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1 General comments

In their comment on the paper by Glassmeier et al.
(1999), Mann and Chisham (1999) criticise the purely
mathematical analysis used to derive a non-integer
drift-bounce resonance condition in asymmetric mag-
netospheric ULF pulsation wave ®elds. They claim that
Glassmeier et al.'s (1999) treatment is ¯awed because of
an incorrect treatment of the ULF pulsation wave
electric ®eld's variation along the background magnetic
®eld. Furthermore, Mann and Chisham (1999) consider
that Glassmeier et al. (1999) miss some important
aspect of the physics of the process, that is they do
not consider the initial particle bounce phase. Mann
and Chisham (1999) claim that ``when the correct
analysis is undertaken it becomes clear that N must be
an integer for a genuine resonance to occur''. However,
nowhere in their comment do they present this ``correct
analysis''. In reply to their critism I would like to note
that Mann and Chisham (1999) do not present a
detailed mathematical analysis and correction of the
process under consideration, as would be appropriate.
The graphical approach used is not at all satisfactory
to use as an argument against the mathematical
analysis presented by Glassmeier et al. (1999). Fig-
ures 1±4 of Mann and Chisham (1999) display the
wave electric ®eld as a function of the azimuthal and
magnetic ®eld-aligned coordinates at a speci®c instance
of time, while the particle trajectory is displayed for
many occasions. This approach might be useful for
illustrative purposes, but does not allow a detailed
study of the process at all. The mathematical analysis
presented by Glassmeier et al. (1999) shows that
maximum energy transfer from the particles to the
wave occurs in a resonant way, i.e. at resonance the
particles always ``see'' or experience the same electric
®eld. This basic resonance property is not re¯ected in
Mann and Chisham's (1999) graphical approach at all.
Furthermore, phase considerations are not as impor-
tant as claimed by Mann and Chisham (1999) as the

electric ®eld is constant in the frame of reference of the
resonant particles. The criticism by Mann and Chisham
(1999) is thus inappropriate.

2 Derivation of the generalized resonance condition

However, the comment indicates that the new result
derived by Glassmeier et al. (1999) needs further expla-
nation and clari®cation. Here, I shall try a slightly
di�erent approach to demonstrate the correctness of the
mathematical analysis of Glassmeier et al. (1999). This
approach parallels the treatment of the ion-cyclotron
resonance of Brice (1964). Furthermore, an inconsistency
in the de®nition of the arc length s as used by Glassmeier
et al. (1999) is corrected.

The incremental change in energy of a particle, dW , is

given by the scalar product of the force ~F � q~E and the

incremental distance d~s �~vdt (e.g. Brice, 1964):

dW � q~E �~vdt : �1�
Here q is the electric charge of the particle, ~E the wave
electric ®eld, and~v the particle velocity.

In the present case Eq. (1) reads (e.g. Glassmeier
et al., 1999)

dWB�s� � qE/�s�vD�s�exp�i�m/ÿ xt��dt �2�
where E/�s� is the arc length s dependent azimuthal
electric ®eld component of the wave, vD�s� the arc
length-dependent azimuthal drift velocity, and / the
azimuth angle or azimuthal drift phase. The arc length is
counted positive from the northern ionospheric foot-
point of the ®eld line. The southern ionospheric
footpoint is at s � L, where L is the length of the ®eld
line. At the equator s � L=2. The electric ®eld may be
written as

E/�s� � ÿiE0 exp i
ap
L

s
� �

�3�
This expression allows for asymmetric electric ®eld
variations with respect to the equatorial plane. The
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parameters a describes the asymmetry of the oscillating
wave ®eld along the background magnetic ®eld.

This form of the electric ®eld variation along the
magnetic ®eld is commonly used in ULF pulsation
studies (e.g. Hughes, 1983), and it provides a fair
approximation to the variation of the ®eld with s. The
wave form suggested by Mann and Chisham (1999),
E/�s� � E0�s�exp�iv�s��, is a suitable form if both the
amplitude and the phase vary along the ®eld, i.e. if the
phase variation is modulated by a slower amplitude
variation. If, however, v�s� � 0, as claimed by Mann
and Chisham (1999), then all the spatial variation of the
electric ®eld is in E0�s�. This spatial variation can be
approximated by Eq. (3), too. Thus, I cannot see any
good reason for critizing Eq. (3).

For a particle bouncing in a dipole ®eld one has:

s � L
2
ÿ l

2
cosXBt �4�

with XB the bounce frequency of the resonant particles,
and l the half-bounce path length, that is the recti®ed
path distance between the northern and southern mirror
points of the bouncing particle; at time t � 0 the
particle position is at its northern mirror point
sN � �Lÿ l�=2.

