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ABSTRACT
Tasmanian Atlantic salmon (S. salar) broodstock can experience temperatures above
20 ◦C, which impairs reproductive development and inhibits ovulation. The present
study investigated the prolonged use of gonadotropin releasing hormone analogue
(GnRHa) during vitellogenesis as a means of maintaining endocrine function and
promoting egg quality at elevated temperature in maiden and repeat spawning S. salar.
GnRHa-treatment during vitellogenesis did not compensate for the negative effects of
thermal challenge on the timing of ovulation, egg size, egg fertility or embryo survival
in any fish maintained at 22 ◦C relative to 14 ◦C. The lack of effectiveness was reflected
by the endocrine data, as plasma follicle stimulating hormone and luteinising hormone
levels were not different between treated and untreated groups at 22 ◦C. Furthermore,
plasma testosterone and E2 levels were unchanged in GnRHa-treated fish at 22 ◦C, and
plasma levels were generally lower in both groups maintained at 22 ◦C relative to 14 ◦C.
Transcription of vitellogenin, and zona pellucida B and Cwas not enhanced in GnRHa-
treated fish relative to untreated fish at 22 ◦C, presumably due to observed suppression
of plasma E2. These results indicate that thermal impairment of reproduction is likely
to occur on multiple levels, and is difficult to overcome via hormonal manipulation.

Subjects Aquaculture, Fisheries and Fish Science, Molecular Biology
Keywords Temperature, Atlantic salmon, Fertility, Gene expression, Reproduction,
Gonadotropin releasing hormone

INTRODUCTION
Increases in ambient water temperature can fundamentally affect the physiology of farmed
Atlantic salmon, Salmo salar (Battaglene et al., 2008), which is especially relevant for
Tasmanian S. salar that are already reared towards their upper-limit of thermal tolerance
(Pankhurst & King, 2010). As a result of exposure to elevated temperature, a marked
decrease in circulating plasma 17β-estradiol (E2) typically occurs in females (King,
Pankhurst & Watts, 2007; Pankhurst et al., 2011), which has the downstream effect of
reducing vitellogenesis and zonagenesis (Pankhurst et al., 2011). The molecular basis
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for reduced E2 synthesis during peak vitellogenesis likely occurs at multiple levels,
with reductions in the expression of ovarian steroidogenic enzymes involved in the
biosynthesis of both testosterone (T) and E2 (Anderson et al., 2017; Anderson & Elizur,
2012). Downstream of E2 synthesis, there is evidence to suggest that hepatic E2 receptor
(Er) binding affinity is reduced at higher temperatures (Watts et al., 2005); however, the
expression of er is notmodulated by temperatures of up to 22 ◦C in adult female Tasmanian
S. salar (Anderson & Elizur, 2012). This suggests that the physiological effects of reduced
E2 tone may have been exacerbated by decreased efficiency of E2 receptor binding.

The collective effect of suppressed endocrine dysfunction at high temperature in S. salar
and other salmonids such as rainbow trout (Oncorhynchus mykiss) is a reduction in egg
fertility and embryo survival (King et al., 2003; Pankhurst et al., 1996; Taranger & Hansen,
1993). However, a study by Pankhurst et al. (2011) showed that egg quality was reduced
to greater extent in first-time (maidens, 2+ years old) than in second-time (repeats, 3+
years old) spawning S. salar reared at 22 ◦C compared to their respective controls at
14 ◦C. As such, the use of repeat spawning fish as opposed to maidens may partially
offset the negative impacts of elevated temperature on egg quality in Tasmanian S. salar.
However, it is not viewed as a viable option due to the higher cost and risk associated
with rearing large fish intensively for an additional year. Alternatively, hormonal therapy
may maintain endocrine function and subsequent egg quality through critical periods at
elevated temperature. However, the potential of such management strategies remain to
be explored.

