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Abstract. In this contribution, we present new algorithms to source separation for the case of noisy
instantaneous linear mixture, within the Bayesian statistical framework. The source distribution
prior is modeled by a mixture of Gaussians [1] and the mixing matrix elements distributions by
a Gaussian [2]. We model the mixture of Gaussians hierarchically by mean of hidden variables
representing the labels of the mixture. Then, we consider the joint a posteriori distribution of
sources, mixing matrix elements, labels of the mixture and other parameters of the mixture with
appropriate prior probability laws to eliminate degeneracy of the likelihood function of variance
parameters and we propose two iterative algorithms to estimate jointly sources, mixing matrix and
hyperparameters: Joint MAP (Maximuma posteriori) algorithm and penalized EM algorithm. The
illustrative example is taken in [3] to compare with other algorithms proposed in literature.

PROBLEM DESCRIPTION

We consider a linear instantaneous mixture ofn sources. Observations could be cor-
rupted by an additive noise. This noise may represent measurement errors or model
incertainty:

x(t) =As(t)+ ǫ(t), t= 1, ..,T (1)

wherex(t) is the (m× 1) measurement vector,s(t) is the (n× 1) source vector which
components have to be separated,A is the mixing matrix of dimension (m×n) andǫ(t)
represents noise affecting the measurements. We assume that the (m×T ) noise matrix
ǫ(t) is statistically independant of sources, centered, white and Gaussian with known
varianceσ2

ǫ I. We notes1..T the matrixn×T of sources andx1..T the matrixm×T of
data.

Source separation problem consists of two sub-problems: Sources restoration and
mixing matrix identification. Therefore, three directionscan be followed:

1. Supervised learning: IdentifyA knowing a training sequence of sourcess, then use
it to reconstruct the sources.

2. Unsupervised learning: Identify A directly from a part or the whole observations
and then use it to recovers.
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3. Unsupervised joint estimation: Estimate jointlys andA

In the following, we investigate the third direction. This choice is motivated by practical
cases where sources and mixing matrix are unknown.

This paper is organised as follows: We begin in section II by proposing a Bayesian
approach to source separation. We set up the notations, present the prior laws of the
sources and the mixing matrix elements and present the jointMAP estimation algorithm
assuming known hyperparameters. We introduce, in section III, a hierarchical modelisa-
tion of the sources by mean of hidden variables representingthe labels of the mixture of
Gaussians in the prior modeling and present a version of JMAPusing the estimation of
these hidden variables (classification) as an intermediatestep. In both algorithms, we as-
sumed known the hyperparameters which is not realistic in applications. That is why, in
section IV, we present an original method for the estimationof hyperparameters which
takes advantages of using this hierarchical modeling. Finally, since EM algorithm has
been used extensively in source separation [4], we considered this algorithm and pro-
pose, in section V, a penalized version of the EM algorithm for source separation. This
penalization of the likelihood function is necessary to eliminate its degeneracy when
some variances of Gaussian mixture approche zero [5]. Each section is supported by
one typical simulation result and partial conclusion. At the end, we compare the two last
algorithms.

BAYESIAN APPROACH TO SOURCE SEPARATION

Given the observationsx1..T , the joint a posterioridistribution of unknown variables
s1..T andA is:

p(A,s1..T |x1..T )∝ p(x1..T |A,s1..T ) p(A)p(s1..T ) (2)

wherep(A) andp(s1..T ) are the prior distributions through which we modelise oura
priori information about sourcess and mixing matrixA. p(x1..T |A,s1..T ) is the joint
likelihood distribution. We have, now, three directions:

1. First, integrate (2) with respect tos1..T to obtain the marginal inA and then estimate
A by:

Â= argmax
A

{J(A) = ln p(A|x1..T )} (3)

2. Second, integrate (2) with respect toA to obtain the marginal ins1..T and then
estimates1..T by:

ŝ1..T = argmax
s1..T

{J(s1..T ) = ln p(s1..T |x1..T )} (4)

3. Third, estimate jointlys1..T andA:

(Â, ŝ1..T ) = argmax
(A,s1..T )