Now, the electric ®eld as seen by a bouncing particle
is given by:

E/�s� / exp ÿi
apl
2L

cosXBt
� �

: �5�

Note that Eq. (5) is the corrected version of Eq. (8) of
Glassmeier et al. (1999). With vD�s� � hvD�s�i � vD, and
/�t� � XDt the incremental energy change of a particle
due to its interaction with the electromagnetic ®eld is
now given by

dWB / E0vD exp i�mXD ÿ x�t ÿ i
apl
2L

cosXBt
� �

dt ; �6�

where XD denotes the drift frequency.
Following Brice (1964) I require the scalar product of

the wave electric ®eld and the particle velocity, or,
equivalently, the incremental energy change dWB to have
a constant (zero) frequency component to obtain a
signi®cant amount of energy transfer. This condition
avoids integration of the energy change over a particle
bounce period, re¯ecting the concept that a resonant
particle ``feels'' the same electric ®eld during its bounce
motion, and also taking care of Mann and Chisham's
(1999) phase argument.

For the case of an ion cyclotron resonance this
requirement leads immediately to the well-known cy-
clotron resonance condition (Brice, 1964). In the ion
cyclotron case the gyrophase is linearly related to time t.
To achieve a similar linear relation for the bounce phase
Glassmeier et al. (1999) have introduced a triangular
approximation for s�t�, which reads, in its corrected
version, as

s�t� �
L
2 ÿ l

2� l
p XB � t if 0 � t � TB=2

L
2 � 3l

2 ÿ 1
p XB � t if TB=2 � t � TB

(
; �7�

Thus,

dWB / exp�i�mXD ÿ nXB ÿ x� � t�dt if 0 � t � TB=2
exp�i�mXD � nXB ÿ x� � t�dt

�
�8�

where n � al=L has been introduced. A zero frequency
component exists if

xÿ mXD � nXB � 0 ; �9�
where the `+' (`ÿ') sign indicates resonant energy
transfer from the ``downward'' (``upward'') moving
particles, i.e. the energy increment is resonant for the
time interval 0 � t � TB=2 �TB=2 � t � TB�. Note, that if
the ``downward'' resonance condition with +n is
ful®lled the ``upward'' condition with ÿn is not satis®ed,
which implies that a net energy increment exists. The
discrimination between the ``downward'' and ``upward''
resonance is somewhat equivalent to ion cyclotron
resonances with right and left hand polarized waves.

Equation (9) with n 2 R is a proper generalization of
Southwood's (1976) resonance condition. It should be
noted that n is an integer if a � 1 and l � L. Thus, the
resonance condition derived here includes as a special
case the more restricted condition n 2N. Furthermore,
n is not an arbitrary number, but re¯ects physical
conditions of the system under consideration. The actual
value of n depends on the ionospheric conditions in the
Northern and Southern Hemisphere of the magne-
tosphere as well as the length of the bouncing particle
path length.

When comparing ion cyclotron and drift-bounce
resonance instability both l and L correspond to the
length of the gyrocircumference, that is 2prg, where rg is
the gyroradius; a 2N in the ion cyclotron case.
Therefore, an analysis as outlined here naturally leads
to the well-known resonance condition for the ion
cyclotron instability with n 2N. As already noted by
Glassmeier et al. (1999) the condition n 2N for the
drift-bounce resonance instability goes back to a very
special treatment of the expression exp�i apl

2L cosXBt� in
Eq. (5), which can be interpreted as a generating
function for the Bessel functions JN :

exp i
apl
2L

cosXBt
� �

�
X�1

N�ÿ1
eiNp=2JN

apl
2L

� �
exp�iNXBt�

�10�
where N is an integer. It is this series expansion which
imposes the n 2N condition. The triangular approxi-
mation introduced by Glassmeier et al. (1999) allows a
much more general and physical interpretation of n. The
number n is a parameter measuring the asymmetry of
the electric ®eld along s, the length the ®eld line, and the
bounce length of the resonating particle.

3 Conclusion

Based on an argument by Brice (1964) I have tried to use
a somewhat di�erent approach in deriving the general-
ised drift-bounce resonance condition. The criticism of
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Mann and Chisham (1999) is not justi®ed. The results
achieved by Glassmeier et al. (1999) are correct, signi-
®cant, and allow a far reaching interpretation of
geomagnetic giant pulsations.
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