Gonadotropin-releasing hormone (GnRH) has been used since the 1970s to synchronise
and induce ovulation by stimulating the secretion of endogenous luteinizing hormone
(Lh) in a wide range of species (Zohar & Mylonas, 2001). Its effectiveness has also been
tested at 16 ◦C in S. salar, with GnRH analogue (GnRHa) treatment in combination with
a temperature ramp down to 8 ◦C advancing ovulation and maintaining egg fertility
relative to sham treated fish (King & Pankhurst, 2004b). In addition to the traditional role
of inducing final oocyte maturation (FOM), treatment with GnRHa also resulted in an
increase in follicle stimulating hormone beta (fshβ) gene expression, and a subsequent
increase in culture medium Fsh levels in a coho salmon (Oncorhynchus kisutch) pituitary
cell culture (Dickey & Swanson, 2000). In female S. salar, in vivo GnRHa implantation can
result in a premature rise in plasma E2 and/or T (King & Pankhurst, 2007; Crim, Glebe &
Scott, 1986), and promote egg development relative to untreated fish (Crim, Glebe & Scott,
1986). The Atlantic and coho salmon in the those studies were vitellogenic at the time of
GnRH-treatment, which demonstrates pituitary responsiveness to GnRH during the earlier
stages of reproductive development in terms of Fsh production.

Little information is available on the effects of prolonged GnRH-treatment on the
endocrine system and oocyte development during vitellogenesis. However, in non-
salmonids, GnRH is capable of stimulating the complete cycle of oocyte development,
growth and maturation (Morehead, Pankhurst & Ritar, 1998), and in salmonids, it appears
as though GnRH treatment is able to simulate the production and release of Fsh during
vitellogenesis. Since there is no evidence to suggest that the expression of ovarian follicle
stimulating hormone receptor (fshr) is reduced at elevated temperature in S. salar
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(Anderson et al., 2017), as it is in other species such as pejerrey (Odontesthes bonariensis)
(Soria, Strüssmann & Miranda, 2008), it is possible that treatment with GnRH will enhance
endocrine function in female S. salar broodstock during vitellogenesis. Thus, the aim of
the present study was to investigate whether prolonged GnRH therapy during reproductive
development could offset the inhibitory effects of thermal challenge in terms of endocrine
function and egg quality in maiden and/or repeat spawning S. salar broodstock. To do this,
the effects of implantation with GnRH on plasma levels of pituitary hormones, gonadal
steroids and Vtg, as well as E2-dependent hepatic gene expression of vtg, zona pellucida
B (zpb) and C (zpc) were determined in maiden and repeat spawning fish throughout
reproductive development.

METHODS
Fish husbandry and maintenance
Ninety-five maiden and 88 repeat adult females from the Salmon Enterprises of Tasmania
(Saltas) spawning stock were held in 200 (maidens) or 50 (repeats) m3 circular tanks at
ambient photoperiod and temperature under standard conditions of husbandry at the
Saltas Wayatinah hatchery until January 2009. In mid-January, fish were transferred to
temperature-controlled 4 m3 Rathbun tanks (maximum 14 fish per tank, numbers varied
according to the availability of stock) under simulated ambient photoperiod according
to the following 6 treatment groups; maiden 14 ◦C, repeat 14 ◦C, maiden 22 ◦C, maiden
GnRH implant 22 ◦C, repeat 22 ◦C and repeat GnRH implant 22 ◦C (Fig. 1). At the
time of transfer, tank temperature was set to match ambient water temperature, and the
experimental temperatures were then reached by adjustment a rate not exceeding 1 ◦C per
day. Fourteen and 22 ◦C represent typical cool, andwarmTasmanian summers respectively.
Fish were not fed from the time of transfer to the temperature controlled systems in January
consistent with hatchery practice for management of this experimental stock of fish. All
fish were maintained at the nominated temperature (14 or 22 ◦C) until late March when
all fish were exposed to a gradual temperature ramp down to 8 ◦C (Fig. 2) to induce final
oocyte maturation and ovulation as in King & Pankhurst (2000).

Sampling protocol
At each destructive sample point (all except the last date), six or seven fish were sampled for
each treatment, and fish were selected at random from each replicate tank to ensure that
stocking density was comparable between tanks. Maiden and repeat fish reared at ambient
temperature were sampled in late October 2008 to establish an early-vitellogenic baseline
for each group, and on the 22nd January 2009 at the same time that temperature transfer to
14 or 22 ◦C occurred for the remaining fish (Fig. 2). Subsequent samples were taken from
each group during February 25–27,March 26–27, and April 15–16. After the last destructive
sampling in April, five (repeat 22 ◦C GnRH-treated), six (maiden 22 ◦C, repeat 22 ◦C, and
repeat 14 ◦C), or seven fish (maiden 14 ◦C and maiden 22 ◦C GnRH-treated) were left to
proceed through to ovulation and stripping. A subset of maidens at 22 ◦C and repeats at
22 ◦C were implanted with an OvaplantTM (Syndel, Nanaimo, Canada) cholesterol pellet
containing 37 µg of the D-Arg6, Pro9NEt (GnRHa) on 22nd January (during temperature
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Figure 1 Experimental tank layout for thermal and hormonal manipulations from January 22nd.M
and R represent maiden and repeat-spawning fish respectively, GnRH administration is marked by an as-
terisk, lack of an asterisk denotes groups that did not receive an implant, and the number of fish per tank
is also indicated.

