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SUMMARY 
The paper concerns analytical integration of polynomial functions over linear polyhedra in three- 
dimensional space. To the authors' knowledge this is a first presentation of the analytical integration of 
monomials over a tetrahedral solid in 3D space. A linear polyhedron can be obtained by decomposing it 
into a set of solid tetrahedrons, but the division of a linear polyhedral solid in 3D space into tetrahedra 
sometimes presents difficulties of visualization and could easily lead to errors in nodal numbering, etc We 
have taken this into account and also the linearity property of integration to derive a symbolic integration 
formula for linear hexahedra in 3D space. We have also used yet another fact that a hexahedron could be 
built up in two, and only two, distinct ways from five tetrahedral shaped elements These symbolic 
integration formulas are then followed by an illustrative numerical example for a rectangular prism 
element, which clearly verifies the formulas derived for the tetrahedron and hexahedron elements. 
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1. INTRODUCTION 

The computation of volumes, centre of mass, moment of inertia and other geometric properties of 
rigid homogeneous solids arises very frequently in a large number of engineering applications, in 
CAD/CAE/CAM applications in geometric modelling as wen as in robotics. Quadrature formulas for 
multiple integrals have always been of great interest in computer applications. A good overview of 
various methods of evaluating volume (triple) integrals in this context is given by Lee and Requicha.' 
Timmer and Stem2 have discussed a theoretical approach to the evaluation of volume integral by 
transforming the volume integral to a surface integral over the boundary of the integration domain. 
Lien and Kajiya3 presented an outline of a closed formula of volume integration for tetrahedra and 
suggested that volume integration for a linear polyhedron can be obtained by decomposing it into a 
set of solid tetrahedrons. Cattani and Paolu~zi~ .~  gave a symbolic solution to both the surface and 
volume integration of polynomials by using a triangulation of solid based mainly on the concepts of 
Timmer and Stem.' In a recent paper, Bemardid has presented the evaluation of integrals over n- 
dimensional polyhedra which are based on methods presented by Timmer and Stern2 and Lien and 
Kajiya3. Closed integration formulas for polynomial functions are presented in this paper for a h e a r  
tetrahedral solid in 3D space. We have shown how this can be used effectively to compute the volume 
integrals over a linear polyhedral solid domain. The division of a linear polyhedral solid in 3D space 
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into tetrahedra sometimes presents difficulties of visualisation and could easily lead to errors in nodal 
numbering, etc. more convenient subdivision of space is into eight cornered brick  element^.^ Such 
elements could be assembled automatically from several tetrahedra and the process of creating these 
tetrahedra left to a simple logical program. The method of computing the volume integral is to map 
the arbitrary tetrahedron into a unit orthogonal tetrahedron. This explicit integration formula is 
followed by an example for which we have explained the detailed computational scheme. 

2. PROBLEM STATEMENT 

Most computational studies of volume integrals deal with problems in which the domain of 
integration is very simple, like cube or sphere, but the integrand is very complicated. However, 
in real applications, and even in the most powerful numerical technique - the finite element 
method of recent origin’ - we confront the inverse problem; the integrating function, say, 
( x ,  y, z) is usually simple but the domain is very complicated. Hence, in this paper and even in 
other previous  work^,^-^ we recognize the importance of obtaining practical explicit formulae 
for the exact evaluation of integrals,” 

P 

where p is a polyhedron in R3 dx dy dz is the differential volume. In general such simple 
function may be written as trivariate polynomial 

where a,p, y are non-negative integers. However, the present paper is focused on the 
calculation of the following integral of monomials: 

T, 

where T, is an arbitrary tetrahedron shaped element with element number ‘e’ having its vertices 
at (x i ,  yi, zi), (xi ,  yj, zj), (xk,  yk, zk) ,  (x! ,  yI, zl). Now it is easy to see that an extension to the 
integral jjjTef(x, y, z) dx dy dz can be obtained by the linearity property of integrals. We have 
used the fact that an integration over the domain of an arbitrary tetrahedron can always be 
evaluated by transforming it into an integral over the domain of an unit orthogonal tetrahedron 
by means of a suitable mapping. 

