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ABSTRACT 
 

Software reliability models can provide quantitative measures of the reliability of 
software systems which are of growing importance today. Most of the models are 
parametric ones which rely on modelling the software failure process as a Markov 
or nonhomogeneous Poisson process. It has been noticed that many of them do not 
give very accurate prediction of the software failure process as the focus is on the 
fitting of past data. In this paper, we study the use of double exponential smoothing 
technique to predict software failures. The proposed approach is a non-parametric 
one and it has the ability of providing more accurate prediction compared with 
traditional parametric models. It is very easy to use and it requires very limited 
amount of data storage and computational effort. It can be updated instantly without 
much calculation. Hence, it is a tool that should be more commonly used in 
practice. Numerical examples are shown to highlight the applicability. Comparisons 
with other commonly used software reliability growth models are also presented. 
 
 
Key words: Software reliability, double exponential smoothing, reliability 
prediction, repairable systems, model comparison 
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1. Introduction 

 

As computer systems are widely utilized in various areas including those with 

safety-critical functions, producing reliable software is of increasing importance. 

For the past two decades, many reliability models have been developed, see Musa 

et al. (1987), Xie (1991) and Lyu (1996). These models enable software developers 

to evaluate software reliability in a quantitative manner. Software reliability models 

can assist during software testing where it could be used to track reliability 

improvements and to provide an aid for making decisions such as on when testing 

can be terminated and how much additional resource is need for the testing.  

 

Traditional software reliability models, such as those well-known Goel-Okumoto 

model (Goel and Okumoto, 1979) and the s-shaped model (Yamada et al., 1983) 

have shown to be very useful in fitting software failure data. However, the 

predictive ability is questionable as the focus of such models are the fitting of the 

past data and it heavily relies on the early information available. In software 

development, the prediction of future failure behaviour is much more important. 

Although plenty of literature, see e.g. Keiller and Miller (1991) and Littlewood 

(1980, 1987), can be found on this issue, little study has been published in using 

other methods that have the potential of providing better predictive performance. 

 

Exponential smoothing is a forecasting technique which is based on adjusting an 

early forecast with the latest observation. In statistical analysis of time series data, 

this technique has shown surprising accuracy with minimal computational effort. 

The model components and parameters have some intuitive meaning to the users. 

Only limited data storage and computational effort are required. Hence, for a more 

accurate prediction of future software failure behaviour, this is a technique worth 

further study. 

 

In this paper, the use of double exponential smoothing technique is studied for 

prediction of the number of software failures that will occur for a continued period 

of testing. Actual data is used as a numerical example and a comparison to other 

prediction approach is carried out. From the results shown, the double exponential 
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smoothing technique has the ability of providing more accurate prediction 

compared with traditional parametric models. It is very easy to use and it requires 

very limited amount of data storage and computational effort. It can be updated 

instantly without much calculation. Hence, it is a tool that should be more 

commonly used in practice. 

 

 

2. The Exponential Smoothing Technique 
 

Exponential smoothing is a powerful forecasting technique which is characterized 

by its simplicity and nonparametric properties, see e.g., Gilchrist (1976) and 

Montgomery at al. (1990). A forecasting procedure, as derived from the model, is a 

procedure whose input is historical data and whose output is a predicted value. The 

predicted value is generated by the following equation: 
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Denote by Ni  the observation of the number of software failures during the latest 

time period and Fi  the last prediction of failures, we have that the predicted number 

of the failures for the next period is given by 
 

Fi +1 = α Ni + (1− α )Fi ,  

 

where 0 1< ≤α  is the smoothing constant which determines the relative weight 

placed on the current observation of failures. 

 

It has been noted that the simple exponential smoothing technique always lags 

behind the trend when it is present. The trend is the most important issue in 

software reliability prediction. In order to solve this problem, a type of double 

exponential smoothing designed to track time series with linear trend can be used, 

see e.g., Gilchrist (1976). The method requires two smoothing constants, α  and β . 

Two smoothing equations are used: 
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Si = α Ni + (1− α )(Si −1 + Gi −1),

Gi = β (Si − Si−1 ) + (1 − β )Gi −1.

