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This paper presents a framework for knowledge discovery 
and concept exploration. In order to enhance the concept 
exploration capability of knowledge-based systems and to 
alleviate the limitations of the manual browsing approach, 
we have developed two spreading activation-based algo- 
rithms for concept exploration in large, heterogeneous net- 
works of concepts (e.g., multiple thesauri). One algorithm, 
which is based on the symbolic Al paradigm, performs a 
conventional branch-and-bound search on a semantic net 
representation to identify other highly relevant concepts 
(a serial, optimal search process). The second algorithm, 
which is based on the neural network approach, executes 
the Hopfield net parallel relaxation and convergence pro- 
cess to identify “convergent” concepts for some initial 
queries (a parallel, heuristic search process). Both algo- 
rithms can be adopted for automatic, multiple-thesauri 
consultation. We tested these two algorithms on a large 
text-based knowledge network of about 13,000 nodes 
(terms) and 80,000 directed links in the area of computing 
technologies. This knowledge network was created from 
two external thesauri and one automatically generated 
thesaurus. We conducted experiments to compare the be- 
haviors and performances of the two algorithms with the 
hypertext-like browsing process. Our experiment revealed 
that manual browsing achieved higher-term recall but 
lower-term precision in comparison to the algorithmic sys- 
tems. However, it was also a much more laborious and cog- 
nitively demanding process. In document retrieval, there 
were no statistically significant differences in document re- 
call and precision between the algorithms and the manual 
browsing process. In light of the effort required by the man- 
ual browsing process, our proposed algorithmic approach 
presents a viable option for efficiently traversing large- 
scale, multiple thesauri (knowledge network). 

1 Introduction 
Knowledge discovery in databases that is based on sta- 

tistical analysis, machine learning, and neural net com- 
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puting has attracted attention from researchers from sev- 
eral disciplines. In recent years, specialized software, 
powerful workstations, and even massively parallel com- 
puters have been used to perform extensive knowledge 
discovery on real-life databases. Advancement in hard- 
ware technology and the continuous development of 
practical. multiple-disciplined, “intelligent” analysis 
techniques has made “knowledge discovery” a highly 
promising area for information systems research and 
practice in the next decade. 

With the computation power of prevailing hardware 
and the “intelligence” of many practical algorithms, 
knowledge discovery has also made possible the develop- 
ment of large knowledge bases. Knowledge discovery al- 
gorithms can explore and identify the underlying pat- 
terns in large databases and create much larger knowl- 
edge bases than it is possible to develop using manual, 
labor-intensive knowledge elicitation (Parsaye, Chignell, 
Khashafian, & Wong 1989). The resulting discovered 
knowledge can also be consolidated and used in conjunc- 
tion with other existing knowledge sources (either man- 
ually created or extracted from other sources). The surge 
in knowledge base development and rapid increases in 
the size of knowledge bases have prompted researchers 
to suggest knowledge management systems as a counter- 
part to database management systems (Kaufman, 
Michalski. & Kerschberg 199 1). The amount and diver- 
sity of discovered knowledge have called for the develop- 
ment of high-level, efficient knowledge management 
tools. 

A knowledge network may consist of knowledge dis- 
covered from real-life databases and knowledge ex- 
tracted from existing domain-specific knowledge 
sources. In this paper we present our research concerning 
algorithmic concept exploration in a large network of 
knowledge. We propose two spreading activation-based 
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algorithms for concept exploration. One is based on a 
conventional, serial branch-and-bound search algorithm 
and the other on neural net parallel relaxation. These al- 
gorithms can traverse (explore) a knowledge network au- 
tomatically and suggest to users a set of concepts most 
relevant to their applications. This automatic concept 
exploration component can help alleviate the cognitive 
demand often associated with the manual browsing pro- 
cess and make the large-scale output of knowledge dis- 
covery methods more accessible and useful to users. 

In Section 2 we first present a framework for knowl- 
edge discovery and concept exploration. The entities in- 
volved and their relationships are depicted in this frame- 
work. Section 3 presents an overview of issues related to 
concept exploration in a large knowledge network. We 
then discuss an implementation of concept exploration 
in a large text-based knowledge network in Section 4. 
Section 5 outlines a branch-and-bound spreading activa- 
tion process and a Hopfield net-based parallel relaxation 
algorithm for concept exploration. A rationale for select- 
ing these two methods will also be presented. We report 
the results of experimental evaluation of the two algo- 
rithms in Section 6 and conclude the paper in Section 7. 

2 A Framework for Knowledge Discovery and 
Concept Exploration 

Based on past research and our experience with vati- 
ous knowledge discovery methods, we developed a 
framework to depict the different entities involved in 
knowledge discovery and their intertwining relation- 
ships. The main entities involved in this framework in- 
clude the underlying databases from which knowledge is 
acquired, knowledge discovery methods, the knowledge 
bases discovered by the algorithms and those imported 
from other domain-specific sources, and system-sup- 
ported concept exploration or knowledge management 
tools for users. The definitions of databases and knowl- 
edge bases are sometimes blurred because of their histor- 
ical roots in different disciplines such as artificial intelli- 
gence, database management systems, and information 
retrieval. In the context of our research, databases refer 
to online repositories of basic facts about objects and 
events in the world, e.g., employee files, transaction re- 
cords, bibliographic records, etc. and knowledge bases 
are online repositories of high-level, abstract human 
knowledge represented in terms of heuristics, inferencing 
rules, problem-solving strategies, networks of interre- 
lated concepts (concept space), and so on. These entities 
and their relationships are shown schematically in Figure 
1 and discussed in the context of earlier research. 

l Databases: As shown at the bottom of Figure 1. do- 
main-specific databases that capture information or 
data of relevance to users’ applications can be taken as 
major sources of knowledge. In the past few years, 
many major corporations and government agencies 

have used databases of drug side effects, retail shopping 
patterns, tax and welfare frauds, frequent flyer pat- 
terns, to identify application-specific knowledge. Fraw- 
ley, Pietetsky-Shapiro, and Matheus (1991) present a 
good overview of databases used in knowledge discovery. 

The enormous sizes of real-life databases, which 
have frequently prevented human beings from con- 
ducting labor-intensive analysis, and the availability of 
unused computing cycles in many institutions have 
prompted the use of computers for knowledge discov- 
ery (Parsaye et al., 1989; Frawley et al., 1991). Mas- 
sively parallel computers, and even supercomputers, 
have also been considered for analysis of some really 
large business or scientific databases. 
Knowledge discovery methods: Various knowledge 
discovery techniques have been developed over the 
past few decades by statistics, information science, and 
artificial intelligence researchers. 

Statistical algorithms typically examine quantita- 
tive data for the following purposes (Parsaye et al., 
1989): clustering descriptors with common character- 
istics. e.g., factor analysis, principal components anal- 
ysis (Morrison, 1976) and cluster analysis (Eve&t, 
1980); hypothesis testing for differences among differ- 
ent populations. e.g.. t test and analysis of variance 
(ANOVA) (Montgomery, 1976); trend analysis, e.g., 
time series analysis (Nelson, 1973; Morrison, 1976); 
and correlation between variables, e.g., correlation co- 
efficient and linear/multiple regression analysis (Mont- 
gomery. 1976). 

Recently, classical symbolic AI learning algorithms 
such as ID3 (Quinlan, 1983) and AQ (Michalski & Lar- 
son, 1978) and resurgent neural net (NN) learning al- 
gorithms such as Backpropagation (Rumelhart, Hin- 
ton, & Williams, 1986) have provided new perspectives 
for knowledge discovery. These techniques allow 
effective analysis of both qualitative and quantitative 
data. Unlike the statistical approach, which typically is 
based on some underlying models, assumptions, and 
stringent conditions, many AI-based techniques are 
more flexible, easier to use, more powerful, and pro- 
duce output that is more meaningful to users. (For a 
complete overview of the AI-based learning tech- 
niques, readers are referred to Carbonell, Michalski, 
and Mitchell [ 19831, Dietterich and Michalski [ 19831, 
Knight [ 19901, and Frawley et al. [ 199 I]. 
Discovered knowledge and other knowledge sources: 
In addition to the mathematical formulas and param- 
eters produced by statistical techniques, symbolic AI- 
based techniques produce outputs that are based on 
traditional knowledge representation schemes such as 
semantic net (SN), frame, decision trees, and logic 
(Parsaye, Chignell, Khoshafian, & Wang, 1990; Quin- 
Ian, 1983; Michalski & Stepp, 1983). Because most AI- 
based knowledge representations are grounded on cog- 
nitive research (human memory, problem-solving, 
story understanding, production systems) (Anderson, 
1985), they are often considered more natural and un- 
derstandable (for users) than statistical formulas or 
neural nets. 

The amount of knowledge discovered by various 
knowledge discovery methods (e.g., number of rules 
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FIG. 1. A framework for knowledge discovery and concept exploration. 

produced, number of nodes and links of a system-gen- 
erated semantic net or neural net, levels and branches 
of a decision tree) sometimes may be substantial. For 
some applications, it may also be necessary to include 
domain-specific knowledge bases, expert systems, cor- 
porate rules and guidelines, data dictionaries, external 
thesauri, in an institution’s complete knowledge repos- 
itory (shown in Figure 1 as the knowledge space). 

l Concept exploration methods: In order to manage and 
utilize the different knowledge bases within a knowl- 
edge space, we believe it is necessary to develop some 
high-level, friendly, and efficient system-supported 
methods or tools for users. We refer to these methods 
and tools as the concept exploration methods in Figure 
1. While knowledge discovery methods help generate 
knowledge bases from databases, concept exploration 
methods allow users to manage and utilize these 
knowledge bases effectively. 

These concept exploration methods need to be 
highly interactive so that users can explore in the 
knowledge space freely and efficiently, articulate their 
conceptual models, and use whatever knowledge is rel- 
evant to their applications or tasks. While knowledge 
discovery methods are data driven as shown at the bot- 
tom of Figure I, concept exploration needs to be user 
driven, as shown in the top part of Figure 1. 

Kaufman et al. ( 199 1) suggested a knowledge man- 
agement component for knowledge discovery applica- 
tions that can assist in the operation and use of knowl- 
edge bases and is similar to the database management 
function of commercial database management systems. 
They proposed counterparts of the relational database 
management system operators such as SELECT, PROJ- 
ECT, JOIN, and INTERSECT for knowledge manage- 
ment. However, the proposed functionalities and roles 
for these operators remained vague and these authors 
have suggested further research investigating different 
high-level operators for different representation 
schemes. Our research has been aimed at examining in 
detail an “ACTIVATE” operator on semantic net and 
neural net representations that can assist in spreading ac- 
tivation-based inferencing. 