3. VOLUME INTEGRATION OVER AN ARBITRARY TETRAHEDRON 
In this Section, we first obtain the volume integral of a scalar function f ( x ,  y, z) = xaySzy, 
where a, j3, y are positive integers, over an arbitrary tetrahedron by transforming it into an 
orthogonal unit tetrahedron. That is, here we are concerned about the evaluation of integral 

I I I y  = JJ’J x y z  = dxdydz (1) 
T, 

where T, is an arbitrary tetrahedron with element number ‘e’ in the x ,  y, z Cartesian co-ordinate 
system. 
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3.1. Theorem 1. A structure product III,~"*a*y over the volume of an arbitrary tetrahedron T, 
is a polynomial combination of its vertices (x i ,  yi, zi),  (xi, zj ) ,  (xk, yk, ZJ, and (XI, yI, z,) and is 
given by the formula (see Figure 1) 

a + f l + y  n n - r  

III$e'Y = { det J'1 c c III?'G'(r,s,t) 
n - 0  r - 0  s - 0  

where 

Figure 1. Three-dimensional mapping of an arbitrary tetrahedron in xyz-space into a unit orthogonal tetrahedron in ~$q( 
space 
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1 
Figure 2. Unit orthogonal tetrahedron in &j< space 

3.2. Determination of G'(r,s, t )  

In our recent research work,8 it is shown that 

where 
t = n - r - s 8 0  

r 3 = r - r l  - r 2 8 0  
S 3 = s - s , - s 2 8 O  

t3 = t - t ,  - t 2 8 0  
r 3 +  s3+ t 3 =  n - r ,  - s, - t ,  - r2- s2 -  t2 (9) 
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Now it is clear that equation (8) can be explicitly determined in terms of xl ,  y,, zl ,  xi / ,  yir, zil, 
xj / ,  Yj / ,  zj / ,  x k / ,  Y k / ,  ‘kl- 

4. HEXAHEDRON AS AN ASSEMBLAGE OF TETRAHEDRA 

The division of a space volume into individual tetrahedra sometimes presents difficulties of 
visualisation and could easily lead to errors in nodal numbering, etc. A more convenient 
subdivision of space is into eight cornered brick elements. Such elements could be assembled 
automatically from several tetrahedra and the process of creating these tetrahedra left to a simple 
logical program. It will be readily appreciated from the ‘exploded’ view that an element of this 
shape (hexahedron) could be built up in two, and only two, distinct ways from five tetrahedral 
shape elements. This has been clearly illustrated in the book by Zienkiewicz.’ Both possible 
divisions into tetrahedral elements are illustrated in Figures 3 and 4 which could be conveniently 
used in computer aided design and stress analysis, etc. 

Y 

4 

Figure 3. A systematic way of splitting an eight cornered hexahedron shaped brick into five tetrahedra 

4- 

Figure 4. An alternative systematic way of splitting an eight-comered hexahedron shaped brick into five tetrahedra 
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4.1. Volume integration over an arbitrary hexahedron and a linear polyhedron 

4.1 .I. Theorem 2. A structure product IIIGsy over linear three polyhedron V equals the sum 
of integrals over all tetrahedra formed by disjoint decomposition of the polyhedron. 

4.1.2. Proof. This follows from the regularity of the integration domain and the continuity 

Using Theorem 2, we can write 
of the integrating function. 

E 

III~s'y = JJ xQyszy dx dy dz = C 1IIf;:B" 
V e -  1 

where E is the number of tetrahedra obtained by decomposition of V. 
Letting H denote an arbitrary hexahedron, we can also write (referring to Figures 3 and 4) 

c 

c-  1 

4.2. Hexahedral element and its subdivision 

A hexahedral (eight cornered brick) element can be systematically divided into five 
tetrahedra. This is illustrated in Figures 3 and 4, and the nodal connectivity is shown in 
Tables I and 11. 

