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Markov Chain Monte Carlo Defect Identification in NDE Images

Abstract
We derive a hierarchical Bayesian method for identifying elliptically‐shaped regions with elevated signal levels
in NDE images. We adopt a simple elliptical parametric model for the shape of the defect region and assume
that the defect signals within this region are random following a truncated Gaussian distribution. Our
truncated‐Gaussian model ensures that the signals within the defect region are higher than the baseline level
corresponding to the noise‐only case. We derive a closed‐form expression for the kernel of the posterior
probability distribution of the location, shape, and defect‐signal distribution parameters (model parameters).
This result is then used to develop Markov chain Monte Carlo (MCMC) algorithms for simulating from the
posterior distributions of the model parameters and defect signals. Our MCMC algorithms are
appliedsequentially to identify multiple potential defect regions. For each potential defect, we construct
Bayesian confidence regions for the estimated parameters. Estimated Bayes factors are utilized to rank
potential defects (discovered by our sequential scheme) according to goodness of fit. The performance of the
proposed methods is demonstrated on experimental ultrasonic C‐scan data from an inspection of a cylindrical
titanium billet.
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MARKOV CHAIN MONTE CARLO DEFECT 
IDENTIFICATION IN NDE IMAGES 

Aleksandar Dogandzic and Benhong Zhang 

Iowa State University, Center for Nondestructive Evaluation, 
1915 Schorl Road, Ames, IA 50011, USA 

ABSTRACT. We derive a hierarchical Bayesian method for identifying elliptically-
shaped regions with elevated signal levels in NDE images. We adopt a simple ellip
tical parametric model for the shape of the defect region and assume that the defect 
signals within this region are random following a truncated Gaussian distribution. 
Our truncated-Gaussian model ensures that the signals within the defect region are 
higher than the baseline level corresponding to the noise-only case. We derive a 
closed-form expression for the kernel of the posterior probability distribution of the 
location, shape, and defect-signal distribution parameters (model parameters). This 
result is then used to develop Markov chain Monte Carlo (MCMC) algorithms for 
simulating from the posterior distributions of the model parameters and defect sig
nals. Our MCMC algorithms are applied sequentially to identify multiple potential 
defect regions. For each potential defect, we construct Bayesian confidence regions 
for the estimated parameters. Estimated Bayes factors are utilized to rank poten
tial defects (discovered by our sequential scheme) according to goodness of fit. The 
performance of the proposed methods is demonstrated on experimental ultrasonic 
C-scan data from an inspection of a cylindrical titanium billet. 

Keywords: Bayesian analysis, defect identification, Markov chain Monte Carlo 
(MCMC). 
PACS: 02.50.Tt Inference methods. 

I N T R O D U C T I O N 

In nondestructive evaluation (NDE) applications, defect signal typically affects 
multiple measurements at neighboring spatial locations and, consequently, multiple 
spatial measurements should be incorporated into defect identification algorithms [1], 
[2]. In [1], measurements within a sliding window are compared with a dynamically 
chosen threshold in order to detect potential defects in ultrasonic C scans. In [2], 
we propose a parametric model for defect shape, location, and signal parameters, a 
hierarchical Bayesian framework and Markov chain Monte Carlo (MCMC) algorithms 
for estimating these parameters assuming a singe defect, and a sequential method for 
identifying multiple defect regions. In this paper, we adopt a truncated-Gaussian defect-
signal model that is more realistic than the Gaussian signal model in [2]: it ensures that 
the signals at all measurement locations within the defect region are above the baseline 

CP894, Review of Quantitative Nondestructive Evaluation Vol. 26, ed. by D. O. Thompson and D. E. Chimenti 
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level corresponding to noise only. We then (i) derive a closed-form expression for the 
kernel of the posterior probability density function (pdf) of the location, shape, and 
defect-signal distribution parameters (termed model parameters), (ii) utilize this closed-
form expression to develop efficient MCMC algorithms for simulating from the posterior 
distributions of the model parameters and defect signals, and (iii) apply our MCMC 
algorithms to identify multiple defect regions, estimate their parameters, and rank them 
according to goodness of fit. Remarkably, our MCMC algorithms developed herein are 
simpler to implement than those in [2], even though our measurement model (described 
in the following section) is more complex, as well as more realistic, than that in [2]. 