Full-size DOI: 10.7717/peerj.3898/fig-1

transfer), and again over February 26–27 to give repeat doses of approximately 7–12 µg
kg−1. The dose chosen was designed to stimulate or maintain pituitary secretion of Fsh,
but remain below the threshold likely to stimulate an Lh surge and possible premature
stimulation of oocyte maturation and ovulation (King & Pankhurst, 2004a). Untreated fish
did not receive a sham implant, to simulate real industry conditions.

For sampling, fish were netted from the holding tanks, terminally anaesthetised in
Aqui-STM (Crop and Food, New Zealand), weighed, measured and then blood sampled by
caudal puncture using pre-heparinised syringes. Blood plasma was centrifuged at 12,000 g,
and stored frozen at −20 ◦C for later measurement of plasma hormones. Ovaries were
excised, weighed and portions allocated to 50-ml pots containing teleost saline for fecundity
estimation and follicle measurement. Segments of liver were transferred to 1–2 ml of RNA
LaterTM (Qiagen, Germany), kept at 4 ◦C overnight then stored at −80 ◦C.

Gonadosomatic index (GSI) was calculated as (gonad weight/total body weight) ×100,
and condition factor (CF) as (body weight/length3) ×100. Fecundity was determined
for a 5 g ovarian segment, and total fecundity was determined by correction for total
ovarian weight and expressed as relative fecundity kg−1 body weight as in Pankhurst et
al. (2011). Using the procedure described in King & Pankhurst (2004a), fish were checked
for ovulation by applying gentle pressure to the abdomen, and if ovulation had occurred,
ova were stripped and fertilised for measurement of egg size, fertility and survival to the
eyed stage at 250 degree-days of incubation. All animal experiments were conducted in
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Figure 2 Thermal adjustment and hormone implantation timeline for untreated and GnRH-treated
maiden and repeat spawning female Atlantic salmon broodstock maintained at 14 or 22 ◦C during
vitellogenesis. From October to January 22nd fish were exposed to ambient photoperiod and tempera-
ture, thereafter temperature was maintained at either 14 ◦C or 22 ◦C. Average ambient water temperatures
for October and November were 9.3 and 11.6 ◦C, respectively. Sampling and implantation dates, and the
date of earliest spawning, are indicated.

Full-size DOI: 10.7717/peerj.3898/fig-2

accordance with Australian law under ethical approval issued by the Griffith University
and University of the Sunshine Coast Animal Ethics Committees (ENV/25/08AEC and
AN/A/09/44 respectively).

Plasma hormone and vitellogenin measurement
Plasma Fsh (all months) and Lh (March and April only) measurements were performed
using an RIA developed for O. kisutch by Swanson et al. (1989) with the reagents and
modifications described in Anderson & Elizur (2012). The cross reactivity of Fsh in the Lh
assay and Lh in the Fsh assay were approximately 4.4% and 6%, respectively (Swanson
et al., 1989). ANCOVA was performed as part of a previous study which confirmed that
parallelism was present between serial dilutions of S. salar plasma and the purified coho
standards (Anderson & Elizur, 2012). The limit of detection (LOD) of the Fsh and Lh assays
was approximately 0.6 and 0.5 ng ml−1 respectively.

Plasma levels of E2, T and cortisol (F) were determined by radioimmunoassay using
the reagents and procedure for E2 and T described in Pankhurst & Carragher (1992),
and for F as in Pankhurst et al. (2008) from 100 µl of plasma extracted with 1 ml ethyl
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acetate. Extraction efficiency was 78%, 79% and 74% for E2, T and F respectively as
determined by recovery of 3H-labelled steroid from replicates of a plasma pool. Assay
values were corrected accordingly to account for extraction losses. Interassay variability
was determined by repeat measurement of a pooled internal standard and was (CV%) 7.4
(n= 3), 13.9 and 12.3 (n= 2) for E2, T and F respectively.

