleton deffuzification. It can be noticed that the constant
terms ¥}, are nonzero for domain D, and depend only on parameters Uy, Us, U7 and U,, and

are zero in domain D,.

The same method is extendable to other kinds of piecewise affine membership functions or
to higher dimensions (but the number of regions grows quickly). Finally, it can be checked

easily that, for each region, 1 <N, <2.

4.2 Controller Stability

As domain D; is a rhombus with equal sides, it is convenient to use the following change of

L=x1+x

2 =X — X2

variable ¢&:
Let us use the change of variable {

We obtain é =;1£+1~3u with 4 = <—3.5+O.5005(t)+w l-o ) and B = (

0.54+05cos(t) —w —-5+w

1.5
0.5)
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The resulting controlled system is now:

: o —3.54+0.5cos()+w 1—w )
= At + B[V + k) =
At ("+th) (0.5+0.5cos(t)—w 54w

1.5 1 joqp+oon 01y —0ap
y o4 A (2L . . ,
+(0.5) ( h+N;,( 2 )

0.75(ty 1 + 0(2,;,) o4 0.75(aty ., — 02.1)

—3.54+0.5cos(t) + w + 1-—

& — Ni Ny
= 2 0.25(o1 —
0.5+ 05cos(t) — o+ 222G T e85, 025008 = 02s)
Ny Ny

+(1.5)V
0s5) "

Domain D, defined in Figure 3 is the union of the regions %, with (h=1,2,6,
7,9, 12, 15, 16).

As 1 < N, <2, for every region 9, included in D,, the system admits the following
overvaluing system relative to the vector norm p(x) = (|x11, |x21),

—2.54+0.75sup oy +02.4] 0.5+ 0.75sup |ay,p — o2,
z= MzZ -+ N2 = h h

0.54+0.25sup oy +oon] —4.54+0.25sup joy,p — o2,n]
h h

+ L3 [Vl
Xz suj ,
0.5 hp h

(h=1,26,7,9,12, 15, 16), where we have D*p(x) < Mp(x) + N,
Calling m; = supy, |ay.n + 02.4l, m2 = supy, layn — o2.4l, (h=1,26,7,9,12, 15, 16), and
applying Kotelianski Criterion, M, is a the opposite of a M-Matrix iff:

—-2.540.75m; <0 and —(11—m; —3.5my) > 0. 5)

Condition (5) gives |m;| < 3.33, [ma| > (22 — 2{m])/7.
These conditions hold only in domain D,.

From Theorem 1, the attractor relative to domain D, is then contained in domain
Ly: || < —=M"'N ie,

7 sup,, Vi
(=11 4 |my| 4 3.5|m3]) e [+ xad
161 = supy, Vi with & = Ix1 —x2] J°

2
(=11 4 |my| 4 3.5|my])

All trajectories starting from domain D, converge into domain L, which should be included
into Dy. The domain L, is a rhombus in the plane (x;, x,) which is of interest since D; is also
a rhombus, which justifies the change of base. If L, is included into D, we must have
[€] < () which gives:

Tsup Vy < (=11 + |my| + 3.5|my]) (6)
h
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015 OiS , if P(4+ BoyT) + (4 +Boy, )T P < 0 for each

region R, included into domain Dy, then the closed loop system is asymptotically stable in
Dy, (which is the union of regions R, with 2 = (3,4, 6, 8, 10, 11, 13, 14)) which gives:

Choosing for example P =

ain < 1.55, opp < 1.55 with h=(3,4,6,8,10, 11,13, 14), 0

Choosing a = b = 1, these conditions can be summarised in
(@) U4—-U, <155, U4 < 1.55 Us + Us < 1.55, Us < 1.55,

—Us — U < 1.55, Ug + Us < 1.55, Uy + U, < 1.55, U, < 1.55,
Us+ U, < 1.55, Ug+ Uy < 1.55, =U; < 1.55, —Us — Uy < 1.55.

U, —2U. Uy —2U.
@um=w%4%riJw—muw+mmm—wLJj—i
2V —
|U7 — Usl, |¥ ,|Ug — U7|) <3.33
2U, — U, 2U, — U
my| = sup( 2| U = Ul [==5—1, Us = Usl, |Us = U,
U, _2U7 U5 —2U7 22
N | B

(©) 7sup(|U2 + U4|, IU2 + U5l, |U6 + U4|, |Ug + U5|) < (—-ll + ]m|| + 35|m2|)

Conditions (b) and (c) resulting from Theorem 1 are not very conservative and let a number
of choices for the fuzzy controller parameters. A stronger values of perturbations for the
initial system results in more conservative results since the overvaluing system will be less
stable.

An example of a set of parameters satisfying the above conditions (a), (b), (c) is:

U =2U;=-5U=2,U4=2,Us =-2,Us=-2,U; =1, Us = —1,Up = 0.

5 CONCLUSION

Comparison systems and vector norms can be used to estimate the attractor of a set for a
nonlinear system. To ensure the stability of a fuzzy controlled system, a series of domains has
been built whose attractors lies within a domain where the closed-loop system is asympto-
tically stable. Some constraints on the fuzzy controller parameter values come from the
design of the domains and the stability conditions. An admissible domain for controller
parameter design is thus provided for which the closed-loop fuzzy controlled system is stable.
An advantage of the method is to respect fuzzy control philosophy, consisting in driving
trajectories from a delimited domain of the state space into another and so forth until the
origin is reached. Moreover, this method allows to handle bounded parameters uncertainties
proving the robustness of fuzzy control. Future work should focus into the obtaining of a
synthesis method which will allow to tune more readily systems parameters.
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