M E A S U R E M E N T MODEL A N D P R I O R SPECIFICATIONS 

In this section, we introduce our defect location and shape models and random 
noise and defect-signal models. We then describe the prior model for the model param
eters. Finally, we derive the kernel of the posterior pdf of the model parameters. 

Parametric Model for Defect Location and Shape 

We model a potential defect-signal region 1Z(z) as an ellipse (see also [2]): 

K(z) ={r:(r- r0)
T£-\r - r0) < 1} (la) 

where r = [x i ,^] 2 " denotes location in Cartesian coordinates, z = [r^ ,d, A,ip]T is the 
vector of (unknown) defect location and shape parameters, 

£ R = 
cos^ 
s in^ 

— s in^ 
cos^ 

" d2 

0 
0 

A2/(d27l2) 

COS if 

s in^ 
— sin<^ 
cos^ 

(lb) 

and "T" denotes a transpose. Here, T*O = [xo,i, xo,2]T is the center of the ellipse in 
Cartesian coordinates, d > 0 is an axis parameter, A the area of the ellipse, and 
'•f € [—7r/4, 7T/4] the ellipse orientation parameter (in radians). 

Measurement-Error (Noise) Model 

Assume that we have collected measurements y, at locations st, i = 1, 2 , . . . , Ntot 
within a region of interest, where Ntot denotes the total number of measurement loca
tions within this region. Denote by J\f(x ; fj,, a) the Gaussian pdf of a random variable 
x with mean fj, and standard deviation a. We adopt the simple additive white Gaussian 
noise model for the j/jS (see also [2]): 

p(yl\ei)=M(yl;6l,a), i=l,2,...,N (2) 

where 8t are random defect signals when measurement locations st are within the po
tential defect-signal region [i.e. st G T^-(z)] and 8t = 0 when st are in the noise-only 
part of the region of interest, denoted by lZc(z). Here, we have set the baseline signal 
level (corresponding to the noise-only case) to zero, which can be done without loss of 
generality. If the baseline level is not zero (as, e.g., in C scans), we can subtract it out 
from the measurements, see also the numerical examples. 

Defect-Signal (Reflectivity) Model 

Denote by N\{x; fj,,cr) the truncated-Gaussian pdf of a random variable x with 
parameters fj, and a, where the truncation is made to restrict the range of x to non-
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negative values: 

AT i \ N{x; /i,a) . 
Nt(x; [i,,a) = —^—n—-i[0,oo)(x) (3a) 

( 1 x G A 
Here, IA(X) = < ' ,, '. denotes the indicator function and $(•) the cdf of the v ' [ 0 , otherwise v ' 
standard normal random variable. Assume that the defect signals {8t, st € H(z)} are 
independent, identically distributed (i.i.d.) truncated Gaussian with unknown defect-
signal distribution parameters fj, and r . Therefore, the joint pdf of the defect signals 
conditional on z, fj,, and r is 

p({0i,si€'R,(z)}\z,li,T)= f ] M ^ - ^ T ) . (3b) 

i, SjGK(Z) 

Note that r is a measure of defect-signal variability; if r = 0, then all 8t within the 
defect region are equal to /i, where fj, > 0. The above model imposes the non-negativity 
constraint on the signals from the defect region. In other words, the 8ts in the defect 
region are required to be higher than the zero baseline level. Define the vector of all 
model parameters <j> = [ZT,/J,,T]T. 

Prior Specifications for the Model Parameters <j> 

We assume that the defect location, shape, and signal-distribution parameters are 
independent a priori: 

•K,t,{<j>) = irXOil(
xo,i) • 7^0,2(^o,2) • ird(d) • irA(A) • ir^ip) • ir^p) • TTT(T) (4a) 

and adopt simple uniform-distribution priors: 

^0,1(^0,1) = uniform(x0,i,MiN,:Eo,i,MAx) (4 b) 

^0,2 (^o ,2) = uniform(a;o,2,MiN,2;o,2,MAx) (4c) 

ird(d) = uniform (dMlN,dMAX) (4d) 

irA(A) = uniform(AMIN,AMAX), ir^ip) = uniform(^MIN, ipMAX) (4e) 

ir^p) = uniform(0,/uMAX), TTT(T) = uniform(0,rMAX) (4f) 

where ipMIN > — a/A, ipMAX < IT/A, dMIN > 0, AMIN > 0. Here, ir^icj)) denotes the prior 
pdf of 4> and analogous notation is used for the prior pdfs of the components of <j>. 