3 Spreading Activation in a Knowledge Network: 
Semantic Net or Neural Net? 

In this research, we focused on concept exploration 
methods in a large network structure of knowledge. We 
developed two spreading activation-based search meth- 

350 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-June 1995 



ods, one based on symbolic, serial branch-and-bound 
search and the other on the neural net parallel relaxation 
method. These two methods can be used, respectively, in 
a semantic net or neural net knowledge representation. 
The research represents a step toward developing a prac- 
tical and useful knowledge management system. 

Among the knowledge representation schemes fre- 
quently adopted in knowledge discovery research, net- 
work-based representation was often considered one of 
the most direct and natural representations. Within a 
network of interconnected nodes and directed links, the 
relationships among objects, knowledge, and patterns of 
interest can be represented explicitly. Two main para- 
digms of network representation need to be examined in 
detail in the context of our research: the symbolic AI- 
based semantic nets and the connectionist AI-based neu- 
ral nets. While both representations continue to share 
some common bonds and exhibit some historical pecu- 
liarities, differences between them have become blurred 
due to the proliferation of network topologies and hybrid 
systems. 

Semantic Nets 

A semantic net is a structure for representing knowl- 
edge as a pattern of interconnected nodes and links 
(Sowa, 199 la). Modern semantic nets are often consid- 
ered outgrowths of Quillian’s (1968) work on semantic 
memory. Since then, many different versions have been 
implemented. Although the terminology and notations 
may vary, the following characteristics are common to 
most ofthem (Sowa, 1991a) 

(1) Nodes represent concepts of entities, attributes, 
events, and states. 

(2) Links represent conceptual relationships that hold 
between-concept nodes. Labels on the links specify 
relationship types. 

Over the past two decades, many semantic net re- 
searchers have attempted to develop a formal theory and 
models of semantic nets. For example, it is possible to 
translate a semantic net into its equivalent first-order 
logic representation (Charniak, 198 1). It has been shown 
that the class of semantic net languages cannot be differ- 
entiated from the class of nonsemantic net languages on 
the basis of representational adequacy (Shastri, 1991). 
More recently, some semantic net researchers have 
stressed the importance of developing efficient inferenc- 
ing algorithms on semantic nets for real tasks. Bill 
Woods (Sowa, 199 1 b), one of the pioneers in semantic 
net research remarked: 

A major gap, I believe, is the lack of sufficient emphasis 
on algorithmic uses of network representations to sup- 
port various kinds of inference. 

Many other researchers have also suggested develop- 
ing efficient, real-time algorithms for inferencing, adopt- 
ing semantic distance between two concepts as spreading 
activation heuristics, and measuring the performance of 
inferencing algorithms against real-life, large-scale appli- 
cations (Sowa, 199 1 b; Shastri, 199 1). 

The basis of most inferencing methods on semantic 
nets, however, is spreading activation, which is consid- 
ered a variant of the state space traversal adopted in most 
symbolic AI-based systems (Winston, 1984; Rich & 
Knight, 199 1). Inference is performed by traversing (ac- 
tivating) the links and nodes connected to some initial 
nodes of concepts, with shorter paths considered prefer- 
able to longer ones, a characteristic of human reasoning 
(Anderson, 1985; Shastri, 199 1). Conventional search 
techniques including depth-first-search (DFS), breadth- 
first-search (BFS), branch-and-bound search, and A* 
search have often been used for state space traversal in 
applications such as the traveling salesman problem 
(Winston, 1984). 

In this research, we adopted a branch-and-bound 
spreading activation algorithm for the following reasons. 
A branch-and-bound algorithm is considered an “opti- 
mal” search method, which aims at obtaining the short- 
est possible path during search. Identifying the shortest 
path in a large knowledge network is important because 
the objective of search is to find other very relevant con- 
cepts (i.e., neighboring concepts), instead of just any 
other concepts in the network. Therefore, A* and 
branch-and-bound were selected initially instead of the 
more popular (but nonoptimal) DFS or BFS method. A* 
search was later abandoned because of the lack of a 
proper underestimate measure in the concept explora- 
tion domain (A* terminates faster than branch-and- 
bound due to its underestimate measure). 

Branch-and-bound’s systematic exploration of the 
neighboring structure of some initial nodes based on a 
priority queue made it suitable for the concept explora- 
tion application. Cohen and Kjeldsen’s (1987) “con- 
strained spreading activation” and Chen and Dhar’s 
( 199 1) METACAT all incorporated branch-and- 
bound’s serial, optimal search property to some degree. 

Neural Nets 

Neural nets which represent knowledge, objects, and 
patterns in terms of interconnected nodes and weighted 
links have made an impressive come-back in recent 
years. There are several reasons for this, including the 
appearance of faster computers that can simulate larger 
networks and the development of new neural net archi- 
tectures for real-life applications. 

Neural nets are similar to semantic nets in terms of 
network representation. But distributed representations 
of neural nets (Hinton & Sejnowski, 1986) do not use 
individual nodes to represent concepts or links to repre- 
sent conceptual relationships. They use patterns of acti- 
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vations over many units in the network. For example, a 
Hopfield net (Hopfield, 1982) may provide a distributed 
representation for a content-addressable memory in 
which each structure is stored as a collection of active 
units. Such special distributed representation allows the 
network to be more damage resistant, a property that ex- 
ists in animal memory. In addition to the distributed rep- 
resentation property, neural nets perform parallel relax- 
ation search, during which nodes are activated in parallel 
and are traversed until the network reaches a stable state, 
This process often is considered more efficient than se- 
rial, symbolic search because it makes use of states that 
have no analogues in symbolic search and because it 
maps naturally onto highly parallel hardware (Rich & 
Knight, I99 1). 

The Hopfield net’s parallel search on a single-layered 
network of nodes and weighted links and its convergence 
property made it suitable for automatic concept explora- 
tion. With the activation of some initial nodes, the Hop- 
field algorithm can activate their direct neighbors at the 
next iteration, combine and compute activation values 
from various sources, and continue the iterations until 
the activation strengths “die” out (a gradual damping 
process). In essence, the Hopfield net identifies other rel- 
evant concepts through a parallel and convergent ap- 
proach. This neural network approach to search has only 
been used recently for information retrieval applications 
(Chen, Lynch, Basu, & Ng, 1993) and its novel search 
capability makes it ideal for concept exploration. Other 
popular neural networks such as the Backpropagation 
networks or the Kohonen networks (Lippmann, 1987) 
were not considered for this research because of either 
inadequate network topology (i.e., both networks consist 
of multiple layers of objects) or inappropriate network 
activation algorithms (e.g., the Delta rule in Backpropa- 
gation is more suitable for learning). More details about 
the branch-and-bound and the Hopfield implementa- 
tions adopted will be presented in Section 5. 

Many neural net and semantic net researchers con- 
sider localist representations of neural nets to be a vari- 
ant of semantic nets (or conversely, semantic nets to be 
a variant of neural nets), in which each node and link, 
respectively, represents an individual concept and a con- 
ceptual relationship (Sowa, 1991 b; Bechtel & Abra- 
hamsen, 1991; Rich&Knight, 1991). 

Systems developed by AI researchers frequently ex- 
hibit this resemblance to localist neural net and semantic 
net knowledge representations. For example, Anderson’s 
( 1983) ACT* nets and Fahlman’s ( 1979) NETL both use 
nodes for concepts and allow some algorithmic spread- 
ing activation on the networks. Many hybrid systems de- 
veloped in recent years employ symbolic and neural net 
characteristics, For example, Touretzky and Hinton 
(1988) and Gallant ( 1988) proposed connectionist pro- 
duction systems, and Derthick ( 1988) and Shastri ( 199 1) 
developed different connectionist semantic networks. 

In the research presented in this paper, we investi- 

gated a localist representation of a neural net which can 
also be perceived as a semantic net. To avoid confusion, 
we will use a more generic term, knowledge network, in 
the remainder of the paper. Our research examined the 
effects of implementing two different spreading activa- 
tion methods: symbolic branch-and-bound versus con- 
nectionist parallel relaxation on a large hybrid neural- 
semantic-net. Implementation issues such as computa- 
tional efficiency, scalability of the algorithms for use in 
large-scale networks, and the performances of the two 
algorithms will be presented in detail. 

4 Concept Exploration in a Large Text-Based 
Knowledge Network: An Experiment 

We applied our proposed framework to a research en- 
vironment where knowledge discovery and concept ex- 
ploration were essential for information retrieval and in- 
telligence analysis. The entities involved in this research 
environment consisted of many international comput- 
ing researchers (users), a couple of document databases, 
and several knowledge sources. We have previously re- 
ported findings regarding automatic construction of net- 
works of concepts for this application (Chen & Lynch, 
199 1) and a blackboard design for integrating heteroge- 
neous knowledge bases (Chen et al., 1993). We present 
here an overview of the application, emphasizing the 
concept exploration component in this environment. 

Databases 

The organization we studied is the Mosaic research 
group at the University of Arizona. Over the past decade 
group members have conducted research in the areas of 
foreign-nation studies and assessment of information 
technologies, focusing on the (former) Soviet Union and 
Eastern Europe (Russian/EE) (Goodman, Mehrer, 
Lynch, & Roche, 1990; McHenry, Lynch, & Snyder, 
1990). Group members (analysts) collect articles and 
other forms of international computing-related aca- 
demic publications, browse and study (foreign) docu- 
ments collected, exchange ideas with foreign researchers 
via e-mail, telephone, and other means, visit foreign 
countries and organizations periodically, and attend ma- 
jor international conferences and professional meetings. 
They build their knowledge around certain subject areas, 
develop their own personal contacts with foreign re- 
searchers and organizations, and shape their beliefs, val- 
ues, and judgment concerning international computing 
technologies and developments in specific countries of 
interest. 

A significant portion of the Mosaic group memory 
and expertise has been captured by the Mosaic docu- 
ment databases. A custom-made information storage 
and retrieval system, built on top of INGRES, supports 
Mosaic research (Lynch, Snyder, McHenry, & Vogel, 
1990). The two databases considered most important to 
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the Mosaic research environment both reside in the IN- 
GRES database management system. The “Russian” da- 
tabase, created manually, contains about 40,000 docu- 
ments (article abstracts, newspaper articles, electronic 
mail exchanges, business cards) in a database of about 
200 megabytes. In addition to this database, the Mosaic 
analysts also have extracted abstracts of recent comput- 
ing-related articles from the DIALOG database, which 
they call the Public database. It consists of about 3,000 
articles (20 megabytes). Some indexes had already been 
assigned to these documents by the DIALOG database. 
Because of operational concerns, this research only ex- 
perimented with the Public database. 

Knowledge Discovery Methods 

In a previous paper (Chen & Lynch, 1992), we re- 
ported detailed findings about automatic generation of 
knowledge bases from document databases. Several new 
cluster analysis algorithms were developed to produce 
knowledge bases (Saton, 1989; Everitt, 1980; Chen & 
Lynch, 1992). These algorithms were based on the fre- 
quency of terms co-occurring in the documents and the 
resulting knowledge was captured in a semantic net rep- 
resentation where nodes represent different types of con- 
cepts and weighted links indicate their strengths of rele- 
vance. 