Table I. Nodal connectivity for hexahedron of 
Figure 3 as a subdivision into five tetrahedra 

Nodes 

Element no. i i k 1 

1 4 2 6 
1 4 3 7 
6 7 5 1 
6 7 8 4 
1 4 6 7 

Table II. Nodal connectivity for hexahedron of 
Figure 4 as a subdivision into five tetrahedra 

Nodes 

Element no. 1 j k 1 

1 2 3 5 
2 6 5 8 
2 3 4 8 
3 5 7 8 
2 3 5 8 



SYMBOLIC INTEGRATION OF POLYNOMIAL FUNCTIONS 467 

5. APPLICATION EXAMPLE 

Let us consider the structure products 

I I I p  = JJ x a y z dudydz 
R 

where R is the rectangular prism element of dimension h,, h,, h, as shown in Figure 5 .  
Evaluation of integral (1 5) is simple and we can write 

hx 4 a p y  III:B’y =I  I I x y z dz dy dx 
0 0 0  

= h ~ + l h ~ + ’ h ~ + l / [  (a + 1)(p + l)(y + 1)). (16) 

We shall assume h, = 2, h, = 3, h, = 4, a = 2, p = 1, y =  0 in equation (16), so that we obtain 

111$190 = 48 (17) 
We shall verify the result of equation (17) with reference to equation (14), so that we may now 
write 

e =  1 

We now visualise the rectangular prism element of Figure 5 as an assemblage of five tetrahedra 
of Figures 3 ,4  and the nodal connectivity as shown in Tables I and 11. 
From Theorem I of Section 3.1 and the determination of G‘ ( r ,  s, t )  as explained in section 3.2, 
we can write 

IIITt2~1*o = I det f I { GelT( 1IIT.J (19) 

I ,  ’ I 

Figure 5. Rectangular prism with dimension h,, h,, h: 
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where 
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Ge(O, 090) = X:Y, 

Ge(l, 0,O) = L'(l,O, O)p'(O,O, 0) + Ae(0, 0, O)pe(l, 0,O) 
G,(O, 1,O) = L'(O,l, O)pe(O,O,O) + Ae(0,O,O)pe(O,  1,O) 
G,(O,O, 1) = L ' ( O , O ,  l)pe(O,O,O) + Ae(O,O,0)p'(O, 0 , l )  
G, ( 1 , 1 , 0) = L' ( 1 , 1 , 0)p (0, 0 ,O)  + 1 ( 1 , 0,O)p (0, 1 , 0) + 1 (0, 1 , 0)p ( 1 , 0 , 0) 
G,(l,O,l)=L'(l,O, l)pe(O,O,O) + le(l,O,O)pe(O,O, 1) + A e ( 0 , O ,  l)pe(l,O,O) 
G,(O, 1 , l )  =Ae(0, 1, l)pe(O,O,O) + Ae(0, l,O)pe(O, 0 , l )  + A e ( 0 ,  0, l)pe(O, 1,O) 
Ge(2,0,0) =~(1,0,0)pe(1,0,0)+~1e(2,0,0)pe(0,0,0) 
Ge(0,2,0)=1'(0, l,O)pe(O, 1,0)+~1'(0,2,0)pe(0,0,0) 
G,(O, 0,2) = P(O,O, l)pe(O, 0 , l )  + 1 Ae(0, 0,2)pe(0,0, 0) 

G,(2,1,0) = iL'(2, O,O)pe(O,  1,O) + Ae(l, l,O)pe(l ,0, 0) 
G,(O, 2 , l )  = ;L'(0,2, O)pe(O, 0 , l )  + A e ( 0 ,  1, l)pe(O, 1,O) 
G,(1,0,2) = L'(l,O, l)pe(O, 0 , l )  + 1 Ae(0,0,2)pe(l,0, 0) 
Ge(2,0,1) = iL'(2, O,O)pe(O,  0 , l )  + Ae(l, 0, l)p'(l,O, 0) 
G,(O, 1,2)=1'(0,1, l)pe(O,O, 1) +~1'(0,0,2)pe(O,l,0) 
Ge(l, 2,O) = L'(1, 1, O)pe(O, 1,O) +iAe(0, 2, O)pe(l, 0,O) 
G,(3,0,0) = iL'(2,0, O)pe(l, 0,O) 
G,(0,3,0)=~~(0,2,0)pP(0,1,0) 
G,(O, 0,3) = i L ' ( O , O ,  2)pp(0, 0 , l )  