{J(A,s1..T ) = ln p(A,s1..T |x1..T )} (5)



Choice ofa priori distributions

The a priori distribution reflects our knowledge concerning the parameter to be
estimated. Therefore, it must be neither very specific to a particular problem nor too
general (uniform) and non informative. A parametric model for these distributions seems
to fit this goal: Its stucture expresses the particularity ofthe problem and its parameters
allow a certain flexibility.
Sourcesa priori: For sourcess, we choose a mixture of Gaussians [1]:

p(sj) =

qj∑

i=1

αjiN (mji,σ
2
ji), j = 1..n (6)

Hyperparametersqj are supposed to be known.
This choice was motivated by the following points:

• It represents a general class of distributions and is convenient in many digital
communications and image processing applications.

• For a Gaussian likelihoodp(x1..T |s1..T ,A) (considered as a function ofs1..T ), the
a posteriorilaw remains in the same class (conjugate prior). We then haveonly to
update the parameters of the mixture with the data.

Mixing matrix a priori: To account for some model uncertainty, we assign a Gaussian
prior law to each element of the mixing matrixA:

p(Aij) =N (Mji,σ
2
a,ij) (7)

which can be interpreted as knowing every element (Mji) with some uncertainty (σ2
a,ij).

We underline here the advantage of estimating the mixing matrix A and not a separating
matrixB (inverse ofA) which is the case of almost all the existing methods for source
separation (see for example [6]). This approach has at leasttwo advantages: (i) A does
not need to be invertible (n 6=m), (ii ) naturally, we have somea priori information on
the mixing matrix not on its inverse which may not exist.

JMAP algorithm

We propose an alternating iterative algorithm to estimate jointly s1..T and A by
extremizing the log-posterior distribution:





ŝ
(k)
1..T = argmax

s1..T
ln p

(
Â(k−1),s1..T |x1..T

)

Â(k) = argmax
A
ln p

(
A, ŝ

(k)
1..T |x1..T

) (8)

In the following, we suppose that sources are white and spatially independant. This
assumption is not necessary in our approach but we start fromhere to be able to compare
later with other classical methods in which this hypothesisis fundamental.



With this hypothesis, in step(k+1), the criterion to optimize with respect tos1..T is:

J(s1..T ) =
T∑

t=1

[
ln p

(
x(t)|Â(k),s(t)

)
+

n∑

j=1

ln pj (sj(t))

]
(9)

Therefore, the optimisation is done independantly at each time t:

ŝ(t)(k+1) = argmax
s(t)

{ln p
(
x(t)|Â(k),s

)
+

n∑

j=1

ln pj (sj(t))} (10)

The a posterioridistribution ofs is a mixture of
∏n

j=1 qj Gaussians. This leads to a
high computational cost. To obtain a more reasonable algorithm, we propose an iterative
scalar algorithm. The first step consists in estimating eachsource component knowing
the other components estimated in the previous iteration:

ŝj(t)
(k+1) = argmax

sj(t)

{ln p
(
sj(t)|x(t),Â

(k), ŝl 6=j(t)
(k)
)
} (11)

Thea posterioridistribution ofsj is a mixture ofqj Gaussians:
∑qj

z=1α
′

jzN (m
′

jz,σ
′

jz

2
),

with:




m
′

jz =
σ2
jmjz+σ

2
jzmj

σ2
j +σ

2
jz

σ
′

jz

2
=

σ2
j σ

2
jz

σ2
j +σ

2
jz

α
′

jz = αjz

√
1

σ2
jz+σ

2
j

exp
[−1

2

1

σ2
jz+σ

2
j

(mj−mjz)
2
]

(12)

where




σ2
j =

σ2
ǫ∑m

i=1A
2
ij

mj =

∑n

i=1Aij (xi− x̂i)∑m

i=1A
2
ij

x̂i =
∑

l 6=j

Ail sl

(13)

If the meansm
′

jz aren’t close to each other, we are in the case of a multi-modal
distribution. The algorithm to estimatesj is to first computêxi, i = 1, . . . ,m, mj and