In this paper. we use terms and indexes (terms used 
for indexing) interchangeably. When describing indexes 
and terms in the context of the semantic net or neural 
network representation, we also refer to them as nodes or 
concepts (to be consistent with the artificial intelligence 
terminology). We sketch below the procedure used for 
automatically creating knowledge bases, [Readers are re- 
ferred to Chen and Lynch ( 1992) for details.] 

(1) 

(2) 

Determine unique indexes: We identified all indexes 
assigned to all the documents in the database [as- 
signed previously by human indexers or generated 
automatically by automatic indexing techniques 
(Salton, 1989; Chen & Lynch, 1992)J. 
Weight computation: For each unique index, we 
computed its term co-occurrence probabilities with 
all other indexes based on the asymmetric “Cluster 
Function” developed by Chen and Lynch (1992). 
The term co-occurrence probability, which is a real 
number between 0 and 1, indicates the “relevance” 
weight between any two indexes. 

Weight(T,, Tk) = “=’ dtik 
II:=, 4 

Weight(T,, q) = “=I dLjk 
IY=I dik 

They indicate the similarity weights from Tj to Tk 
(the first equation) and from Tk to q (the second 
equation). Where d, indicates index T, in document 

i (value: 0 or I), drk indicates index Tk in document i 
(value: 0 or l), and dijk indicates both indexes q and 
T, are in document i (value: 0 or 1). 

The limitation of the popular symmetric co-oc- 
currence coefficients, e.g., cosine, Dice, and Jac- 
card’s, has been reported recently by Peat and Willett 
(I 99 I). Their research showed that similar terms 
identified by symmetric co-occurrence functions 
tended to occur very frequently in the database that 
was being searched and thus did little or nothing to 
improve the discriminatory power of the original 
query. They concluded that this can help explain 
Sparck Jones’ (197 I) finding that the best retrieval 
results were obtained if only the less frequently oc- 
curring terms were clustered and if the more fre- 
quently occurring terms were left unclustered. We 
echo their observations and, in fact, we indepen- 
dently reached the same conclusion through our ex- 
perience in developing several thesauri for capturing 
subject experts’ domain concepts (in terms of key- 
words and relationships) for several applications 
(Chen & Lynch, 1992: Chen, Schatz, Yim, & Fye, in 
press). In Chen and Lynch (1992), we showed that 
the asymmetric function outperformed the cosine 
function in generating domain-specific thesaurus. 

Discovered Knowledge and Other Knowledge Sources 

We used the Public knowledge base for testing the 
concept exploration algorithms. The size and the subject 
area (general computing) of the Public knowledge base 
allowed us to implement and evaluate the algorithms on 
our hardware platform more easily. The Public knowl- 
edge base contains 1,488 concepts (nodes) and 44,496 
weighted relationships (links). The weights associated 
with the links indicate the “strength” of relevance be- 
tween two terms in the network. These weights are prob- 
abilities between 0 and I. 

Use of a thesaurus or a knowledge base for “intelli- 
gent” information retrieval and management has been 
the focus of research in which many information science 
and computer science researchers have attempted to cap- 
ture experts’ domain knowledge for information re- 
trieval or information management. For example, 
CoalSORT (Monarch & Carbonell, 1987), a knowledge- 
based interface, facilitates the use of bibliographic data- 
bases in coal technology. A semantic net, representing 
an expert’s domain knowledge, embodies the system’s 
intelligence. GRANT, developed by Cohen and Kjeld- 
sen (1987) is an expert system for finding sources of 
funding for given research proposals. Its search 
method-constrained spreading activation in a semantic 
net-makes inferences about the goals of the user and 
thus finds information not explicitly requested but likely 
to be useful. Chen and Dhar (199 1) incorporated a por- 
tion of the Library of Congress Subject Headings (LCSH) 
into the design of an intelligent retrieval system. The sys- 
tem adopted a heuristics-based spreading activation al- 
gorithm to assist users in articulating their queries. The 
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National Library of Medicine’s Unified Medical Lan- 
guage System (UMLS) may be the largest-scale effort in 
integrating different knowledge sources (Humphreys & 
Lindberg, 1989; McGray & Hole, 1990; Lindberg & 
Humphreys, 1990). It includes a Metathesaurus, a se- 
mantic network, and an information sources map. The 
Metathesaurus contains information about biomedical 
concepts and their representation in more than 10 
different vocabularies and thesauri. The semantic net- 
work contains information about the types of terms (e.g., 
“disease,” “virus,” etc.) in the Metathesaurus and the 
permissible relationships among these types. The infor- 
mation sources map contains information about the 
scope, location, vocabulary, and access conditions of 
biomedical databases of all kinds. 

In an attempt to expand the knowledge coverage of 
our knowledge network, we included two more external 
knowledge sources (in the forms of thesauri) in our im- 
plementation: the complete ACM Computing Review 
Classification System (ACM CRCS) and a portion of the 
LCSH. The ACM CRCS represents the general comput- 
ing categories used by the ACM for classifying comput- 
ing literatures. The LCSH represents general computing 
terms selected by the Library of Congress for classifying 
computing-related books. Each knowledge source has its 
unique structure and vocabularies. 

The ACM CRCS is based on a hierarchical structure. 
Four levels of specificity exist. Terms fan out level by 
level. Although its classification structure is simpler and 
its subjects are less specific, it does represent general 
computing terms and their relationships very nicely. We 
identified two types of terms from the ACM CRCS. The 
first type deals with specific topics which are similar to 
the LCSH, e.g., “information retrieval systems” and 
“machine learning.” The second type of term, however, 
indicates general computing-related categories. These 
categories can be appended to terms in the ACM thesau- 
rus. Examples of general categories are verification, doc- 
umentation, testing. We identified 18 general categories 
and I,14 I specific terms from the ACM thesaurus. Five 
types of relationships were identified: BT/NT (broader/ 
narrower term) indicates hierarchical relationships be- 
tween the specific terms, RT (related term) indicates an 
associative relationship (this relationship is shown in the 
parentheses following some terms), and lSA/lNST (is-a 
and instance-of relationships) indicates the relationships 
between specific terms and general categories. For exam- 
ple, “Microprogram Design Aids-Verification” (a spe- 
cific term) is-a kind of “Verification” (a general category) 
or conversely, an instance-of “Verification” is “Micro- 
program Design Aids-Verification.” ISA and INST can 
be considered as special cases of the BT and NT relation- 
ships, respectively. We identified a total of 2,922 rela- 
tionships from the ACM CRCS. 

The LCSH is network based and contains terms and 
cross-references between terms. Terms indicate topics. 
Five types of relationships exist between terms: USE/UF 

(use or used for) indicates a synonymous relationship, 
RT indicates an associative relationship, and BT/NT in- 
dicates hierarchical relationships. Our subset of the 
LCSH contains 10,972 terms and 32,702 relationships. 

We present a summary of the structures of the three 
knowledge sources in terms of the frame-based represen- 
tation in Figure 2. Collectively, they augment the knowl- 
edge of our system and they can be very useful in assist- 
ing searchers in articulating their queries and improving 
search recall. An analysis of the terms appearing in the 
three knowledge bases revealed that only a few hundred 
terms appeared in two or more knowledge sources (see 
Table 1). For example, Row 3, Columns 7 and 8 show 
that 122 terms in the Public Knowledge base also ap- 
peared in the ACM CRCS, constituting 8.2% ofthe ACM 
CRCS terms. We can perceive the complete knowledge 
network as the union of three partially overlapping net- 
works-the Public knowledge base, the ACM CRCS, 
and the LCSH. 

Conceppt Exploration Methods 

The rich semantics and cross-references provided in 
various knowledge bases enable users of such systems to 
get into a network of knowledge easily and to explore 
and navigate in this network. However, to perform query 
refinement and to identify relevant concepts efficiently 
and effortlessly in a large network/hierarchy of concepts 
(perhaps several thousand to a few million) and at the 
same time avoid both the classical hypertext “embedded 
digression problem” (a system can potentially confuse 
and disorient its user) and the “art museum phenome- 
non” (a system can cause users to spend a great of time 
while learning nothing specific) (Foss, 1989; Carmel, 
Crawford, & Chen, 1992) requires an active and intelli- 
gent way to traverse multiple thesauri and multiple links. 
In the National Library of Medicine’s UMLS (Hum- 
phreys & Lindberg, 1989; McCray & Hole, 1990; Lind- 
berg & Humphreys, 1990) which contains several mil- 
lion biomedical concepts and their relationships from 
more than 10 sources, browsing could become extremely 
cognitively demanding for users. System-aided concept 
exploration and multiple-thesauri consultation have be- 
come a pressing research issue. 

“Spreading activation,” a memory association mech- 
anism that originated in human memory research, has 
been used successfully in various semantic net and neu- 
ral net applications. Our application, which includes net- 
works based on labeled links (the LCSH and the ACM 
CRCS) and weighted links (the Public knowledge base), 
is considered a hybrid system of semantic nets and neu- 
ral nets. 

In order to allow seamless spreading activation across 
all three knowledge bases, we developed a weight propa- 
gation scheme which assigned normalized weights to the 
labeled links (e.g., NT, RT, BT) based on the weights as- 
sociated with the Public knowledge base. We can then 
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Public KB Object Frame: 
{Object: 

Object type: (term) 
RT: (list of related terms) 

t 
ACM CRCS Object Frame: 

(Object: 
Object type: (term) 
NT: (list of narrower terms) 
BT: (list of broader terms) 
RT: (list of related terms) 
ISA: (list of parent terms) 
INST: (list of children terms) 

t 
LCSH Object Frame: 

(Object: 
Object type: (term) 
NT: (list of narrower terms) 
BT: (list of broader terms) 
RT: (1isL of related terms) 
USE/UF: (list of synonymous terms) 

t 

FIG. 2. Frame-based representations for the knowledge sources. 

traverse the resulting loosely coupled knowledge net- 
work by means of either symbolic state space search or 
neural net parallel relaxation. We outline the weight as- 
signment and propagation scheme below: 

(1) Elicit activation criteria: Two activation criteria 
need to be supplied by the user: Weights assigned to 
individual knowledge sources and weights assigned 
to different types of links. A scale of 0 to 10 for each 
knowledge source is used to indicate the searcher’s 
preferred sources-0 indicates the lowest preference 
level (i.e., the source is considered irrelevant) and 10 
indicates the highest preference level. The ratings 
provided are used to determine the relative weights 
associated with different knowledge sources. An- 
other 0- 10 scale is also used to elicit the user’s pref- 
erences among three types of links: BT, NT, and RT. 
For example, assigning a higher rating to NT than to 
BT indicates the user’s intention to traverse toward 
more specific concepts (through NT links). These 
ratings can be used by the spreading activation algo- 
rithms to determine the activation direction. By al- 

TABLE I. Terms/links in knowledge bases. 

lowing users to indicate their preferred knowledge 
sources and link types, our activation algorithms can 
traverse the knowledge sources more efficiently and 
“intelligently.” Setting these weights is a straightfor- 
ward task for most users-the system prompts them 
to enter a numeric value for each parameter. The O- 
10 scale allows them to indicate the relative impor- 
tance of their preferences. Default values can also be 
used if a user chooses not to change the setting. (In 
our benchmark testing and user evaluation experi- 
ment, discussed in Section 6, default values for these 
weights were set as follows: Public/ACM/LCSH 
= lO/lO/lO and RT/NT/BT = 3/10/l.) 