Plasma Vtg levels were measured by enzyme linked immunosorbent assay using the
reagents and protocol as described inWatts et al. (2003). Interassay variability was assessed
by repeat measurement of a Vtg standard from the central part of the assay curve and was
13.1 (CV%, n= 7). Pooled internal standards were not used here due to the tendency of
Vtg to denature following repeated freeze-thaw cycles. The lower LOD for the assay was
80 ng ml−1.

RNA extraction and cDNA synthesis
Total RNA was isolated from 15 mg of hepatic tissue using the Illustra RNAspin Mini kit
(GE Healthcare, Little Chalfont, UK) according to the manufacturer’s protocol. RNA yield
and 260/280 purity ratio were determined using the NanoDrop 2000 (Thermo Scientific,
Waltham, MA, USA). An RNA integrity number (RIN) was determined for a random
sample of hepatic RNA (n= 48) using a 2,100 bioanalyzer (Agilent, Santa Clara, CA, USA)
to establish RNA quality. Four hundred nanograms of liver-derived RNA were then used
to synthesise cDNA for use in real-time quantitative PCR (qPCR) using the QuantiTect R©

reverse transcription kit (Qiagen, Hilden, Germany). This kit includes a DNA elimination
step to remove potential contamination of qPCRs by genomic DNA.

Hepatic gene expression
Gene specific primers (Gsps) for target genes previously optimised and validated for qPCR
(Pankhurst et al., 2011) were used to amplify the target hepatic transcripts vtg, zpc and zpb
(primers detect both zpba and zpbb, collectively referred to as zpb, Table 1), and the reference
transcripts TATA binding protein (tbp), hypoxanthine phosphoribosyltransferase 1 (hprt1),
beta-tubulin (β-tub) and elongation factor 1 alpha (ef1α, Table 1). The suitability of using
candidate reference genes for normalisation was assessed using GeNorm (Vandesompele et
al., 2002) and BestKeeper (Pfaffl et al., 2004) through the site RefFinder (Xie et al., 2012)
(Table S1), and the output from these algorithms was then independently validated
as suggested by Anderson & Elizur (2012) and Setiawan & Lokman (2010). As a result
of this analysis, tbp was used for accurate target gene normalisation, and the level of
target gene expression relative to a calibrator sample (pool of randomly selected hepatic
cDNA) analysed in every run was calculated using Rest c©2008 V2.0.7 (Pfaffl, Horgan &
Dempfle, 2002).

qPCRs were conducted on a Rotor-gene 6,000 series thermal cycler (Qiagen, Hilden,
Germany) using the Platinum

R©
SYBR

R©
GreenqPCRSuperMix-UDG(Invitrogen,Carlsbad,

CA, USA) master mix and the following cycling conditions: 50 ◦C for 2 min; 95 ◦C for 2
min; 40 cycles of 95 ◦C for 15 s; 60 ◦C for 15 s, and 72 ◦C for 20 s (acquiring). At the end of
cycle 40, a melt curve analysis was performed to confirm amplification of a single product
as follows: 90 s preconditioning step at 72 ◦C, followed by a temperature gradient up to
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Table 1 qPCR Gsps.

Gene name Sequence (5′→ 3′) Prod.
size, bp

E Source
sequence

F AAC TTT GCC CCT GAA TTT GC
Vtg

R GCT CTA GCC AGA CCC TCC GC
95 0.984 DQ834857

F GTT TCC AGG GAT GCC ACT CT
Zpb

R TGG TAG ATG GCA AAG GCA GA
113 0.937

AJ000664,
AJ000665

F GTC CCC CTG CGT ATC TTT GT
Zpc

R AAC CTG TCA CTT TGG CAT CG
121 0.969 GU075906

F GAT GAT GAG CAG GGA TATGAC
Hprt1

R GCA GAG AGC CAC GAT ATG G
165 0.963 BT043501

F TCC CCA ACC TGT GAC GAA CA
Tbp

R GTC TGT CCT GAG CCC CCT GA
117 0.981 BT059217

F GCA CCA CGA GAC CCT GGA AT
Ef1α

R CAC GTT GCC ACG ACG GAT AT
94 0.969 AF321836

F CCG TGC TTG TCG ACT TGG AG
β-tubulin

R CAG CGC CCT CTG TGT AGT GG
144 0.975 DQ367888

Notes.
E, efficiency; bp, base pairs.