σ2
j by (13) and thenα

′

jz, σ
′

jz

2
andm

′

jz by (12), and select them
′

jz for which the ratio
α
′

jz

σ
′

jz

is the greatest one.
After a full update of all sourcess1..T , the estimate ofA is obtained by optimizing:

J(A) =
∑T

t=1 ln p
(
x(t)|A, ŝk+1(t)

)
+ln p(A(t))+ cte (14)

which is quadratic in elements ofA. The gradient has then a simple expression:

∂J(A)

∂Ai,j

=

T∑

t=1

1

σ2
ǫ

ŝk+1
j (t)

(
xi(t)−

[
Aŝk+1(t)

]
i

)
−

1

σ2
a;i,j

(Ai,j−Mi,j) (15)

Cancelling the gradient to zero and definingΛi,j =
σ2ǫ
σ2a;i,j

, we obtain the following

relation:
[

T∑

t=1

(
x(t)−Aŝk+1(t)

)
ŝk+1(t)T

]

i,j

−Λi,j (Ai,j−Mi,j) = 0 (16)

We define the operatorVect transforming a matrix to a vector by the concatenation of
the transposed rows. OperatorMat is the inverse ofVect. Applying operatorVect to
relation (16), we obtain the following expression:

V ect
(
x1..T (ŝ

k+1
1..T )

T
)
+µV ect(M) = (µ+S∗)V ectA (17)

whereµ is a diagonal matrix(nm×nm) which diagonal vector isV ect((Λi,j)i=1..m,j=1..n)
andS∗ the matrix (nm× nm) with block diagonalŝs1..T ŝT1..T estimated at iteration
(k+1). We have finally the explicit estimation ofA:

Âk+1 =Mat
(
[µ+S∗]−1 [µV ect(M)+V ect

(
x1..T (ŝ

k+1
1..T )

T
)])

(18)

To show the faisability of this algorithm, we consider in thefollowing a telecom-
munication example. For this, we simulated synthetic data with sources described by a
mixture of 4 Gaussians centered at−3, −1, 1 and3, with the same variance0.01 and

weighted by 0.3, 0.1, 0.4 and 0.2. The unknown mixing matrix isA=

(
1 −0.6
0.6 1

)
.

We fixed thea priori parameters ofA to:M =

(
1 0
0 1

)
andΛ=

(
150 0.009
0.009 150

)
,

meaning that we are nearly sure of diagonal values but we are very uncertain about the
other elements ofA. Noise of varianceσ2

ǫ = 1 was added to the data. The figure1 il-
lustrates the ability of the algorithm to perform the separation. However, we note that
estimated sources are very centered arround the means. Thisis because we fixed very
low values for thea priori variances of Gaussian mixture. Thus, the algorithm is sensi-
tive to thea priori parameters and exploitation of data is useful. We will see insection
IV how to deal with this issue.
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Figure 1- Results of separation with QAM-16 (Quadratic Amplitude Modulation)
using JMAP algorithm: (a) phase space distribution of sources,

(b) mixed signals, and (c) separated sources

Now, we are going to re-examine closely the expression for the a posteriori distri-
bution of sources. It’s a multi-modal distribution if the Gaussian means aren’t too close.
The maximum of this distribution doesn’t correspond, in general, to the maximum of
the most probable Gaussian. So, we intend to estimate first, at each timet, thea priori
Gaussian law according to which the sources(t) is generated (classification) and then
estimates(t) as the mean of thea posterioriGaussian. This leads us to the introduction
of hidden variables and hierarchical modelization.