(2) Propagate connection weights: For the Public knowl- 
edge base, link weights have already been generated 
and stored. Because all three knowledge sources have 
some form of RT relationship, we can therefore use 
the RT link weights in the Public knowledge base as 
the basis for assigning weights to the RT links in the 
other two knowledge sources. The knowledge source 
and link type activation criteria obtained from the 
prior step can then be used to modify the assigned 

Public ACM CRCS LCSH 

Terms in Nodes Links Links/node Also in YC in Also in % in Also in % in 

Public 1,488 44,486 29.9 - - 122 8.2 177 11.9 
ACM CRCS 1,157 2,918 2.5 122 10.5 - 116 10.0 
LCSH 10,972 32,702 2.9 177 1.6 116 1.1 
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weights to reflect the user's search criteria. For exam- 
pie, the NT link weights were computed as the prod- 
uct of the average RT weight in the Public knowledge 
base and the relative NT/RT weight solicited from 
users (i.e., ART*LW(NT)/LW(RT), as shown in the 
equations below). The same process was applied to 

the BT links. A sketch of the connection weight as- 
signment for the different knowledge sources is 
shown below and the detailed spreading activation 
algorithms on this knowledge network are discussed 
in the next section. 

letknowledgesourcesweightsbe: 
KW(Public) :KW(ACM) :KW(LCSH)=a:b:c; 

{Solicitedfromusers.} 
letlinkweightsbe: 

LW(RT) : LW(NT) :LW(BT)=x:y:z; 
{Solicitedfromusers.) 

letART:=theaverageweightoftheRTlinksinthePublicKB; 
{ComputedfromINGRESrelations.} 

PropagateweightstolinksinACMCRCS: {b/a: relativeweightfor ACM.) 
LW(RT) := b/a *ART; 
LW(NT) := LW(INST) :=b/a* (ART*y/x); (1NSTisspecialcaseofNT.j 
LW(BT) := LW(ISA) :=b/a* (ART*z/x); {ISA is special case of BT.} 

PropagateweightstolinksinLCSH: (c/a: relativeweightforLCSH.} 
LW( RT) :=c/a*ART; 
LW(NT) :=c/a* (ART*y/x); 
LW(BT) :=c/a* (ART*z/x); 
LW(USE/UF) := 1; {Weightforsynonymouslinkisl.} 

In conclusion, with multiple, heterogeneous thesauri, 
created either manually or automatically for experimen- 
tal purposes, we were able to examine the feasibility of 
adopting spreading activation algorithms for “automatic 
thesaurus consultation.” However, our proposed frame- 
work and algorithms were intended for the more general 
network-based knowledge-inferencing tasks. 

5 Two Algorithms for Spreading Activation 

In this section, we discuss in detail the two algorithms we 
developed for automatic and “intelligent” concept ex- 
ploration in the knowledge network presented above. 
The novel features of the algorithms and a comparison 
of their behaviors are described. 

A Branch-and-Bound Spreading Activation Algorithm: 
Semantic Net Based 

Branch-and-bound search has been used frequently in 
state space traversal for identifying optimal paths (Win- 
ston, 1984). Applications such as scheduling, network 
routing, and the traveling salesman problem typically 
adopt this search method. As explained earlier, branch- 
and-bound was chosen over the more popular and yet 
simple DFS or BFS method because of its “optimal” 
search property, which was essential for finding the 
shortest paths and identifying a set of most relevant con- 
cepts in knowledge network. In Chen and Dhar (199 l), 
we first reported the use of such a method for informa- 

tion retrieval. The algorithm automatically traversed an 
online thesaurus (the LCSH) and made term suggestions. 

Our branch-and-bound implementation starts with 
terms provided by the user. These starting terms are as- 
signed a value of 1 as their node weights by the algorithm. 
(Our prototype system required an exact match between 
a search term and a node in the knowledge network. 
However, this can be improved in future development.) 
The terms are then used to activate their directly linked 
neighbors. Each activated neighbor receives a weight 
equal to the product of the weight of the activating node 
and the link weight. Based on the basic data structure 
adopted in branch-and-bound search, all activated nodes 
are put into a priority queue according to their associated 
weights. Terms with the heaviest weight in the queue are 
then used to activate their neighbors-terms which have 
equal weights are activated at the same time. Each node 
also records its starting term. Each activation is consid- 
ered an iteration. 

Branch-and-bound spreading activation repeats until 
a desirable user-defined state is reached (the stopping 
condition). When interacting with the algorithm 
adopted in our thesaurus consultation experiment, users 
are requested to provide a desired number of system-sug- 
gested associated terms, say X. This user-specified num- 
ber is used to determine the stopping condition for the 
branch-and-bound iterations. The algorithm first com- 
putes the associated node weights generated from the 
first iteration and then uses the desired number of terms 
to determine a cut-off threshold. The cut-off helps obtain 
x terms which are greater than the threshold. During the 
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next iterations, the system performs the branch-and- 
bound routine and combines weights of paths which 
originated from different starting terms. Nodes which 
obtain higher weights will thus be placed at the front of 
the priority queue. 

In essence, our algorithm uses a user-specified num- 
ber of terms to determine a stopping threshold for 
branch-and-bound. During iteration, it activates the 
highest-ranked nodes, computes node weights based on 
a simple multiplication function, and combines weights 
if the node can be reached from different starting terms. 
A more detailed sketch of the branch-and-bound spread- 
ing activation algorithm follows: 

Assigning Weights to Symbolic Links. The initial status 
of the net is represented by the weighted links and nodes 
associated with the three thesauri as discussed earlier. t;, 
represents the weight from node i to nodej. 

Initialization with User’s Input. An initial set of starting 
terms {S,, S,, . . . Sm} is chosen by the user. Each node 
in the network (of n nodes) which matches the starting 
terms is initialized to have a weight of 1: 

p;(O) = x,, 0 5 i 5 n - 1 

pi(t) is the weight of node i at iteration t. At time 0, the 
nodes corresponding to the starting terms are assigned I. 

The algorithm then creates a priority queue, Qpriorrt~, 
based on the decreasing weights assigned to each node. 
Initially, 

It also creates an output queue, Qortlplrl, to store the acti- 
vated nodes during each iteration. Initially, 

Activation, Weight Computation, and Iteration. During 
each iteration, the algorithm removes the highest- 
weighted nodes in Qpriorif)., activates their neighboring 
nodes, and computes their neighbors’ weights as follows: 

PjLj(t + l) = Pitt) x ti, 

As explained earlier, weight assignment is based on the 
product of the activating node weight and the link weight 
between the activating node and its neighbor. Recently 
activated nodes which had not been recorded earlier in 
Q ourPu, are inserted into the output queue, QoNIPUr (accord- 
ing to the order of their arrival). After computation, all 
expanded nodes in QpnonrJ are resorted. In order to re- 
ward a node which can be reached by different starting 
terms (i.e., two different paths lead to the same node), the 
algorithm sums up its associated weights and assigns the 
result to the node. The algorithm then records this 

higher-weighted node in the priority queue. This heuris- 
tic of assigning higher weight to a node which can be 
reached from different starting nodes in the network has 
also been adopted in other spreading activation-based 
systems (Shoval, 1985; Cohen & Kjeldsen, 1987; Chen 
&Dhar, 1991). 

Determining Stopping Condition. The algorithm solicits 
an expected number of system-suggested terms 01) from 
the users. This number is used by the algorithm to deter- 
mine the stopping condition for the branch-and-bound 
search. After the first iteration-all starting terms are ac- 
tivated because they have the same weights-Qpnon,.v re- 
cords the direct neighbors of all starting terms in decreas- 
ing weights. The algorithm identifies the pth node in 
Qpriorirg and obtains its weight, wP, as the threshold for 
stopping the branch-and-bound activation process (one 
of the stopping conditions). For most queries, p terms 
were produced after the first iteration. However, occa- 
sionally multiple iterations were needed to obtain p 
terms in Qgrronll.. If the system was unable to produce p 
terms after complete iteration (i.e., no more neighbors), 
the algorithm also terminated. 

This user-specified threshold aimed to help generate 
the top p terms relevant to the users’ queries. During it- 
eration, some terms which have higher weights than the 
terms in the queue will take up their positions in Qpriorily 
The algorithm stops when the output queue, Qolrr,,Z,r, con- 
sists of more than p nodes (there may not be exactly p 
nodes in the queue because the algorithm activates all 
highest-weighted nodes at the same iteration) or when 
the highest weight in QPr,r,r,,J, is less than the user-defined 
threshold value, uaP, or when Qprion,y becomes null (i.e., 
all neighbors are exhausted). 

The above branch-and-bound spreading activation al- 
gorithm is in essence a serial, optimal state space search 
process, during which “best” nodes get activated first. 
The user-supplied stopping condition allows the system 
to decide its exploration effort based on the users’ expec- 
tation. These features compare favorably with those of 
other heuristics-based spreading activation systems (Co- 
hen & Kjeldsen, 1987; Shoval, 1985) which typically 
neither have a user-supplied threshold nor exhibit the 
branch-and-bound optimal search characteristics. 

A Hopjeld Net Spreading Activation Algorithm. 
Neural Net Based 

The Hopfield net (Hopfield, 1982; Tank & Hopfield, 
1987) a classical method of inferencing in a single-lay- 
ered, weighted network, presents an interesting and 
novel alternative to the serial state space traversal of the 
symbolic branch-and-bound algorithm. It performs a 
parallel relaxation search, during which nodes are acti- 
vated in parallel and activation values from different 
sources are combined for each individual node. Neigh- 
boring nodes are traversed in order until the activation 
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levels of nodes on the network gradually die out and the 
network reaches a stable state (convergence). As dis- 
cussed earlier, a Hopfield net was chosen over other neu- 
ral networks because of its parallel search and convergent 
properties and its single-layer topology (most other neu- 
ral networks contain multiple layers of objects). A Hop- 
field net had been used successfully for various classifi- 
cation and optimization tasks (Lippmann, 1987; Simp- 
son, 1990) and was also adopted recently in a 
blackboard-based retrieval system (Chen et al., 1993). Its 
search behavior in a large knowledge network, however, 
had not been examined in detail. especially in compari- 
son with the more traditional serial search method. 