Posterior Distribution of the Model Parameters <j> 

Define the vectors of random signals 0 = [81,82, • • •, #NtoJT and measurements 
y = [yi, 2/2, • • •, 2/NtoJ

T within the region of interest. We now derive a closed-form 
expression for the kernel of the posterior pdf of the model parameters p(<fr \ y). Let us 
integrate out the signals 0 from the joint posterior pdf p{<j>, 0\y): 

/ , , x p{4>,o\y) ,,x 

*+M=m+D (5) 

where p{<j>, 0 \ y) and p(0 \ <j>, y) follow from the measurement model described above: 

p(4>,e\y) <x 7 r ^ ) . p ( 0 | ^ ) . p ( y | 0 ) o c 7 r ^ ) . [ ]J N^; ^ ^ ^ 1 
MlVi.Q.a-) 

i, SieTi(z) v y j ' ' ' 

p(9\<p,y) = J ] Mi(8l;8l(li,T),{^ + ^1'2 

i, SjGK(Z) 
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^2 „, i _ 2 
Wlth ^,r) = I ^ ± ^ . (6) 
Substituting the above expressions for p{<j>, 0 \ y) and p(0 \ <j>, y) into (5) yields 

p{4> | y) oc 7r0(^) • Z(y | <£) (7a) 

where Z(y | <j>) is the likelihood function of <̂>; the log-likelihood function of <j> [i.e. the 
logarithm of l(y \ <j>)] is 

\nl(y\4>) = - ^ M l n ( l + ^ 

. ^ . . . . l L $(/*/r) J 2a 2 2 ( r 2 + f 7 2 ) J l J 

s,eK(z) 
where 

JV(z) = Y. l (7c) 
z,SjeK(Z) 

denotes the number of measurements collected over Tl{z). Here, (7) follows by noting 
that p(4> | y) does not depend on 0 and setting 8t = fj, in the right-hand side of (5) [for 

i, Si £ TZ.{z)]. Setting the terms In [$(0,(^,7-) • J^ + ^)/$(/*/T)] in (7b) to zero 

yields (logarithm of) the likelihood function in [2, eq. (3.1b)], which corresponds to the 

Gaussian defect-signal model; note that these terms are negative for negative j / , . 

B A Y E S I A N ANALYSIS 

We now develop MCMC methods for simulating from the posterior pdfs p(<fr \ y) 
and p(0 | y) of the model parameters and defect signals. 

Simulating the Model Parameters <j> 

To draw samples from p{<j>\y), we apply a slice sampler [3] which creates an 
auxiliary random variable u and cycles between the following two steps: 

Step 1: Draw a w1-*-1 from uniform(0, l(y | cj)^1')) and 

Step 2: Draw a 4>^> from its prior pdf ir^icj)) subject to the indicator restriction 

l(y | <£(*)) > « « . (8) 

Let us now introduce some commonly used terminology. If a vector <j> satisfies the 
indicator restriction: l(y | <fi) > u^\ we say that it is in the slice. Consequently, Step 2 
is referred to as "getting a point in the slice." 

Step 2 Implementation. To get a point in the slice, we can apply a "naive" 
rejection method: keep drawing <̂>s i.i.d. from ^^((p) until we get a <j> that is in the 
slice. However, "naive" rejection may be very inefficient in terms of number of trials 
needed to get a point in the slice. Here, we utilize a more efficient shrinkage sampling 
approach [3]. First, recall that the parameter space of <j> is a hyperrectangle [see (4)], 
which defines the initial (largest) hyperrectangle in our shrinking scheme: 

^ 0 , 1 , L = ^ 0 , 1 , M I N : ^ 0 , 1 , u = ^ 0 , 1 , M A X : ^ 0 , 2 , L = ^ 0 , 2 , M I N > ^ 0 , 2 , u = ^ 0 , 2 , M A X : ^ L = ^ M I N j ^ u = ^ M A X 

^ - L = ^ - M I N : ^ - U = ^ M A X i ^ L = ^ M I N : ^ U = ^ M A X i /^L = U , / ^ U = / ^ M A X : 7~L = U , 7~U = 7~MAX-

We now obtain a 4>^> in Step 2 via the following sub-steps: 
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(a) Sample 

£0,1 from uniform(a;o,i,L>2;o,i,u)> ^0,2 from uniform(:ro,2,L,2:o,2,u) 
d from uniform(<iL,(iu), A from uniform(AL, Av) 

ip from uniform (y>L, ipv) fj, from uniform(/uL)/uu) 

r from uniform(rL,ru) (9) 

yielding <p = [x0il,x0i2,d, A,ip, H,T]T'. 