HIDDEN VARIABLES

The a priori distribution of the componentsj is p(sj) =
∑qj

i=1αjiN (mji,σ
2
ji). We

consider now the hidden variablezj taking its values in the discrete setZj = (1, . . . , qj)
so each source can belong to one of theqj sources, withαji = p(zj = i). Givenzj = i,
sj is normalN (mji,σ

2
ji). We can extend this notion to vectorial case by considering the

vectorz = [z1, . . . , zn] taking its values in the setZ = Πn
j=1Zj . Thes distribution given

z is a normal lawp(s|z) =N (mz,Γz) with:

mz = [m1z1 ,m2z2 , . . . ,mnzn ] (19)

Γz = diag(σ2

1z1
,σ2

2z2
, . . . ,σ2

nzn
) (20)

The marginala priori law of s is the mixture ofΠn
j=1qj Gaussians:

p(s) =
∑

z∈Z

p(z)p(s|z) (21)

We can re-interpret this mixture by considering it as a discrete set of couples(Nz,p(z))
(see Figure2). Sources which belong to this class of distributions are generated as
follows: First, generate the hidden variablez ∈Z accordingp(z) and then, given thisz,



generates according toNz. This model can be extended to include continuous values of
z (also continuous distributionf(z)) and then to take account of infinity of distributions
in only one class (see Figure2).

(N1, p1)

(N2 , p2)

(N3, p3)

F

1 2 3 R

p(z)

p(z)

R

generalize

Figure 2- Hierarchical modelization with hidden variables

a posteriori distribution of sources

In the following, we suppose that mixing matrix is known. Thejoint law of s, z
andx can be factorized in two forms:p(s,z,x) = p(x|s)p(s|z)p(z) or p(s,z,x) =
p(s|x,z)p(z|x)p(x). Thus, the marginala posteriorilaw has two forms:

p(s|x) =
∑

z∈Z

p(z)p(x|s)p(s|z)

p(x)
(22)

or

p(s|x) =
∑

z∈Z

p(z|x)p(s|x,z) (23)

We note in the second form that thea posterioriis in the same class that of thea priori
(same expressions but conditionally tox). This is due to the fact that mixture of Gaus-
sians is a conjugate prior for Gaussian likelihood. Our strategy of estimation is based on
this remark: The sources are modeled hierarchically, we estimate them hierarchically;
we begin by estimating the hidden variable usingp(z|x) and then estimate sources us-
ing p(s|x,z) which is Gaussian of meanθxz:

θxz =mz+ΓzA
tRz(x−Amz) (24)

and varianceVxz:

Vxz = Γz−ΓzA
tRzAΓz (25)

where,

Rz = (AΓzA
t+Rn)

−1 (26)



andRn represent the noise covariance.
Now we have to estimatez by usingp(z|x) which is obtained by integrating the joint

a posterioriof z ands with respect tos:

p(z|x) =

∫
p(z,s|x)ds ∝ p(z)

∫
p(x|s)p(s|z)ds (27)

The expression to integrate is Gaussian ins. The result is immediate:

p(z|x)∝ p(z) | Γz |
− 1

2 | Vxz |
1
2 exp

[
Kzx

]
(28)

where:
{

Kzx = −1
2
(Amz−x)tQxz(Amz−x)

Qxz = (I−RzAΓzA
t)R−1

n
(I−AΓzA

tRz)+RzAΓzA
tRz

}
(29)

If now we consider the whole observations, the law ofz1..T is:

p(z1..T |x1..T )∝ p(z1..T )

∫
p(x1..T |s1..T )p(s1..T |z1..T )ds1..T (30)

Supposing thatz(t) area priori independant, the last relation becomes:

p(z1..T |x1..T )∝ ΠT
t=1

{
p(z(t))

∫
p(x(t)|s(t))p(s(t)|z(t))ds(t)

}
(31)

Estimation ofz1..T is then performed observation by observation:

argmax
z1..T

p(z1..T |x1..T ) =

(
argmax

z(t)

p(z(t)|x(t))

)

t=1..T

(32)

Hierarchical JMAP algorithm

Taking into account of this hierarchical model, the JMAP algorithm is implemented
in three steps. At iteration(k):

1. First, estimate the hidden variableẑMAP (combinatary estimation) given observa-
tions and mixing matrix estimated in the previous iteration:

ẑ
(k)
MAP (t) = argmax

z(t)

{p
(
z(t)|x(t),Â(k−1)

)
} (33)

2. Second, given the estimatedẑ(k)
MAP , source vectors follows Gaussian law

N (θ
xẑ

(k)
MAP

,V
xẑ

(k)
MAP

) and then the source estimate isθ
xẑ

(k)
MAP

.