G,(I, 1, 1) = ~ ' ( 1 ,  1, o)pyo, 0, 1) + n y i ,  0, I ) ~ ~ O ,  i , o )  + A ~ O ,  1, 1)p3(i ,o, 0) 

ne(o, 0 ,O)  = XI" 

1 (1 , 0,O) = 2x/x;/ 
ne(o, 1,0)=2x,xj/ 
2'(0,0,1) = 2x/x,/ 
ne< l ,  1,0)=2x;/xj, 
1 ( 1 , 0 , l )  = 2x;/x, 
ne<o, 1 , l )  = 2xj1x,/ 



SYMBOLIC INTEGRATION OF POLYNOMIAL FUNCTIONS 469 

Table III. Numerical computation of integrals III;;'.' =jjjTe xzy dx dy d: with reference to Figure 3 and nodal 
connectivity of Table I 

e (element no.) {G'}, ldet J'I I I I T S 2 . ' O =  ldet J'I (G'lTfIII,1 

1 
1 (O,O,O, O,O,O, O,O, O,O,O, O,O,O, O,O, 12,0,0,0), 24 5 

2 (O,O,O, O,O,O,O,O, 12,0,0,0,0,0,0,0, -12,0,0,0),24 20; 

3 (O,O,O,O,O,O,O,O, 12,0,0,0,0,0,0,0 -12,0,0,0), 24 4 
4 (O,O, 12,0, -24,0,0,0, O,O,O, 12,0,0,0,0, O,O,O,O), 

24 
8 

5 (12,-24,-12, -36, 24, 48, 24, 12,0,36, -24 14: 
-12, 0,-24,-12, -12,0, 0, 0,-12), 48 

e =  1 

Table IV. Numerical computation of integrals III;;'.' =jjjTe x z y  d x  dy d: with reference to Figure 4 and nodal 
connectivitv of Table I1 

e (element no.) (G'], ldet J'I IIITe2." = I det J 3  I [ G'IT[ III?} 

1 (O,O,O, O,O,O, O,O, 0,12,O,O,O,O,O, -12, O,O,O,O), 24 4 
2 3 (O,O,O, 12,0, -24, -24,0,0, -24,24,0, 12, 24, 12, 5 

24,0,0,0, 121, 24 

4 

5 

(0, 12, 12, 12, -24,0, -24,0, -24,0,0,0, 12,0,0,0, 20 ; 
G O ,  12,0), 24 

(O,O, 12, 12, -24, -24, -24, O,O, -24,24, 12, 
0,24,12,12,0,0,0,12), 48 

14 3 
5 

III+;'O=4+$+8+20$+ 14$=48 
e =  1 
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Using equations (19)-(24) and the geometry and nodal connectivity of Tables I and 11, we can 
compute the integrals III+;l*o ( e =  1,2,3,4,5) for the Hexahedron as a subdivision into five 
tetrahedra of Figures 3 and 4. These numerical computations re shown in Tables I11 and IV. 

It is clear from these Tables that 
5 C III$:’O = 48. 

c =  1 

Thus equations (17, and 25) clearly verify the result of equation (18). 

6. CONCLUSIONS 

The theorems we have presented in this paper are interesting for various reasons. Our 
formulas are more compact than those of previous researchers and require less computer 
arithmetic, as is evident by comparing the summations required in earlier studies and the 
present one. 

Explicit formulas are fist derived to compute integrals of monomials over a linear arbitrary 
tetrahedron in three-dimensional Euclidean space in which we have used a direct mapping to 
transform the integral over a linear arbitrary tetrahedron in 3D space into an integral over a unit 
orthogonal tetrahedron in new 3D space. 

Volume integration over a linear polyhedron can be obtained by decomposing it into a set of 
solid tetrahedrons, but the division of a linear polyhedral solid in 3D space into tetrahedra 
sometimes presents difficulties of visualisation. We have suggested a means of overcoming this 
difficulty in the construction of a hexahedron which can be built in two and only two distinct 
ways from five tetrahedral shaped elements. Symbolic integration formulas thus derived are 
verified for an illustrative numerical example for a rectangular prism. Theorem 2 is proved in 
this paper and the subdivision of a hexahedron into five tetrahedral elements is confirmed by 
Zienkie~icz;~ the numerical scheme proposed here is equally valid for an arbitrary 
hexahedron. 
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