(b) Check if <p is within the slice, i.e. if l(y \ <p) > w1-*-1. (10) 

If (10) holds, return 4>^> = 4> and exit the loop. 

(c) If (10) does not hold, then shrink the hyperrectangle so that cj)^1' remains within 
it (since cj)^1' is always in the slice): 

• If £0,1 < ^o 1 , set XO,I,L = £0,1; e l s e if ^0,1 > ^01 > set Xo,i,u = £0,1 • 

• If x0,2 < Xo$ , set X0,2,L = 2:0,2; else if x0,2 > Xo$ , set x0,2,u = ^0,2-

• If d < d^-V, set dL = d; else if d > S*^, set dv = d. 

• If A < A(t-r>, set Ah = A; else if A > A(t-r>, set Av = A. 

• If ip < '-p^^, set iph = ip; else if ip > ip^^"1, set ipv = ip. 

• If fi < /i1-*-1-1, set fih = fi; else if fi > /i1-*-1-1, set fiv = fi. 

• If T < r 1 ^ 1 ) , set rL = T; else if T > r 1 ^ 1 ) , set Tu = T. 

• Go back to (a) . 

Since evaluation of the likelihood l{y\<j>) may cause a floating-point underflow, it is safer 
to compute the log likelihood using (7b) and modify the shrinkage sampler accordingly, 
see [3, Sect. 4]. 

Simulating the Random Signals Oi 

To draw samples from p(0\y), we utilize composition sampling based on the 
identity p(0 | y) = J p(0 | <p, y)p{<j> \ y) d<p: draw <p^' from p(<p \ y) as outlined in the 
previous section and then draw 0^> from p(0 | 4>^\ y) as follows: 

• for i € TZ(z^), draw conditionally independent samples 0\ from [see also (6)] 

^)|^ )y0=M( f t;^W )TW ) )[_^_ + ^ ] - 1 / a ) ) 

• for ! £ Kc(z(!>), set of] = 0 , 

yielding 0® = [ftf\ftf, . . . , < ! / • Then, the mean signal 9 = [1/N(z)] • Et,SieK(z) ft 

within the potential defect region 1Z(z) simulated in the ith draw is 9 = [1/N(z^)] • 

E* S ' t i e W ) ^ • We a^so define the defect area to be proportional to the number of 

measurement locations st that are in the ellipse 1Z(z) and have signals 9t within 10 dB 

from the maximum signal 9MAX in Ti(z), where 9MAX = max^sT?.^) ft- Consequently, 

defect area1-*-1 corresponding to the i th draw is proportional to the number of 9t 's in 

TZ(z^) that are within 10 dB from 6>MAX = max^ s-eWz^h ft • 
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50 100 150 200 250 300 350 400 
X 2 

F I G U R E 1. Ultrasonic C-scan data with 17 defects. 

E s t i m a t i n g t h e M o d e l P a r a m e t e r s <j> a n d R a n d o m Signals 0 

Once we have collected enough samples, we estimate the posterior means of 
and 0 simply by averaging the last T draws: 

-, t0+T 

a*) V[O\y]KO=[0u02 yNt„. 

-, t0+T 
it) 

*=*o+l 
:n) 

*=*o+l 

where t0 defines the burn-in period. Note that <j> and 0 are the (approximate) minimum 
mean-square error (MMSE) estimates of <j> and 0. Similarly, the MMSE estimates of 9 

and defect area are obtained by averaging the quantities 0 and defect area"-1. 