 

 

where Si  is interpreted as the value of the intercept at time i and Gi  as the value of 

the slope at time i. The first equation is very similar to that used for simple 

exponential smoothing and the second equation is for the trend.  

 

When the most current failure numbers Ni  becomes available, it is averaged with 

the prior prediction of the current failure numbers, which is the previous intercept 
Si −1 plus the previous slope Gi −1 . The new estimate of the intercept Si  causes us to 

revise our estimate of the slope to Si − Si −1 . This value is then averaged with the 

previous estimate of the slope Gi −1 .  

 

The predicted number of failures in the next interval based on the double 

exponential smoothing technique is then given as 
 

Fi +1 = Si + Gi  

 
The k-step-ahead prediction Fi +k  can also be calculated as: 

 
Fi + k = Si + k Gi . 

 

The exponential smoothing technique has not been commonly used in software 

failure prediction. The main reason for this seems to be the fact that simple 

exponential smoothing is not able to capture the trend of the process. However, by 

employing the double exponential smoothing technique, the simplicity remains and 

the problem of capturing the trend is solved.  

 

It should be noted that the selection of the smoothing constants is a statistical issue. 

However, in practice, they depend on the weight on the latest information that we 

would like to give. As the from our experience, any reasonable value of the 

smoothing constants will give an accurate result for the predicted values. Unlike the 

traditional software reliability growth models which require accurate estimates of 

the model parameters, the exponential smoothing technique is much more robust. 
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On the other hand, the exponential smoothing technique requires an initial value to 

get started. This can be done by using the first two observations to determine an 

initial values. In most of practical situations, reasonable prediction can only be 

obtained after a certain amount of testing. This is especially the case when the 

existing software reliability models are used because little initial failure information 

usually implies inaccurate estimates of the parameters which makes the prediction 

inaccurate. Hence, this problem is not specifically for the method of double 

exponential smoothing. In fact, exponential smoothing techniques do not depend 

very much on early data, as their weight in the prediction is decreasing 

exponentially. 

 

Although there are some discussion of time series methods, see e.g., Singpurwalla 

and Soyer (1985), Soyer (1986) and Goel (1996), most of them a related to the use 

of moving averages type of methods. The double exponential smoothing stressed 

the analysis of trend and it has the advantage that it does not require a keeping of a 

large number of observations. What is needed is the latest value of Fi  and Gi . They 

can be updated easily whenever a new observation is available and suitable for 

automatic data collection system, see Murthy and Gent (1995). This paper is hence 

focused on the study of double exponential smoothing technique and its comparison 

with other traditional software reliability growth models. 
 
 

3. Application to Software Reliability Data 
 

The application of the double exponential smoothing technique in predicting 

software failure failures is a straightforward issue. A numerical example based on 

an actual set of data is given in this section. The data displayed in Table 1 in this 

study is from a large communication software system. Table 2 shows, for the last 

20 months, the one-step double exponential smoothing prediction and the error in 

the prediction. The values of smoothing constants used are and the method is 

initiated using the first two month of the data.  
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Table 1. Failure data of a large communication software system  
(read from left to right and up and down). 

 
2 11 18 10 12 4 28 6 7 6 
17 31 8 7 10 2 2 0 3 2 
1 1 4 3 39 20 12 13 26 33 
8 8 11 14 8 7 8 0 2 3 
2 5 3 4 4 1 3 1 0 2 

 
 

The plot of system failures together with the double exponential smoothing 

prediction is given in Figure 1. The smoothing constants used are 0.6 and 0.1, 

respectively. In this case, a large value for α is used because it can be suspected that 

the number of failures in a month might depend more on the recent values than 

much earlier ones. We see that the double exponential smoothing technique can 

predict very well the trend in the data change. 
 