A Hopfield net can be used as associated memory, 
where unknown input patterns (e.g., fuzzy queries) can 
be classified and disambiguated based on the knowledge 
embedded in the network. Our weighted network of 
knowledge sources can be perceived as interconnections 
of neurons and synapses in the Hopfield net. where neu- 
rons represent concepts and synapses represent weighted 
links between pairs of concepts. Our implementation in- 
corporates the basic Hopfield net iteration and con- 
vergence ideas. However, significant modification was 
also made to take into consideration the three different 
knowledge sources and other unique characteristics of 
our application. 

Once the initial inputs and the weights have been as- 
sociated with the nodes in the knowledge sources, the 
algorithm activates neighboring terms, combines 
weighted links, performs a transformation function (a 
SIGMOID function, A), and determines the outputs of 
newly activated nodes. The process repeats until node 
outputs remain unchanged with further iterations. The 
node outputs then represent the concepts that best de- 
scribe the initial search terms. A sketch of the Hopfield 
net activation algorithm follows: 

Assigning Synaptic Weights. The “training” phase ofthe 
Hopfield net is completed when the weights have been 
propagated to all knowledge bases as discussed earlier. to 
represents the “synaptic” weight from node i to node j. 

Initialization with User’s Input. An initial set of starting 
terms {S,, S,, . . .Sm) is chosen by a user and each node 
in the network that matches the starting terms is initial- 
ized to have a weight of 1. Users also need to supply a 
desired number of suggested terms, p, as in the branch- 
and-bound method. 

p*,(O) = x,, 0 5 i 5 II - 1 

p,(f) is the output of node i at time t and x, which has a 
value between 0 and 1, indicates the input pattern for 
node i. At time 0, all input nodes are assigned 1. 

Activation, Weight Computation, and Iteration. 

n-l 
pj(t+ l)=.f, [ 1 2 tlj/.Li(t) ,Osjsn- 1 

i=O 

where .f, is the continuous SIGMOID transformation 
function as shown below (Knight, 1990; Dalton & Desh- 
mane, 199 1) 

where net, = C:Zd t,,yi(t), fl, serves as a threshold or bias, 
and A0 is used to modify the shape of the SIGMOID func- 
tion. 

This formula shows the parallel relaxation property of 
the Hopfield net. At each iteration, all nodes are acti- 
vated at the same time. The weight computation scheme, 
netj = 1::; topI( is also a unique characteristic of the 
Hopfield net algorithm. Based on parallel activation, 
each newly activated node computes its new weight 
based on the summation of the products of the weights 
assigned to its neighbors and their synapses. 

Convergence Stopping Condition. The above process is 
repeated until there is no change in terms of output be- 
tween two iterations. which is accomplished by checking: 

I)- I 
c IP,O + 1) - P,U)I 5 c 

J=o 

where t is the maximal allowable error (a small number). 
The final output represents the set of terms relevant to 
the starting term. 

The algorithm presents the top p terms among the fi- 
nal activated nodes if the number of final activated nodes 
is greater than p, the user’s expected number of terms. If 
the number of final activated nodes is less than p, the 
system repeats the complete activation process by adopt- 
ing a set of lower thresholds-lower B. and 0, values-in 
order to derive more activated nodes. In our implemen- 
tation, we allow the system to lower its thresholds three 
times, incrementally. If no more terms can be derived 
after lowering the thresholds three times, the algorithm 
terminates and presents the results from the last activa- 
tion. From our experiments, it appears that these default 
thresholds were able to handle most user requests. Only 
rarely did the system need to lower its thresholds more 
than once or twice. 

This threshold-tuning effort was critical to our appli- 
cation as it was in other Hopfield net applications (Lipp- 
mann, 1987: Knight, 1990). Our objective in tuning was 
to obtain a manageable number of branches at each iter- 
ation and a reasonable number of iterations. After exper- 
imentation, a default value of 0.11 for 8j and a value of 
0.05 for B. were selected as global default values for the 
network. The other three sets of ((I,, 8,) were: (0.065, 
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0.047) (0.056, 0.0464) and (0.047, 0.0458) respec- 
tively. 

Both the branch-and-bound and the Hopfield net ac- 
tivation algorithms were developed in C and run on a 
DECStation 5000/ 120 (25 MIPS machine, ULTRIX, 
1.2 gigabyte disk). The three knowledge sources were 
stored as three individual flat files in our testing. 

6 System Evaluation 

In order to examine the novel characteristics and per- 
formances of our two algorithms, we performed a bench- 
mark testing and a user evaluation experiment, respec- 
tively. The aim of the benchmark testing was to reveal 
the computational characteristics of the two algorithms, 
specifically the number of iterations performed by each 
method, the computing times, and the “source of knowl- 

edge” for each system-suggested term. The user evalua- 
tion, on the other hand, aimed at addressing perfor- 
mance issues. In this section we first present sample sys- 
tem sessions based on the two algorithms. We then 
present our evaluation results. 

Sample Sessions 
Sample sessions of branch-and-bound and Hopfield 

net spreading activations are presented below. Com- 
ments are enclosed in parentheses. The subject was re- 
quested to identify topics (with the help of the system) 
relevant to “KIDS: A Query and Inference System Based 
upon Knowledge Indexed Deductive Search,” by K. Lee, 
a Georgia State University Ph.D. dissertation, I39 pages, 
1989. An abstract of this dissertation was also presented 
to the subject. (Details about the experiment will be dis- 
cussed in the following subsection.) 

*---------...-------* 
Initialterms: {*Suppliedbythesubjectandusedbybothalgorithms. *} 
-------____---- 

1. (P L)INFORMATIONRETRIEVAL{*P:Public, A:ACM,L:LCSH*} 
2. (P )KNOWLEDGEBASE 
3. (P )THESAURUS 
4. (P L)AUTOMATICINDEXING 
*--------.-......-.-* 

A. Branch-and-Bound Activation. 

{*Thesubjectselectedthebranch-and-boundsearchmodulefirst.*} 

Enterthenumberofsystem-suggestedtermsor 'O'toquit$>O 
{*Usersuppliedhisdesirednumberofsuggestedterms. *} 

{*Thealgorithmsearchedallthreeknowledgesourcesandsuggested 
termsindecreasingorderofrelevance.Startingtermswereincluded.*} 

1. ( )THESAURUS 
2. ( )INDEXING 
3. ( )KEVIN.HOT {*User-specificfolderinPublicDB. *} 
4. ( )KNOWLEDGEBASE 
5. ( ) INFORMATIONRETRIEVAL 
6. ( )AUTOMATICINDEXING 
7. ( )DBMS.AI {*Termswith*.* arePublicfoldernames. *} 
8. ( )ROSS.HOT 
9. ( ) INFORMATIONRETRIEVALSYSTEMS 

10. ( )RETRIEVAL 
11. ( )EXPERTSYSTEMS 
12. ( ) INFORMATION 
13. ( )DATABASE 
14. ( )CAP.AT.DAT 
15. ( ) QUERY 
16. ( )RECALL 
17. ( )LANGUAGE 
18. ( ) SUPPORT 
19. ( ) INFORMATIONRETRIEVALSYSTEMEVALUATION 
20. ( )RESEARCH 
21. ( )GQP.DAT 
22. ( )MODEL 
23. ( )KEYWORD 

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-June 1995 359 



24. ( )PRECISION 
25. ( )USERINTERFACES 
26. ( )PETER.HOT 
27. ( )ARTIFICIALINTELLIGENCE 
28. ( )MANAGEMENT 
29. ( )EXPERTSYSTEM 
30. ( )LOGIC 
31. ( )OBJECT 
32. ( )SEMANTIC.MDL 
33. ( )DATABASEMANAGEMENTSYSTEMS 
34. ( )EXPERT 
35. ( )DESIGN 

Enternumbers [lto35]or 'O'toquit:1,2, 4-6, 9,16,19,24 
{*Thesubjectselecteddesiredterms.*} 

{*Thesystemlistedtheuser-selectedtermsandtheirsources.*} 
1. (P )THESAURUS 
2. (P ) INDEXING 
3. (P )KNOWLEDGEBASE 
4. (P L) INFORMATIONRETRIEVAL 
5. (P L)AUTOMATICINDEXING 
6. (P L) INFORMATIONRETRIEVALSYSTEMS 
7. (P )RECALL 
8. (P ) INFORMATIONRETRIEVALSYSTEMEVALUATION 
9. (P )PRECISION 

Enterthenumberof system- suggested terms of '0' toquit 50 
{*Thesubjectusedtheselectedtermstoactivatethebranch-and-bound 

algorithmagain. *} 

{*Moretermsweresuggested. *} 
1. ( )KEVIN.HOT 
2. ( ) INDEXING 
3. ( ) INFORMATIONRETRIEVAL 
4. ( )RECALL 

. . . . . . . . 
54. ( )DATASTRUCTURES 
55. ( )PERFORMANCE 
56. ( )QUERY.OPT 
57. ( )ARTIFICIALINTELLIGENCE 
58. ( )KEYWORD 
59. ( )THESAURI 
60. ( )USERINTERFACES 

{*Moreselections. *} 
Enternumbers [lto60]or 'O'toquit:2-6, 8,10,11,14,15 
{*Noticethat terms wererankedindi erentorderthanhad 

beensuggestedpreviously.Thiswasbecauseofthedifferent 
startingterms. *} 

1. (P )INDEXING 
2. (P L) INFORMATIONRETRIEVAL 
3. (P )RECALL 
4. (P )PRECISION 
5. (P L)INFORMATIONRETRIEVALSYSTEMS 
6. (P ) INFORMATIONRETRIEVALSYSTEMEVALUATION 
7. (P )THESAURUS 
8. (P L)AUTOMATICINDEXING 
9. ( L) INFORMATIONSTORAGEANDRETRIEVALSYSTEMS {"Anewterm. 

10. (P )KNOWLEDGEBASE 

Enterthenumberofsystem-suggestedtermsor '0' toquits 0 
{*Thesubjectdecidedtostopthesearchprocess. *} 

{*A total of10 terms wereselected. Sixtermsweresuggestedbythe 
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branch-and-boundalgorithmandtheycamefromtwoknowledgesources: 
thePublicKBandtheLCSH. *} 

B. Hopfield Net Activation. 

{*ThesubjectselectedtheHop"eld netsearch module. 
SimilarinterfacewasusedfortheHop"eldnetsearchprocess. *] 

Enterthenumberofsystem-suggestedtermsor '0' toquit$lO 
{*Noticethatthesuggestedtermsweredifferentfromthosesuggested 

bythebranch-and-boundalgorithm.*} 

1. ( ) INDEXING 
2. ( )SELLING - INFORMATIONSTORAGEANDRETRIEVALSYSTEMS 
3. ( )KEVIN.HOT 
4. ( ) INFORMATIONRETRIEVALSYSTEMEVALUATION 
5. ( )RECALL 
6. ( )EXPERTSYSTEMS 
7. ( )THESAURUS 
8. ( )DBMS.AI 
9. ( )ROSS.HOT 

10. ( ) INFORMATIONSTORAGEANDRETRIEVALSYSTEMS 
11. ( ) INFORMATIONRETRIEVAL 
12. ( )KNOWLEDGEBASE 
13. ( )AUTOMATIC INDEXING 

Enternumbers [lto13]or 'O'toquit:l, 2,4, 5,7,10-13 

1. (P )INDEXING 
2. ( L)SELLING - INFORMATIONSTORAGEANDRETRIEVALSYSTEMS 
3. (P ) INFORMATIONRETRIEVALSYSTEMEVALUATION 
4. (P )RECALL 
5. (P )THESAURUS 
6. ( L) INFORMATIONSTORAGEANDRETRIEVALSYSTEMS 
7. (P L) INFORMATIONRETRIEVAL 
8. (P )KNOWLEDGEBASE 
9. (P L)AUTOMATICINDEXING 

Enterthenumberof system-suggestedtermsor '0' toquit 
. . . . . . . 