95 ◦C at 1 ◦C per 5 s. The 10 µl qPCR reaction contained 5 µl SYBR, 200 nM each primer,
3.6 µl PCR grade water and 1 µl cDNA template. For every gene analysed no-template
controls and a calibrator were included to detect possible contamination, and control for
in-between run variability, respectively. Negative reverse transcription controls were also
analysed to detect the presence of any contaminating genomic DNA.

Statistical analysis
Pairwise comparison of means of morphometric and plasma hormone data was made
using an independent samples t -test (October and January). For multiple comparisons
(following months) one-way ANOVA with post-hoc comparison of means by Tukeys-b
was performed using the SPSS (version 15.0) statistical package. Differences in relative gene
expression levels were detected non-parametrically using the Kruskal–Wallis test coupled
with Bonferroni’s Correction to reduce the risk of type 1 error. The P value for significance
was set at 0.05 for all analyses.

RESULTS
Morphometric data
The mean (±SEM) body weight of maiden spawners (4.01 ± 0.07 kg) was consistently
lower than that of repeat spawners (7.03 ± 0.15 kg) during the course of the experiment
(data not shown). CF was lower in repeats than maidens in October; however, CF was
not different among fish from all groups thereafter (data not shown). There was a general
trend of increasing GSI and follicle diameter with sample time across all treatment groups
(Figs. 3A and 3B). The GSI of fish from all treatments was similar after introduction to
the temperature-controlled tanks and hormonal treatment; however, follicle diameter was
lower in all fish reared at 22 ◦C relative to their respective 14 ◦C control in April, and did
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Full-size DOI: 10.7717/peerj.3898/fig-3

Anderson et al. (2017), PeerJ, DOI 10.7717/peerj.3898 8/24

https://peerj.com
https://doi.org/10.7717/peerj.3898/fig-3
http://dx.doi.org/10.7717/peerj.3898


not change as a result of treatment with GnRH. Total fecundity (during development)
was highest in repeat spawners, but there was no consistent difference in relative fecundity
between repeats andmaidens, and no discernible effect of temperature regime or hormonal
treatment (Figs. 4A and 4B).

Ovulation, egg fertility and embryo survival
Maidens held at 14 ◦C ovulated first, followed by a cluster of untreated and treated maidens
at 22 ◦C, repeats at 22 ◦C, and then repeats at 14 ◦C (Fig. 5). (Repeats at 22 ◦C treated
with GnRH showed markedly delayed ovulation relative to all other groups. Fecundity
and relative fecundity at ovulation was unaffected by temperature or hormonal treatment
(Figs. 6A and 6B). At 22 ◦C, repeat fish had slightly higher absolute, but not relative
fecundity. Maiden and repeat spawning fish at 22 ◦C had markedly smaller post-ovulatory
egg diameters and volumes (Figs. 6C and 6D) than their respective controls at 14 ◦C. Egg
size was smaller in maiden fish than repeat fish at 14 ◦C, although egg size was similar
between maidens and repeats at 22 ◦C. Fertility and eyed egg survival was higher in fish
reared at 14 ◦C than at 22 ◦C; however, the reduction in embryo survival was less marked
in repeats than maidens compared to the respective 14 ◦C control group (Figs. 6E and 6F).
Treatment with GnRH did not significantly affect egg fertility or survival in maidens or
repeats relative to the appropriate control at 22 ◦C.

Plasma hormones and Vtg
There was no difference in the level of plasma Fsh between groups of fish from October to
February (Fig. 7). In March, plasma Fsh was elevated in treated and untreated maiden fish
reared at 22 ◦C relative to the untreated group maintained at 14 ◦C, and Fsh levels were
similar among both maiden groups at 22 ◦C. There was no significant difference among
plasma Fsh levels in repeat fish in March. There was no significant difference in plasma
Fsh levels between groups of fish in April. There were no differences in the mean (±SEM)
plasma Lh levels between any groups of fish in March (0.91± 0.08 ng ml−1) or April (0.85
± 0.037 ng ml−1) (data not shown).