Bayes Fac tor for Quant i fy ing Goodnes s of Fi t 

We adopt the Bayes factor for comparing models H0 : fj, = 0 (defect absent) versus 
the alternative Hj : fj, > 0 (defect present) as a goodness-of-fit measure. This Bayes 
factor is simply the ratio of the marginal likelihoods under the hypotheses H0 and Hj 
(respectively) and can be estimated (up to a multiplicative constant) from the MCMC 
samples 4>^> using the approach in [4, Ch. 5.10.1]: 

BF 
1 

T 

to+T 

£.« 
q(4> (t)\ 

*=*o+l v\4>w)M4> <t)\ 
(12a) 

where q(4>) is an arbitrary pdf having support within the support of the posterior pdf 
p{<j> | y). We select q(4>) to be a product of uniform pdfs: 

(li<t>) = fe>,i(>o,i) • ^0,2(^0,2) • qd(d) • qA{A) • qv((p) • q^p) • qT{r) (12b) 

(to) fto+1) obtained from the MCMC samples as follows: qX(j 1 (xo,i) = uniform( minjXQ 0
t', x0 \ 

xil },max{4*i , 4 ! i + , • •• ,xtl }) a n d analogously for qX02{x0i-2), qd{d), qA^A), 
qv('-f), qiApt), and qT{r). We use Bayes factors to compare multiple defect-region candi
dates: the candidates with smaller values of BF correspond to better fit. 

N U M E R I C A L E X A M P L E S 

We apply the proposed approach to experimental ultrasonic C-scan data from 
an inspection of a cylindrical Ti 6-4 billet, see Fig. 1. Before analyzing the data, we 
divided the C-scan image into three regions of interest, as depicted in Fig. 2. In each 
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FIGURE 2. MMSE estimates 9i of the random signals 9i for the 17 chains having the 
smallest Bayes factors. 
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FIGURE 3. Logarithms of the estimated Bayes factors (up to an additive constant) for all 
24 potential defects in the three regions of the inspected billet. 

region, we subtracted row means from the measurements within the same row. The 
sample estimates of the noise variance a2 in Regions 1,2, and 3 are: 11.92,10.32, and 
12.02, respectively. Further details about this data set and the outlined preprocess
ing steps are given in [2, Sect. IV]. We now analyze each region separately assuming 
known noise variances a2 (set to the above sample estimates). We chose the prior 
pdfs in (4d)-(4f) with dMIN = 1,G?MAX = 10, AM1N = 20, AMAX = 400 (in squared pix
els), (fMm = — 7r/4, PMAX = TT/4 (covering the entire parameter space of (p, unlike [2]), 
/iMAX = maxjyi, 2/2, • • •, 2/NtotL TMAX = 7cr, and selected xQjijMIN, x0jijMAx,« = 1, 2 to span 
the region that is being analyzed. 

We perform sequential identification of the potential defects as described in [2, 
Sect. IV], except that here we utilize the proposed slice sampler to draw cfr' and 0^\ 
We have applied this sequential scheme to the three regions using 24 Markov chains 
(each running a slice sampler as described in this paper). For each chain, we ran 
10,000 cycles of the slice sampler and utilized the last T = 2,000 samples to describe 
the posterior distributions p(cf) \ y) and p(0 \ y); hence, the burn-in period is to = 8,000 
samples. The estimated (and sorted) Bayes factors for all 24 chains, computed using 
(12), are shown in Fig. 3. Remarkably, the 17 smallest Bayes factors correspond to the 
chains that "discovered" the flat bottom holes (i.e. true defects) in Fig. 1. Fig. 2 shows 
the (overlaid) MMSE estimates 6i of the defect signals estimated from these 17 chains. 

In Fig. 4, we show approximate 90% Bayesian confidence regions for the normal-
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FIGURE 4. Approximate 90% Bayesian confidence regions for the normalized mean signals 
9/a and areas of all potential defects in the three regions and a possible classification 
boundary for separating defects from non-defects. 

ized mean signals 9/a and defect areas (in squared pixels) 

defect area, [defect area, C~ defect area, [defect area, < £ (13) 

computed for all 24 potential defects in the three regions, where defect area and 9 denote 
the MMSE estimates of the defect area and 9, C is the sample covariance matrix of the 
posterior samples [defect area1-', 9^/af: 

-, t0+T 
9 • ( * ) 

m . , .defect area1-*-1, 1T-
T ^ V ' a i 

*=*o+l 

91 9 • ( * ) 

[defect area, — V )( [defect area1-*-1, 
a J\ a 

[defect area, e. 

and ^ is a constant chosen (for each chain) so that 90% of the samples [defect area1-', 
t = to,... ,T satisfy (13). In Fig. 4, we also show a remarkably simple classification 
boundary that successfully separates defects from non-defects, and is based only on the 
normalized mean signals 9/a. 
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