Enternumber [lto40]or 'O'toquit:3-7, 9, 33, 35,36, 38 
. . . . . . . . 

Enternumbers [lto67]or '0' toquit: 0 
{*The system listedhis finalselections. *} 

1. (P )PRECISION 
2. (P ) INFORMATIONRETRIEVAL 
3. (P )INDEXING 
4. (P L)AUTOMATICINDEXING 
5. (P )RECALL 
6. ( L)AUTOMATICABSTRACTING {* SuggestedbyHP, notBAB. *} 
7. ( L)AUTOMATICCLASSIFICATION {* SuggestedbyHP, notBAB. *} 
8. ( L)AUTOMATICINFORMATIONRETRIEVAL {* SuggestedbyHP, notBAB.*} 
9. (P ) INFORMATIONRETRIEVALSYSTEMEVALUATION 

10. (P )THESAURUS 
11. ( L) INFORMATIONSTORAGEANDRETRIEVALSYSTEMS 
12. (P )KNOWLEDGEBASE 

{*Atotalof12termswereselected.Eight termswere suggestedbythe 
Hop"eldnetalgorithm.Terms6, 7,and8weredi erentfromthose 
suggestedbythebranch-and-boundalgorithm. *} 
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Benchmark Testing 

We first performed a benchmark testing of the two 
algorithms using 30 sample queries (generated by the ex- 
perimenters). Each query consisted of terms of various 
degrees of specificity (e.g., Artificial Intelligence vs. Nat- 
ural Language Processing) and different numbers of 
search terms. We tested five cases each for queries with 1 
term, 2 terms, 3 terms, 4 terms, 5 terms, and 10 terms, a 
total of 30 cases. A few examples of the queries used, all 
in the computing area, were: 1 term (Natural Language 
Processing), 2 terms (Group Decision Support Systems, 
Collaboration), 3 terms (Systems Analysis and Design, 
Simulation and Modeling, Optimization). 

For each query, we selected terms from different 
knowledge sources, “P” for the Public knowledge base, 
“A” for the ACM CRCS, and “L” for the LCSH, as 
shown in Table 2. Some terms may have appeared in 
more than one knowledge source. The results shown in 
Table 2 reveal the number of iterations, the computing 
times, and the sources of knowledge for the query terms 
and the system-suggested terms. Note that the branch- 
and-bound algorithm performed serial iteration, while 
the Hopfield net performed parallel relaxation at each 

TABLE 2. Results &benchmark testing. 

iteration. The reason for investigating the source of 
knowledge for system-suggested terms was to show the 
extent to which each algorithm branched out and uti- 
lized knowledge from other knowledge sources. 

In response time, the branch-and-bound algorithm 
clearly performed better than the Hopfield net parallel 
activation. A MINITAB two-sample t test (Ryan, Joiner, 
& Ryan, 1985) showed that on average the neural net 
took 24.5 seconds (standard deviation, [SD] = 8.34) 
while the semantic net took 6.9 seconds (SD = 2.42). The 
difference was statistically significant (value of two-sam- 
ple t test, T = 11.10 and significance level, p = .OOOO). 
This was clearly because the branch-and-bound search 
performed only a fixed number of serial explorations, 
while the Hopfield net searched a much larger search 
space during the parallel activation process. 

Despite the variation in the number of starting terms, 
the response times for both methods increased only 
slightly when the number of starting terms was in- 
creased. This finding is important. especially when con- 
sidering complex. fuzzy queries which often contain 
many starting terms (a scenario in which searchers need 
the most help from the system). The reason for this small 

Case 
No. of Query terms in 
terms (PAL) 

Suggested terms in 
NN:(P.A.L)/SN:(P.A.L) 

No. of iterat. 
NN/SN 

Times (sets) 
NN/SN 

I 
2 
3 
4 
5 
6 
-I 
8 
9 

IO 
I1 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Average 

(1.1.1) (12,7.7)/(5,7.2) It?/12 21/l] 
(1,O.l) (5,0, I6)/( 19,0.2) 15121 14/s 
(l,l,l) (I 1.5.1 1 )A I5,O.O) 14116 18/10 
Klo. 1) (0,0.20)/(0.0,20) I l/20 IO/l 1 
(IsAl) (434. I9)/( l6,0,3) 17120 26110 
(2, 14) (19.2.3)/(23,I.O) 21123 1816 
w42) (16.0.8)/( l8,O.l) 19/23 2218 
W,O) (20.3.4)/(21.0.0) 20123 2415 
(2,I.I) (I IS, I I )/( I9,O.O) 15123 1614 
(2,1,2) (11 .o. I2)/(20,0.0) 27122 2914 
(3,O,l) (20.0.18)/( 18.0.0) 19122 3115 
(1,2,1) (4,l I .8)/( 14.0.2) 22117 3416 
Cl.3) (22. I ,8)/( 15,0.2) 18/19 2916 
(l,3,1) (20.2.2)/( 19.0.0) 16122 2318 
( I ,2.2) (13.9,3)/(18.0.1) 912 I IO/4 
(22.4) (17.4,4)/(16.1.1) I7120 I l/6 
(3,2.2) (11,2,~3M19.0,1) 19123 3115 
(2.3,2) (18ShM 17.023 2412 I 3314 
(l,3,4) (18,2,5)/(20,1,1) I9124 3217 
(1.2,1) (15,8,3)/(l2,2,l) I8122 617 
(l,4.l) (19,46Ml9.0,1) 16124 27/3 
(4.w (10,1,12)/(19,0,1) IS/l9 2714 
(3,2.4) (2,O,I Q/(0,0,2 I) I l/21 2319 
(5.0.1) (19,0,3)/(l7.0,1) 23111 3319 
(W,l) (20,0,1)/(23,0.0) l2/23 30112 
Kw.3) (I l,O.l3)/(12,O.l9) 1 If39 3416 

(lO,l,3) (I 3.2.1 O)/( 18.3.2) 25119 32/7 
(8,0,4) ( l6.0.8)/( l9,0,2) 2412 I 36/8 
(9.1s) ( 19, I .6)/(2 1.0. I ) 27122 2519 
(&W (20.2,3)/(20.0.2) 2812 1 3116 

(3.1.1.2,1.9) (14.5,2.5.8.5)/(l6.4.0.5.3.0) l8.8/21.3 24.516.9 
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variation was that our branch-and-bound search decided 
a threshold based on the user’s expected number of 
terms. The Hopfield net thresholds (0, and 0j), on the 
other hand, were robust enough to guarantee a reason- 
able number of hits. 

Knowledge sources activated by the branch-and- 
bound algorithm appeared to be more strongly associ- 
ated with the origins (knowledge sources) of the starting 
terms than those activated by the Hopfield net. For ex- 
ample, when using the branch-and-bound method, if the 
starting term was from the LCSH, then the final branch- 
and-bound suggested terms were more likely to be from 
the LCSH than from other sources. The Hopfield net, on 
the other hand, appeared to invoke the different knowl- 
edge sources more evenly. As shown in Table 2, for most 
queries, the Hopfield net (NN) almost always produced 
terms from all three knowledge sources (i.e., more 
evenly), while the branch-and-bound (SN) often pro- 
duced terms from only a couple of knowledge sources 
(usually identical to the sources of the query terms). We 
believe this was because the parallel relaxation process 
branched out to other knowledge sources more effi- 
ciently than the serial search, with the result that com- 
bining evidence from different activated nodes as imple- 
mented in Hopfield net activation caused more even ac- 
tivation of terms from all sources. 

User Evaluation 

The second user evaluation experiment was designed 
to reveal the “quality” ofthe algorithms’ suggestions. We 
aimed to find out whether the two algorithms were able 
to help identify more relevant terms and documents and 
perform more efficiently than the conventional hy- 
pertext-like browsing method (i.e., manual thesaurus 
browsing). Term recall/precision, document recall/ 
precision, and time spent were used as performance mea- 
sures. We also recorded the subjects’ verbal comments 
on their retrieval operations. The Public database and 
three computing-related knowledge bases were used in 
the experiment. 

We enlisted three subjects for this experiment, two of 
whom were advanced (3-4 year) Ph.D. students in an 
information systems department and one was a M.S. stu- 
dent in a library school. All were working on theses in the 
database, artificial intelligence, or information retrieval- 
related areas. We selected for testing six dissertation ab- 
stracts which appeared in the 199 1 spring issue of SIGIR 
Forum (a publication of the ACM special interest group 
on information retrieval). These dissertations were all in 
areas that were familiar to the subjects with titles such as 
“Retrieval by Similarity in a Knowledge Base of Reus- 
able Code, ” “Cognitive Aspects of Human-Computer 
Interaction: Mental Models in Database Query Writing.” 

The subjects were shown the title and a half-page ab- 
stract for each dissertation. They were asked to read this 
information carefully and were requested to identify the 

subject areas or topics that they thought they would need 
to explore in order to develop a comprehensive overview 
and understanding of the dissertation. An experimenter 
recorded the subject-suggested terms. 

After the initial term solicitation, subjects were asked 
to use one algorithm and then the other to help them find 
other topics that might supplement their initial sets of 
topics. The order of presentation of the two algorithms 
had previously been randomized for each task. The same 
experimenter recorded all the selected terms. The same 
menu-driven interface (as shown in the previous sample 
session) was used for both algorithms and was operated 
by the experimenter. For each task, the interface allowed 
each subject to pick terms suggested by the algorithms, 
use the newly picked terms to activate the algorithms, 
pick more terms, activate again, and so on until the sub- 
ject decided to stop. After using both algorithms, subjects 
were asked to examine the lists of terms they initially pre- 
sented and the terms they picked from the system-sug- 
gested lists and decide whether they were still relevant 
(sometimes terms may no longer be considered relevant 
after a subject has identified other more precise terms). 