 

Table 2. The results of the prediction and the prediction error  
using the double exponential smoothing technique 

 
Month # System

failures 
Prediction 
by DES 

Error of
DES 

31 8 8.0 0.0 
32 8 8.1 0.1 
33 11 8.1 -2.9 
34 14 10.1 -3.9 
35 8 12.9 4.9 
36 7 10.2 3.2 
37 8 8.3 0.3 
38 0 8.1 8.1 
39 2 2.7 0.7 
40 3 1.8 -1.2 
41 2 2.0 0.0 
42 5 1.5 -3.5 
43 3 3.4 0.4 
44 4 2.9 -1.1 
45 4 3.3 -0.7 
46 1 3.6 2.6 
47 3 1.7 -1.3 
48 1 2.2 1.2 
49 0 1.2 1.2 
50 2 0.1 -1.9 



  7 

 
 
 

0

2

4

6

8

10

12

14

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

0RQWK

System failures

Prediction by DES

 
 

Figure 1. The double exponential technique applied to system failure prediction. 
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5. Comparison with some other  

software reliability growth models 
 

Many software reliability models have been developed and tested in practice. 

However, it is commonly agreed that there is no single model which is superior to 

all others all the time. The objective of the research of the time series models is to 

develop an analytical framework for forecasting future software failure times. The 

developed models are studied to provide a characterization of the underlying 

software failure phenomenon. 

 

In this section, we compare our double exponential smoothing approach with some 

other commonly used software reliability growth models when applied to the same 

data set. The models used are the Goel-Okumoto model and the s-shaped NHPP 

model. These models all belong to the class of non-homogeneous Poisson process 

(NHPP) models and they are widely used by software reliability practitioners. They 

are also among the earliest models proposed, see Xie (1993). Compared with other 

early models, this type of models are known for their simplicity.  

 

NHPP models are all characterized by a mean value function m(t) which is the 

expected cumulative number of failures during (0,t]. Given the set of data, the 

parameters in the model can be estimated using the maximum likelihood method. 

When the functional relationship is determined, the number of failures in the next 

period of time can be calculated as 
 

m(i +1) − m(i) 

 

This is the approach adopted in our comparison. The data set is as in Table 1 and 

the maximum likelihood estimates are obtained using the software accompanied 

with the book by Lyu (1996). The one-step ahead prediction using the three NHPP 

models is compared with our double exponential smoothing approach for the last 12 

months and the results are shown in Table 3.  
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Table 3. Comparison of the double exponential smoothing  

with other software reliability growth models 

 
Month System 

Failures 
Prediction 

by DES 
Prediction by

GO Model 
Prediction by  

S-Shaped Model 
39 2 2.0 10.5 7.5 
40 3 2.2 10.2 6.8 
41 2 2.6 9.5 6.2 
42 5 2.5 8.8 5.6 
43 3 3.7 8.4 5.3 
44 4 3.6 7.9 5.0 
45 4 4.0 7.5 4.7 
46 1 4.2 7.2 4.4 
47 3 3.0 6.6 4.0 
48 1 3.1 6.3 3.7 
49 0 2.2 5.9 3.4 
50 2 1.2 5.4 3.1 

Sum of 
Absolute

Errors 

  
13.3 

 
64.2 

 
29.7 

Sum of 
Square 
Errors 

  
28.03 

 
377.26 

 
102.09 

 
 

The plot of the predicted number of failures using the two models and the double 

exponential smoothing technique is displayed in Figure 2 and the error plot is 

shown in Figure 3. From the comparison, it is clear that for this set of failure data, 

the double exponential smoothing technique provides a much more accurate 

prediction. 
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Figure 2. Comparison of the predicted values with the actual observation. 
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Figure 3. Error term comparison of the methods. 
 
 

The above comparison uses the system failure data presented in Xie and Wohlin 

(1995). Although it is common that the system failure data is used in system 

reliability analysis, additional background for this data set is given in the original 

paper. From that, we know that the system is composed of two subsystems with one 

subsystem made available later than the other one. The later part of the failures are 

mainly from the second subsystem. This change can be observed in the data in 

Table 1 as there is a sudden increase in the number of failures around month 25. 
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It is argued in Xie and Wohlin (1995) that for this type of data, traditional models 

are not good and they suggested an additive model for the analysis. Most of the 

software reliability growth models, except the s-shaped NHPP model, cannot 

capture the increase in the failure intensity which is common for a short period of 

time. This probably explains why the s-shaped NHPP model performs better than 

the Goel-Okumoto model for this set of data. However, the additive model which is 

more reasonable than a single model makes use of two models, one for each 

system, and they are usually more complicated. In this case, we have improved the 

predictive ability significantly by simplifying the procedure as the same time. 