Plasma E2 levels were suppressed at in February in both groups of maiden, but not repeat
fish reared at 22 ◦C relative to their respective control at 14 ◦C (Fig. 8A). In March, plasma
E2 levels inmaidens were suppressed in both groups at 22 ◦C and there was also suppression
at 22 ◦C in repeats treated with GnRH. In April, all 22 ◦C groups were suppressed relative
to maidens held at 14 ◦C. T levels were not different between groups in October or January,
and repeat fish treated with GnRH had higher T levels than the corresponding control
group at 22 ◦C in February (Fig. 8B). Plasma T levels were suppressed at 22 ◦C in maidens
treated with GnRH in March and April relative to maidens at 14 ◦C, and were suppressed
in both groups of repeats held at 22 ◦C in April relative to the control group at 14 ◦C. Mean
(±SEM) plasma F levels were elevated in maidens (15.7 ± 2.0 ng ml−1) relative to repeats
(3.3 ± 1.2 ng ml−1) in October, but there were no differences among groups between
January and March (data not shown). In April, F was elevated in repeats at 14 ◦C (23.1 ±
6.4 ng ml−1) relative to all other groups (range 2.4–8.8 ng ml−1).

Plasma Vtg levels increased through reproductive development and were similar among
groups until February when levels were suppressed in maidens at 22 ◦C relative to 14 ◦C
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(Fig. 9A). In February, suppression of plasma Vtg was also observed for repeat fish treated
with GnRH, and to some extent the untreated 22 ◦C group relative to the corresponding
control at 14 ◦C. There was some recovery in plasma Vtg levels by March, with only repeats
treated with GnRH showing significant suppression at 22 ◦C. In April, there were no
differences between fish at 14 and 22 ◦C for either age class; although, maiden fish had
higher levels of plasma Vtg than repeat fish at 14 ◦C.

Hepatic gene expression
Hepatic levels of relative vtg gene expression increased markedly from November to
January, and in February, vtg expression was suppressed in repeats at 22 ◦C but this effect
appeared to be offset by treatment with GnRH (Fig. 9B). In maidens, vtg gene expression
was unaffected by maintenance at 22 ◦C or treatment with GnRH in February. In March,
vtg expression was suppressed in GnRH-treated maiden fish at 22 ◦C, compared to the
22 ◦C maiden control group, but not maidens at 14 ◦C. There were no differences among
repeat GnRH-treated and control fish held at 22 ◦C. In April, maidens held at 22 ◦C and
treated with GnRH showed suppression relative to maidens at 14 ◦C, and both groups of
repeats held at 22 ◦C showed suppressed expression relative to repeats at 14 ◦C.

Hepatic zpb gene expression was down-regulated in repeat fish relative to maidens in
October; although there was no difference in gene expression by January between groups
(Fig. 10A). In February, zpb expression was significantly reduced in maiden fish at 22 ◦C
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receiving GnRH implantation relative to maidens at 14 ◦C, and both groups of repeats
at 22 ◦C showed suppression relative to repeats at 14 ◦C. In March, zpb expression was
suppressed in both groups of maidens held at 22 ◦C, and repeats at 22 ◦C treated with
GnRH. In April, there were no significant differences between treatments even though there
was a general trend towards lower gene expression at elevated temperature. In October and
January, the level of zpc gene expression was not different between maidens and repeats
(Fig. 10B). In February, zpc expression was higher in repeats than maidens at 14 ◦C, and
gene expression was higher in maidens at 22 ◦C than at 14 ◦C. There was suppressed zpc
expression in maidens held at 22 ◦C treated with GnRH, relative to maidens at 14 ◦C in
March. In April, the same effect was present. There were no significant differences among
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fish held at 22 ◦C in April; however, there was a general trend towards lower gene expression
levels at elevated temperature.

DISCUSSION
Maintenance at 22 ◦C with or without treatment with GnRH did not affect body weight
relative to fish reared at 14 ◦C. CF was initially lower in repeat fish during November;
however, CF was very similar between all groups from January onwards which appears to
be a consistent feature for this population of S. salar (Pankhurst et al., 2011).