3. Third, given the estimated sourcesŝk, mixing matrix is evaluated as in the algo-
rithm of section II.



We evaluated this algorithm using the same synthetic data asin section2. Separation
was robust as shown in Figure3:
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Figure 3- Results of separation with QAM-16
using Hierarchical JMAP algorithm: (a) phase space distribution of sources,

(b) mixed signals, and (c) separated sources

The Bayesian approach allows us to express oura priori information via paramet-
ric prior models. However, in general, we may not know the parameters of thea priori
distributions. This is the task of the next section where we estimate the unknown
hyperparameters always in a Bayesian framework.

HYPERPARAMETERS ESTIMATION

The hyperparameters considered here are the means and the variances of Gaussian

mixture prior of sources:sj ∼
∑qj

z=1ΠjzN
(
mjz,

1
ψjz

)
, j = 1, . . . ,n. We develop, in

the following, a novel method to extract the hyperparameters from the observations
x1..T . The main idea is: conditioned on the hidden variables(zj)1..T = [zj(1), . . . , zj(T )],
hyperparametersmjz and ψjz for z ∈ Zj = (1, . . . , qj) are means and variances of
a Gaussian distribution. Thus, given the vector(zj)1..T = [zj(1), . . . , zj(T )], we can
perform a partition of the setT = [1, . . . ,T ] into sub-setsTz as:

Tz = { t |zj(t) = z} , z ∈ Zj (34)

This is the classification step.
Suppose now that mixing matrixA and componentssl 6=j are fixed and we are

interested in the estimation ofmjz andψjz. Let θjz = (mjz , ψjz).

The jointa posteriorilaw of sj andθjz givenzj at timet is:

p(sj , θjz |x, zj)∝ p(x |s)p(sj |θjz, zj)p(θjz |zj) (35)

p(sj |θjz, zj) is Gaussian of meanmjz and inverted varianceψjz.
p(θjz |zj) = p(θjz) = p(mjz)p(ψjz) is hyperparametersa priori. The marginala poste-



riori distribution ofθjz is obtained from previous relation by integration oversj :

p(θjz |x, zj)∝ p(θjz)

∫

sj

p(x |s)p(sj |θjz, zj)dsj. (36)

The expression inside the integral is proportional to the joint a posterioridistribution of
(sj , zj) givenx andθjz, thus:

p(θjz |x, zj)∝ p(θjz)p(zj |x, θjz). (37)

wherep(zj |x, θjz) is proportional toα
′

jz as defined in expression (12). Notingφj =
1/σ2

j andψjz = 1/σ2
jz, we have:

p(θjz |x, zj)∝ p(θjz)

√
φj ψjz
φj + ψjz

exp
[
−
1

2

φjψjz
φj+ψjz

(mjz−mj)
2
]

(38)

Note that the likelihood is normal for meansmjz and Gamma forλjz =
(φjψjz)/(φj+ψjz).
Choosing a uniforma priori for the means, the estimate ofmjz is:

m̂MAP
jz =

∑
t∈Tz

mj(t)

Tz
(39)

For variances, we can choose (i) an inverted Gamma priorG (α,β) after developing the
expression forλjz knowing the relative order ofψjz andφj (to makeλjz linear inψjz) or
(ii ) an a prior which is Gamma inλjz. These choices are motivated by two points: First, it
is a proper prior which eliminate degenaracy of some variances at zero (It is shown in [5]
that hyperparameter likelihood (noiseless case without mixing) is unbounded causing a
variance degeneracy at zero). Second, it is a conjugate prior so estimation expressions
remain simple to implement. The estimate of inverted variance (first choice whenψjz is
the same order ofφj) is:

ψ̂MAP
jz =

αposteriori−1

βposteriori
(40)

with αposteriori = α+ Tz
2

andβposteriori = β+
∑

t∈Tz
(mj(t)−m̂

MAP
jz )2

4
.