 

One the other hand, the double exponential smoothing technique can be used even 

when the traditional software reliability models provides good results. We use the 

failure data from subsystem 2 as an example here. For this subsystem, the number 

of system failures for the 28 months the subsystem is available is displayed in Table 

4. The plot of the predicted number of failures are compared for the three methods 

in Figure 4. Figure 5 shows the absolute error of the prediction. 
 
 

Table 4. Number of subsystem 2 failures for each month since it is availble. 
 

3 3 38 19 12 13 26 
32 8 8 11 14 7 7 
7 0 2 3 2 5 2 
3 4 1 2 1 0 1 
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Figure 4. Comparison of the predicted values with the actual  
observation for a subsystem failure data. 
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Figure 5. Error term comparison of the methods  
for a subsystem failure data. 

 
 
In this case, the sums of the absolute errors are 13.1., 15.7 and 10.0 for the method 
of double exponential smoothing, the Goel-Okumoto model and the s-shaped 
model, respectively. The corresponding sum of square errors are 26.01, 35.35 and 
16.32, respectively. The s-shaped model is a better one, but all three models have a 
similar performance in this case. This can be explained that there is a clear 
increasing failure intensity at the beginning, a case for which the s-shaped model is 
able to capture. On the other hand, the double exponential smoothing constant are 
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selected arbitarary to illustrate the simplicity of the approach and they may not be 
the optimum ones. 
 

It can be noted that adding new subsystem to an existing system is a common 

situation for repairable systems. It can also be the case for combined software and 

hardware systems, see e.g., Keene and Chris (1992) for a discussion of the 

importance of this type of systems. The double exponential smoothing technique 

can be applied when analysing this type of systems. 
 
 

5. Reliability related prediction based on  
the double exponential smoothing technique 

 

As discussed before, the double exponential smoothing technique is useful for 

predicting of the number of failures in the next time period. However, sometimes it 

is more useful to provide an estimate of failure intensity. It can be calculated as the 

reciprocal of the number of the failures. That is, an failure intensity estimate can be 

given as 
 

λ 0 = λ (i) = 1/ Fi +1  

 

This is also the estimate of the field failure intensity when the software is released 

without further testing.   

 

On the other hand, if the testing is to be continued for an additional k periods of 

time, we can use the k-step ahead prediction of the number of failures to estimate 

the failure intensity λ k  expected to be achieved at that time. That is  
 

λ k = λ (i + k) = 1/ Fi+1+ k = 1/(Si + (k + 1)Gi)  

 
where Fi  and Gi . are the current values. 
 

If the software is released without additional testing, we can determine the field 

reliability R(T) which is the probability that there is no failure T time units after 

release. This is given as 
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R(T ) = exp{−λ 0T} 

 
where λ0  is given as before. 
 

A sequential decision procedure on whether to terminate the testing or continue 

with it can also be based on this estimate. For example, if, after a certain amount of 

testing, the reliability estimate given above is not as high as required, we can 

determine additional amount of testing needed to reach a prescribed reliability level 

R(T). 

 

This can be done using the k-step ahead prediction of the failure intensity given 

previously. We have that 
 

R(T ) = exp{−λ kT} = exp{−T /(Si + (1 + k)Gi )} 

 
so that the number of time periods needed for further testing, k, can be determined 

based on this reliability requirement as Fi  and Gi . are known from the double 
exponential smoothing prediction procedure. 
 
 

6. Conclusions 
 

In this paper, we have studied the use of the double exponential smoothing 

technique in prediction of software failures during testing. This method is a 

reasonable approach as in software reliability analysis, it is important to be able to 

predict software failures and track its trend. Traditional models rely heavily on the 

fitting of past data which may not be representative because of the change of testing 

strategy and other testing conditions. 

 

From the results of the comparison to other prediction models, we notice that the 

double exponential smoothing technique is a better method for predicting software 

failures in the testing process. It is very simple and the application is 

straightforward without complicated numerical computation, and yet the results are 

very accurate compared with other reliability growth models. 
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