After using the algorithm-based interface, we asked 
subjects to browse the three knowledge bases for terms 
that might supplement their initial sets ofterms (subject- 
suggested terms). A simple hypertext-like interface was 
used to navigate through the three knowledge bases. For 
each task, each subject examined all three knowledge 
bases separately, in the subject’s own choice of order. 
Each subject typed in one term at a time using a specific 
thesaurus. The subject then chose one relevant term (if 
any occurred) from the thesaurus-suggested list and re- 
peated the same process. In essence, the hypertext-like 
browsing system only looked up terms which were di- 
rectly linked to a search term in a chosen knowledge 
base. On the other hand, the two algorithms performed 
an optimal (or convergent), multiple-link, multiple-the- 
saurus search for relevant terms, in contrast to the often 
laborious manual browsing process that is widely used in 
library and bibliographic database retrieval settings 
(Chen & Dhar, 1987). After browsing all knowledge 
bases, subjects were asked to re-examine the lists of se- 
lected terms and to confirm their selections. 

After the above term selection process (both algorith- 
mic and manual), we proceeded to a document selection 
and evaluation phase. Due to difficulty in operationaliz- 
ing the recall and precision measures (especially recall) 
(Salton, Allan, & Buckley, 1994) we adopted a docu- 
ment evaluation design similar to the one reported in Ek- 
mekcioglu, Robertson, and Willett ( 1992). Subjects were 
asked to examine different sets of ranked documents for 
their relevance to the corresponding dissertation ab- 
stract. Four lists of terms, representing subject suggested, 
branch-and-bound suggested, Hopfield net suggested, 
and browsing selected terms, were used, respectively, to 
retrieve the 15 most pertinent abstracts from the Public 
database. Document ranking was based on the number 

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-June 1995 363 



of terms that were associated with each abstract. In addi- 
tion, we also randomly generated 15 abstracts that did 
not match with any of the selected terms. Depending on 
the number of overlapping abstracts, the number of doc- 
uments in each collection for each task ranged from 43 
to 68. By mixing relevant and irrelevant documents and 
soliciting subjects’ evaluation, we were able to find out 
which set of terms was most helpful in suggesting rele- 
vant documents. 

On average, each subject spent about 6.2 hours to 
complete all six tasks through the above stages: subject’s 
term suggestion, two algorithm activations, manual 
browsing, and document evaluation. We also logged the 
complete interactions and recorded subjects’ verbal 
comments. Two sets of performance analysis were con- 
ducted: One focused on terms and the other on docu- 
ments. We report the results below. 

Performance Analysis on Term Retrieval. We used the 
final lists of terms picked by each individual subject (i.e., 
subject-suggested, algorithm-suggested, and browsing- 
suggested terms) for each task as the target list of relevant 
terms. We then computed the term recall, term 
precision, time spent, contribution rate, and reviewing 
rate of the branch-and-bound suggested list (semantic 
net), the Hopfield net suggested list (neural net), and the 
manual browsing selected list (MB). Results are shown 
in Figure 3. 

Interestingly, there was more agreement between sub- 
jects in their initial lists than their final lists. Most sub- 
jects used the terms in the SIGIR abstracts to start their 
searches, thus there was a significant overlap of terms 
used. However, after initiating the manual browsing pro- 
cess and the algorithms, their selections varied signifi- 
cantly. We believe this was because of the differences be- 
tween the subjects’ backgrounds and their inter- 
pretations of the SIGIR abstracts. 

A. Term Recall. Term recall indicated the portion of the 
target list which was found on each ofthe four lists. Man- 
ual browsing resulted in a (statistically) significantly 
higher recall (at p = 10% level) over the branch-and- 
bound (SN) and Hopfield net (NN) algorithms (SN vs. 
NN vs. MB, p = .O 13). Two two-sample t tests confirmed 
this finding (SN:MB = 0.34:0.44, p = .021; NN:MB 
= 0.33:0.44, a = .O 14). Between the two algorithms, the 
branch-and-bound algorithm had a slightly higher recall 
than the Hopfield net algorithm, but the difference was 
not significant (SN:NN = 0.34:0.33, p = .778). After ex- 
tensive manual browsing, subjects were able to obtain a 
larger set of relevant terms (than resulted from using the 
algorithmic process). 

B. Term Precision. Term precision indicated the por- 
tion of each list that appeared in the target list. In con- 
trast to the recall results, manual browsing resulted in 
a significantly lower precision value compared with the 

algorithm-based systems (SN vs. NN vs. MB, p = .OOO). 
This was mainly because the number of terms suggested 
via manual browsing was much larger than that of terms 
suggested by the two algorithms, and only a few were 
judged relevant by the subjects. Two two-sample t tests 
also confirmed this finding (SN:MB = 0.19:0.02, p 
= 0.000; NN:MB = 0.18:0.02, p = .OOO). Although the 
branch-and-bound algorithm had a slightly higher 
precision than the Hopfield net algorithm, the difference 
was not significant (SN:NN = 0.19:O. 18, p = .495). 

C. Time Spent. Because the hypertext-like interface sug- 
gested many more terms than the two algorithms, the 
time spent on manual browsing was significantly longer 
than that spent on either of the two algorithms (SN vs. 
NN vs. MB, p = .OOO). On average, each subject spent 
16.2 minutes browsing, while each spent 5.9-7.2 min- 
utes using either algorithm for each task. Two two-sam- 
ple t tests revealed the same result (SN:MB = 5.9: 16.2, p 
= .OOO; NN:MB = 7.2:16.2, p = .OOO). Between the two 
algorithmic systems, subjects spent less time using the 
branch-and-bound system, but the difference was not 
significant (SN:NN = 5.9:7.2, p = .28 1). 

D. Contribution Rate. We defined a new measure, con- 
tribution rate, to indicate the number of terms picked by 
subjects per time unit (1 minute). ANOVA showed that 
the contribution rate of manual browsing was signifi- 
cantly lower than that of either algorithm (SN vs. NN vs. 
MB, p = .OO 1). On average, the manual browsing process 
contributed 0.58 term per minute, while branch-and- 
bound and Hopfield net systems contributed 1.44 and 
1.22 terms per minute, respectively. Two two-sample t 
tests also confirmed this finding (SN:MB = 1.44:0.58, p 
= .OOO; NN:MB = 1.22:0.58, p = .003). However, the 
difference between the two algorithms’ contribution 
rates was not significant (SN:NN = 1.44: 1.22, p = .436). 

E. Reviewing Rate. A subject was expected to spend 
about the same amount of time reviewing terms sug- 
gested by algorithms and terms returned from manual 
browsing. Nonetheless, in this experiment, the reviewing 
rate (the number of terms reviewed per time unit-l 
minute in this case) for manual browsing was signifi- 
cantly faster than that for both algorithms (SN vs. NN 
vs. MB, p = .OOO). Individual two-sample t tests con- 
firmed the result (SN:MB = 7.5:29.6, p = .OOO; NN:MB 
= 6.9:29.6, p = .OOO). There was no significant difference 
between the two algorithms (SN:NN = 7.5:6.9,p = .565). 
The hypertext-like browsing process was clearly more 
time pressed and cognitively demanding than the algo- 
rithmic process. 

Using their own terms, subjects were able on average 
to achieve a 30% recall level. Their precision level was 
at lOO%-all terms they initially supplied were judged 
relevant later on. Each algorithm was able to double the 
number of terms subjects selected, as shown by the 33% 

364 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-June 1995 



A. Term Recall : ANALYSIS OF VARIANCE 
SOURCE DF SS MS 
FACTOR 2 0.1224 0.0612 

LEVEL N MEAN STDEV 
SN 18 0.3421 0.0976 
NN 18 0.3326 0.1026 
MB 18 0.4380 0.1377 

POOLED STDEV = 0.1140 0.300 0.360 0.420 0.480 

B. Term Precision: ANALYSIS OF 
SOURCE DF ss 
FACTOR 2 0.31097 

LEVEL N MEAN 
SN 18 0.19271 
NN 18 0.17580 
MB 18 0.02394 

POOLED STDEV = 0.06046 

F 
4.71 0.01; 

INDIVIDUAL 95 PCT CI'S FOR MEAN 
----+---------+---------+---------+-- 

( - - - - - - - - *-------a) 

(_____--_ * _-------) 

( -------*--------) 

----+-----..---+ ---------+---------+-- 

VARIANCE 
US F 

0.15549 42.53 0.00: 
INDIVIDUAL 95 PCT CI'S FOR MEAN 

STDEV -+---------+---------+---------+----- 
0.06632 ( ---- *---) 
0.08014 (---*---) 
0.01207 t---*----j 

C. Time Spent: ANALYSIS OF VARIANCE 
SOURCE DF SS MS 
FACTOR 2 1121.9 561.0 

LEVEL N MEAN STDEV 
SN 18 5.944 3.226 
NN 18 7.167 3.468 
MB 18 16.167 7.422 

POOLED STDEV = 5.084 

F P 
21.71 0.000 

INDIVIDUAL 95 PCT CI'S FOR MEAN 

D. Contribution Rate: 
SOURCE DF 
FACTOR 2 

LEVEL N 
SN 18 
NN 18 
MB 18 

POOLED STDEV = 

ANALYSIS OF VARIANCE 
ss MS F 

7.085 3.542 7.90 0.00: 
INDIVIDUAL 95 PCT CI'S FOR MEAN 

MEAN STDEV -----+---------+---------+---------+- 
1.4368 0.7907 (------*-----) 
1.2243 0.8263 ( ----'----) 
0.5846 0.1916 (------ * -----) 

-----+---------+---------+---------+- 
0.6695 0.50 1.00 1.50 2.00 

E. Reviewing Rate: ANALYSIS OF 
SOURCE DF ss 
FACTOR 2 6053.7 

LEVEL N MEAN 
SN 18 7.477 
NN 18 6.861 
MB 18 29.623 

POOLED STDEV = 8.518 

VARIANCE 
MS F 

3026.9 41.72 0.00: 
INDIVIDUAL 95 PCT CI'S FOR MEAN 

STDEV --------+---------+---------+-------- 
3.385 (---*----) , 
2.960 I---'---) 

14.051 (--*--) 
--------+---------+---------+-------- 

10 20 .30 

FIG. 3. Resultsofperformanceanalysisonterm retrieval. 

and 34% recall values from the two algorithmic systems. cognitive psychology literature (Anderson, 1985; Chen 
The human’s ability to recognize objects (much better & Lynch, 1992). The algorithms’ suggestions in effect 
than recall of objects) has been well documented in the served as an excellent memory-jogging tool for users dur- 
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ing concept exploration. The same memory-jogging fac- 
tor also enabled manual browsing to provide more 
terms-44% recall value for manual browsing. However, 
the time spent and effort involved in manual browsing 
were enormous for all subjects. 