Hierarchical JMAP including estimation of hyperparameters

Including the estimation of hyperparameters, the proposedhierarchical JMAP algo-
rithm is composed of five steps:

1. Estimate hidden variables(ẑj)MAP
1..T by:

(ẑj)
MAP
1..T = (argmax

zj

p(zj |x(t), mjz , ψjz,A, sl 6=j))1..T (41)



which permits to estimate partitions:

T̂z =
{
t | (ẑj)

MAP (t) = z
}

(42)

This corresponds to the classification step in the previous algorithm

2. Given the estimate of partitions, hyperparametersψ̂MAP
jz andm̂MAP

jz are updated
according to equations (39) and (25). The following steps are the same as those in
the previous proposed algorithm

3. Re-estimation of hidden variables(ẑj)MAP
1..T given the estimated hyperparameters.

4. Estimation of sources(ŝ)MAP
1..T .

5. Estimation of mixing matrix(Â)MAP .

Simulation results

To be able to compare the results obtained by this algorithm and the Penalized
likelihood algorithm developed in the next section with theresults obtained by some
other classical methods, we generated data according to theexample described in [3].
Data generation: 2-D sources, every componenta priori is mixture of two Gaussians
(±1), ψ = 100 for all Gaussians. Original sources are mixed with mixing matrix A =(

1 −0.6
0.4 1

)
. A noise of varianceσ2

ǫ = 0.03 is added (SNR = 15dB). Number of

observations is1000.

Parameters: M =

(
1 0
0 1

)
, Λ =

(
150 0.009
0.009 150

)
, Π =

(
0.5 0.5
0.5 0.5

)
, α = 200

andβ = 2.

Initial conditions : A(0) =

(
1 0
0 1

)
, ψ(0) =

(
1 1
1 1

)
, m(0) =

(
0 0
0 0

)
and s(0)

generated according tos(0)j ∼
∑qj

z=1ΠjzN (m
(0)
jz ,

1

ψ
(0)
jz

).

Sources are recovered with negligible mean quadratic error: MEQ(s1) = 0.0094 and
MEQ(s2) = 0.0097. The following figures illustrate separation results:

The non-negative performance index of [7] is used to chacarterize mixing matrix
identification achievement:

ind(S = Â−1A) =
1

2

[
∑

i

(
∑

j

|Sij|2

maxl|Sil|2
−1

)
+
∑

j

(
∑

i

|Sij|2

maxl|Slj|2
−1

)]

Figure7a represents the index evolution through iterations. Note the convergence of
JMAP algorithm since iteration30 to a satisfactory value of−45dB. For the same
SNR, algorithms PWS, NS [3] and EASI [6] reach a value greaterthan−35dB after
6000 observations. Figures7b and7c illustrate the identification of hyperparameters. We
note the algorithm convergence to the original values (−1 for m11 and100 for ψ11).
In order to validate the idea of data classification before estimating hyperparameters,



we can visualize the evolution of classification error (number of data badly classified).
Figure7d shows that this error converges to zero at iteration15. Then, after this iteration,
hyperparameters identification is performed on the true classified data. Estimation of
mjz andψjz takes into account only data which belong to this class and then it is not
corrupted by other data which bring erroneous information on these hyperparameters.
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Figure 4- Separation results withSNR = 15dB
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Figure 5- Separation results withSNR = 15dB: Phase space distribution of sources,
mixed signals and separated sources.
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Figure 6- Separation results withSNR = 15dB: Histograms of sources,
mixed signals and separated sources.
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Figure 7-a- Evolution of index through iterations Figure 7-b- Identification ofm11
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Figure 7-c- Identification ofψ11 Figure 7-d- Evolution of classification error

Thus, a joint estimation of sources, mixing matrix and hyperparameters is performed
successfully with a JMAP algorithm. The EM algorithm was used in [4] to solve source



separation problem in a maximum likelihood context. We now use the EM algorithm
in a Bayesian approach to take into account of oura priori information on the mixing
matrix.