An interesting observation from the experiment, 
based on the subjects’ verbal protocols, was that the 
manual browsing process often resulted in serendipitous 
and/or off-the-track browsing behavior as reported in 
Carmel et al. ( 1992). A subject commented, “I just want 
to have a quick look at this term. It is related to what 
I am doing (subject’s own research) right now. It’s not 
relevant to this query.” In addition, manual browsing 
provided a lot of opportunity for being distracted. While 
reviewing a list of terms, a subject said, “1 am curious 
about this term. Let me see what it is.” We observed that 
when subjects used the algorithms, they reviewed the 
suggested terms more slowly and treated them more se- 
riously and carefully than when performing manual 
browsing. Subjects glanced or skimmed through most 
terms retrieved from manual browsing. Another obser- 
vation was that subjects were easily frustrated when they 
reached the end of a particular link during the manual 
browsing process. A subject said, “It’s a dead end. . _ . 
It’s a dead end, again!” Whereas the physical appear- 
ances of all three knowledge bases were left open for sub- 
jects to browse and examine, both of our algorithms hid 
physical appearance from subjects. 

In conclusion, manual browsing achieved higher- 
term recall but lower-term precision than the algorith- 
mic systems. It was also a much more laborious and cog- 
nitively demanding process. 

Performance Analysis on Document Retrieval. For doc- 
ument retrieval performance analysis, we first compared 
documents obtained from four different sources: subject- 
suggested (Subject), branch-and-bound algorithm (SN), 
Hopfield net algorithm (NN), and manual browsing pro- 
cess (MB; Figure 4A, B). We then combined the two sets 
of algorithm-related documents to determine perfor- 
mance differences among human effort (Subject), algo- 
rithmic approach (SN/NN), and manual browsing ap- 
proach (MB; Figure 4C, D). (The two algorithms sug- 
gested different sets of documents which can be 
combined easily in a system.) Document recall and 
precision results are discussed below. 

A. Document Recall (Subject, SN, NN, MB). Docu- 
ment recall indicated the portion of the target document 
list which was found in each of the four lists. The docu- 
ment recall for manual browsing was somewhat higher 
than that for subject-suggested, branch-and-bound, and 
Hopfield net algorithms, but the overall ANOVA did not 
show a significant difference (Subject:SN:NN:MB 
= 0.3 1:0.27:0.29:0.43, p = .202). However, the two-sam- 
ple t test between the branch-and-bound procedure and 
the manual browsing process did indicate a significant 

difference (SN:MB = 0.27:0.43, p = .068). Other individ- 
ual two-sample t tests did not show significant difference 
(Subject:SN, p = .627; Subject:NN, p = .784; Subject: 
MB,p=.lSO;SN:NN,p= .85l;NN:MB,p=.116). 

B. Document Precision (Subject, SN, NN, MB). Docu- 
ment precision indicated the portion of each document 
list that appeared in the target document list. The docu- 
ment precision values for subject-suggested and manual 
browsing sets appeared to be higher than those of the oth- 
ers. However, there was no statistically significant 
difference among four sources (Subject:SN:NN:MB 
= 0.2 1:O. 15:O. 14:O. 19, p = .583). Individual two-sample 
t tests also did not reveal any significant differences (Sub- 
ject:SN, p = .334: Subject:NN, p = .275; Subject:MB, p 
= .735; SN:NN, p = .938; SN:MB, p = .441; NN:MB, p 
= .356). (Because the terms provided by one subject for 
a particular task did not retrieve any documents, the 
sample size for Subject was reduced from 18 to 17 as 
shown in Figure 4B, D.) 

C. Document Recall (Subject, SN/NN, MB). The docu- 
ment recall values for the combined algorithms and 
manual browsing were almost the same. While these val- 
ues were higher than for subjects, the difference was not 
statistically significant (Subject:SN/NN:MB = 0.31: 
0.43:0.43, p = .305). Individual two-sample t tests con- 
firmed the same finding (Subject:SN/NN, p = ,167; Sub- 
ject:MB, p = .lSO; SN/NN:MB, p = .978). 

D. Document Precision (Subject, SN/NN, MB). The 
document precision for SN/NN was less than that for 
Subject and MB. However. there was no significant 
difference among them (Subject:SN/NN:MB = 0.21: 
0.14:O. 19, p = .460). Individual two-sample t tests con- 
firmed the result (Subject:SN/NN. p = 0.247; Subject: 
MB,p = .735; SN/NN:MB, p = .3 14). 

In conclusion, we did not observe significant differ- 
ences between the relevant documents suggested by the 
algorithms and those generated via the manual browsing 
process (in document recall and precision). However, the 
algorithmic thesaurus consultation approach and the 
manual thesaurus browsing process all could contribute 
to a larger set of relevant documents for users (than was 
discovered without such aids). In light of the effort re- 
quired of the manual browsing process, our proposed al- 
gorithmic approach appeared to be a viable option for 
efficiently traversing large-scale, multiple thesauri 
(knowledge networks). 

7 Conclusion 

This paper presents a framework for knowledge dis- 
covery and concept exploration in a large knowledge net- 
work. The potentially large amount of knowledge that 
can be discovered by various Al, statistical, and neural 
net learning algorithms and the need to integrate differ- 
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A. Document Recall (Subject, SN, 
SOURCE DF ss 
FACTOR 3 0.2777 

LEVEL N MEAN 
Subject 18 0.3096 
SN 18 0.2745 
NN 18 0.2880 
MB 18 0.4312 

POOLED STDEV = 0.2418 

B. Document Precision (Subject, 
SOURCE DF ss 
FACTOR 3 0.0545 

LEVEL N MEAN 
Subject 17 0.2107 
SN 18 0.1481 
NN 18 0.1444 
M B  18 0.1889 

POOLED STDEV = 0.1667 

NN, MB): ANALYSIS OF VARIANCE 
M S  F 

0.0926 1.58 0.20; 
INDIVIDUAL 95 PCT CI'S FOR MEAN 

STDEV -------+---------+---------+--------- 
0.2347 (---------'--------) 
0.1934 (---------*--------) 
rJ.233g (----- '---• --------) 
0.2944 (---------'--------) 

-------+---------+---------+--------- 
0.24 0.36 0.48 

SN, NN, MB): ANALYSIS OF VARIAEjCE 
MS F 

0.0182 0.65 OS*! 
INDIVIDUAL 95 PCT CI'S FOR MEAN 

STDEV -+---------+---------+---------+----- 
0.2177 (----------*-----------) 
0.1560 (----------*----------) 
0.1258 (-----------*----------I 
0.1572 (----------*----------) 

-+---------+---------+---------+----- 
0.070 0.140 0.210 0.280 

C. Document Recall (Subject, SN/NN, MB): 
SOURCE DF ss MS 
FACTOR 2 0.1736 0.0868 

LEVEL N MEAN STDEV 
Subject 18 0.3096 0.2347 
SN/NN 18 0.4286 0.2697 
MB 18 0.4312 0.2944 

POOLED STDEV = 0.2674 

D. Document Precision (Subject, 
SOURCE DF ss 
GACTOR 2 0.0455 

LEVEL N MEAN 
Subject 17 0.2107 
SN/NN 18 0.1405 
MB 18 0.1889 

POOLED STDEV = 0.1698 

ANALYSIS OF VARIANCE 
F 

1.21 0.30: 
INDIVIDUAL 95 PCT CI'S FOR MEAN 
-----+---------+-------~-t---------t- 
(----------*---------) 

(----------*---------) 
(----------f---------) 

-----t---------t---------+---------+- 
0.24 0.36 0.48 0.60 

SN/NN, MB): ANALYSIS OF VARIANCE 
MS F 

0.0227 0.79 0.46: 
INDIVIDUAL 95 PCT CI'S FOR MEAN 

STDEV --+---------+---------t-------+---+---- 
0.2177 (-----------'-----------) 
0.1246 (----------*-----------) 
0.1572 (-----------'----------) 

--t---------t---------+---------+------ 
0.070 0.140 0.210 0.280 

FIG.4. Resultsofperformance analysis on document retrieval. 

ent sources of knowledge have made knowledge manage- 
ment or concept exploration in a large knowledge space 
an important area for research. 

Based on a hybrid network representation of a seman- 
tic net and a neural net, we have proposed two paradigms 
for automatic traversal in heterogeneous knowledge net- 
works: One based on a symbolic, branch-and-bound 
search algorithm and the other on a Hopfield net parallel 
relaxation algorithm. The branch-and-bound search 
tried to find the “best” search path based on some cost 
computations and a system-maintained priority queue 

of incomplete paths. The Hopfield net activation, on the 
other hand, performed parallel activation of neighboring 
nodes and combined weights from all neighbors until the 
network reached a convergent state. Our design goal was 
to permit obtaining real-time system performance in 
large-scale knowledge networks. 

We tested these two algorithms in an application 
where three knowledge sources were used for informa- 
tion retrieval. One knowledge source was created by clus- 
ter analysis algorithms and the other two knowledge 
bases were extracted from external sources, all having 
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network structure. The complete knowledge network 
consisted of 13,6 17 nodes and 80,106 links. The two al- 
gorithms and the knowledge sources were implemented 
on a DECStation 5000/ 120. 

Two experiments were conducted in an attempt to re- 
veal the performance levels of the two methods and their 
novel characteristics in comparison to the conventional 
hypertext-like browsing process. The benchmark testing 
used 30 sample l-term, 2-term, 3-term, 4-term, 5-term, 
and lo-term queries to determine the computation times 
and the activation patterns of the various knowledge 
sources using the two algorithms. The user evaluation 
experiment allowed three graduate student subjects to 
interact with the two algorithms for six tasks of concept 
exploration and document retrieval. 

In the benchmark testing, the branch-and-bound al- 
gorithm was faster than the Hopfield net activation. The 
average branch-and-bound search took about 6.9 sec- 
onds and the Hopfield net activation took 24.5 seconds. 
However, the parallel relaxation process of the Hopfield 
net appeared to have helped activate multiple thesauri 
better than the serial branch-and-bound search, regard- 
less of the source of the initial concepts. 

The user evaluation experiment revealed that manual 
browsing achieved higher-term recall but lower-term 
precision in comparison to the algorithmic systems. 
However, it was also a much more laborious and cogni- 
tively demanding process. In document retrieval, there 
were no statistically significant differences in document 
recall and precision between the algorithms and the 
manual browsing process. In light of the effort required 
to accomplish the manual browsing process, our pro- 
posed algorithmic approach appeared to be a viable op- 
tion for efficiently traversing large-scale, multiple the- 
sauri (knowledge network). 

In conclusion, we believe this research has provided 
insights concerning development of robust and “intelli- 
gent” network-based knowledge management and infer- 
encing systems. A sample application ofthe proposed de- 
sign could be for “automatic thesaurus consultation” of 
multiple, heterogeneous thesauri, created either man- 
ually or automatically. An algorithmic approach to con- 
cept exploration in a large knowledge network can be 
performed under a real-time computation constraint 
and could be very useful for interactive, large-scale doc- 
ument retrieval applications. 
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