PENALIZED EM

The EM algorithm has been used extensively in data analysis to find the maximum
likelihood estimation of a set of parameters from given data[8]. Considering both the
mixing matrixA and hyperparametersθ, at the same level, being unknown parameters
and complete datax1..T and s1..T . Complete data means jointly observed datax1..T

and unobserved datas1..T . The EM algorithm is executed in two steps: (i) E-step
(expectation) consists in forming the logarithm of the joint distribution of observed
datax and hidden datas conditionally to parametersA and θ and then compute
its expectation conditionally tox and estimated parametersA

′

and θ
′

(evaluated in
the previous iteration), (ii ) M-step (maximization) consists of the maximization of the
obtained functional with respect to the parametersA andθ:

1. E-step :

Q(A, θ |A′, θ′) = Ex,s [log p(x, s |A, θ) |x,A
′, θ′] (43)

2. M-step :
(
Â, θ̂

)
= argmax

(A,θ)

{Q(A, θ |A′, θ′)} (44)

Recently, in [4], an EM algorithm has been used in source separation with mixture of
Gaussians as sources prior. In this work, we show that:

1. This algorithm fails in estimating variances of Gaussianmixture. We proved that
this is because the degeneracy of the estimated variance to zero.

2. The computational cost of this algorithm is very high.
3. The algorithm is very sensitive to initial conditions.
4. In [4], there’s neither ana priori distribution on the mixing matrixA or on the

hyperparametersθ.

Here, we propose to extend this algorithm in two ways by:

1. Introducing ana priori distribution forθ to eliminate degeneracy and ana priori
distribution forA to express our previous knowledge on the mixing matrix.

2. Taking advantage of our hierarchical model and the idea ofclassification to reduce
the computational cost.

To distinguish the proposed algorithm from the one proposedin [4], we call this algo-
rithm thePenalized EM. The two steps become:

1. E-step :

Q(A, θ |A′, θ′) = Ex,s [log p(x, s |A, θ)+ log p(A)+ log p(θ) |x,A′, θ′] (45)



2. M-step :
(
Â, θ̂

)
= argmax

(A,θ)

Q(A, θ |A′, θ′) (46)

The joint distribution is factorized as:p(x, s,A, θ) = p(x |A, s)p(A)p(s |θ)p(θ).
We can remark thatp(x, s,A, θ) as a function of(A, θ) is separable inA andθ. Con-
sequently, the functional is separated into two factors: one representing anA functional
and the other representing aθ functional:

Q(A, θ |A′, θ′) =Qa (A |A′, θ′)+Qh (θ |A
′, θ′) (47)

with:
{
Qa (A |A′, θ′) = E [log p(x |A, s)+ log p(A) |x,A′, θ′]
Qh (θ |A′, θ′) = E [log p(s |θ)+ log p(θ) |x,A′, θ′]

(48)

- Maximisation with respect toA

The functionalQa is:

Qa =
−1

2σ2
ǫ

T∑

t=1

E
[
(x(t)−As(t))T (x(t)−As(t)) |x,A′, θ′

]
+log p(A). (49)

The gradient of this expression with respect to the elementsof A is:

∂Qa

∂Ai,j

=
T

σ2
ǫ

(
R̂xs−AR̂ss

)
i,j
−

1

σ2
aij

(Ai,j−Mi,j) . (50)

where:

{
R̂xs = 1

T

∑T

t=1E
[
x(t)s(t)T |x,A′, θ′

]

R̂ss = 1
T

∑T

t=1E
[
s(t)s(t)T |x,A′, θ′

] (51)

Evaluation ofR̂xs andR̂ss requires the computation of the expectations ofx(t)s(t)T

ands(t)s(t)T . The main computational cost is due to the fact that the expectation of any
functionf (s) is given by:

E [f (s) |x,A′, θ′] =
∑

z′∈
∏n

i=1Zi

E [f (s) |x,z = z′,A′, θ′] p(z′ |x,A′, θ′). (52)

which involves a sum of
∏n

j=1 q (j) terms corresponding to the whole combinations of
labels. One way to obtain an approximate but fast estimate ofthis expression is to limit
the summation to only one term corresponding to the MAP estimate ofz:

E [f (s) |x,A′, θ′] = E
[
f (s) |x,z = ẑMAP ,A′, θ′

]
. (53)



Then, given estimated labelsz1..T , the sources(t) a posteriorilaw is Normal with mean
θxz and varianceVxz given by (24) and (40).

The source estimate is thenθxz. R̂xs andR̂ss become:

R̂xs =
1

T

T∑

t=1

x(t) ŝ(t)T (54)

and

R̂ss =
1

T

T∑

t=1

ŝ(t) ŝ(t)T +
1

T

T∑

t=1

(AtR−1
n A+Γ−1

z
)−1 (55)

When S1..T estimated and using the matrix operations defined in sectionII and
cancelling the gradient (50) to zero, we obtain the expression of the estimate ofA:

Âk+1 =Mat

([
Λ+T R̂∗

ss

]−1 [
ΛV ect(M)+T V ect

(
R̂xs

)])
(56)

- Maximisation with respect to θ

With a uniforma priori for the means, maximisation ofQh with respect tomjz gives
:

m̂jz =

∑T

t=1 θjz(t)p(z(t) |x,A
′, θ′)

∑T

t=1 p(z(t) |x,A
′, θ′)

(57)

With an Inverted Gamma priorG (α, β) (α > 0 et β > 1) for the variances, the
maximisation ofQh with respect toσjz gives:

σ̂jz =
2β+

∑T

t=1

(
Vjz+ θ

2
jz−2m̂jzθjz+ m̂

2
jz

)
p(z(t) |x,A′, θ′)

∑T

t=1 p(z(t) |x,A
′, θ′)+2 (α−1)

(58)

Summary of the Penalized EM algorithm

Based on the preceeding equations, we propose the followingalgorithm to estimate
sources and parameters using the following five steps:

1. Estimate the hyperparameters according to (57) and (58).
2. Update of data classification by estimatingẑMAP

1..T .
3. Given this classification, sources estimate is the mean ofthe Gaussiana posteriori

law (39).
4. Update of data classification.
5. Estimate the mixing matrixA according to the re-estimation equation (56).



COMPARISON WITH JMAP ALGORITHM AND ITS
SENSITIVITY TO INITIAL CONDITIONS

The Penalized EM algorithm has an optimization cost approximately2 times higher,
per sample, than the JMAP algorithm. However, both algorithms have a reasonable
computational complexity, linearly increasing with the number of samples. Sensitivity
to initial conditions is inherent to the EM-algorithm even to the penalized version. In
order to illustrate this fact, we simulated the algorithm with the same parameters as

in section IV. Note that initial conditions for hyperparameters areψ(0) =

(
1 1
1 1

)
and

m(0) =

(
0 0
0 0

)
. However, the Penalized EM algorithm fails in separating sources (see

figure 11). We note then that JMAP algorithm is more robust to initial conditions.

−2 0 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

s1

s2

−2 0 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x2

−2 0 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Sh1

Sh2

(a) (b) (c)

Figure 11- Results of separation with the Penalized EM algorithm:
(a) Phase space distribution of sources,

(b) mixed signals and (c) separated sources

We modified the initial condition to have means:m(0) =

(
−0.5 0.5
−0.5 0.5

)
. We noted, in

this case, the convergence of the Penalized EM algorithm to the correct solution. Figures
12-16 illustrate the separation results:
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Figure 12- Results of separation with the Penalized EM algorithm:
(a) Phase space distribution of sources,

(b) mixed signals and (c) separated sources
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Figure 13- Evolution of classification error Figure 14- Evolution of index
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Figure 15- Identification ofm11 Figure 16- Identification ofψ11

CONCLUSION

We have proposed solutions to source separation problem using a Bayesian framework.
Specific aspects of the described approach include:

• Taking account of errors on model and measurements.
• Introduction ofa priori distribution for the mixing matrix and hyperparameters.

This was motivated by two different reasons: Mixing matrix prior should exploit
previous information and variances prior should regularize the log-posterior objec-
tive function.

We then consider the problem in terms of a mixture of Gaussianpriors to develop a
hierarchical strategy for source estimation. This same interpretation leads us to classify
data before estimating hyperparameters and to reduce computational cost in the case of
the proposed Penalized EM algorithm.
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