The onset of ovulation was delayed by 21 days in repeat fish relative to maidens reared
at 14 ◦C, which is consistent with the slower rate of development in repeat fish relative
to maiden fish reared at 14 ◦C during early vitellogenesis. In maidens, treatment with
GnRH did not affect the timing of ovulation relative to the control group reared at
22 ◦C. In contrast, ovulation was delayed in repeat spawning fish treated with GnRH
relative to the control group at 22 ◦C; however, this was not associated with a further
reduction in egg fertility and embryo survival. While other factors may be involved, delays
in ovulation at high temperature in salmonids are thought to be caused by dopamine
mediated inhibition of Lh secretion (Gillet, Breton & Mikolajczyk, 1996), in combination
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with impaired ovarian steroidogenesis, and thus lower circulating levels of maturation
inducing steroid (17,20β-dihydroxy-4-pregnen-3-one, MIS) in the lead up to ovulation
(Anderson et al., 2017; King & Pankhurst, 2004b). Treatment with GnRH had no affect on
plasma Lh levels; however, due to the timing of sampling relative to the time of ovulation,
the sampling schedule was unlikely to have detected the preovulatory rise in plasma Lh
associated with FOM described by Breton, Govoroun & Mikolajczyk (1998). Furthermore,
it is unlikely that GnRH implantation directly affected the events associated with FOM
and ovulation, as the OvaplantTM pellet has a sustained release profile of approximately 24
days total at 10 ◦C, and the second implantation occurred approximately 3 months before
ovulation commenced in untreated repeats at 22 ◦C.

Exposure to elevated temperature alone or in combination with prolonged GnRH-
treatment did not affect GSI, relative fecundity or fecundity for maiden or repeat spawning
fish during oocyte development or at ovulation. GnRH-treatment also did not affect
follicle diameter during vitellogenesis, and in April all GnRH-treated and untreated groups
maintained at 22 ◦C displayed oocyte diameters that were smaller than those from fish
maintained at 14 ◦C. Plasma Vtg levels were lower in GnRH-treated maiden and repeat
fish maintained at 22 ◦C in February, and repeat fish only in March, relative to the
corresponding control group at 14 ◦C. Since treatment with GnRH failed to stimulate the
production of Vtg at 22 ◦C in maidens and repeats, Vtg uptake by oocytes was presumably
reduced and follicle diameter consequently smaller in GnRH-treated fish compared to the
respective control group at 14 ◦C. At the time of stripping, all maidens and repeats reared at
22 ◦Cwith or without hormonal treatment had lower egg diameters and volumes compared
to the corresponding control group at 14 ◦C, which is consistent with the smaller follicle
diameters observed for these groups during late vitellogenesis. Egg fertility and survival
was generally reduced in maiden and repeat fish at 22 ◦C relative to the respective control
at 14 ◦C, and consistent with our previous work, repeats appeared to be slightly more
resilient to the effects of thermal challenge (Pankhurst et al., 2011). GnRH therapy during
vitellogenesis did not help to maintain egg quality in maiden or repeat fish reared at 22 ◦C,
with the lowest fertility and eyed egg survival rates recorded for GnRH-treated fish.

In the present study, GnRH-therapy during vitellogenesis failed to elevate plasma
Fsh levels in maiden and repeat fish maintained at 22 ◦C above those recorded for
the corresponding untreated group at 22 ◦C. In salmonids, GnRH-treatment is able
to stimulate Fsh production and secretion in primary pituitary cell cultures (Dickey &
Swanson, 2000), although pituitary responsiveness to GnRH stimulation is dependent on
the stage of reproductive development (Ando et al., 2004). In O. mykiss, treatment with a
dopamine agonist inhibited the (GnRH-induced) release of Fsh from the pituitary during
late vitellogenesis (Vacher et al., 2000), and in S. alpinus, it is thought that dopamine is
involved in the thermal inhibition of ovulation (Gillet & Breton, 2009). In the latter study,
treatment with GnRH in combination with a dopamine antagonist was more effective
at inducing ovulation than treatment with GnRH alone at high temperature (Gillet &
Breton, 2009). Therefore, it is possible that GnRH-treatment during vitellogenesis could
be more effective at 22 ◦C if administered in combination with a dopamine antagonist.
However, it should be noted that plasma Fsh levels were unchanged as a result of thermal
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challenge in untreated repeat fish, and in maiden fish, plasma Fsh levels where higher at
22 ◦C relative to the control group at 14 ◦C. Sex steroids such as E2 are known regulators
of pituitary hormones (Pankhurst, 2008); for example in O. kisutch, E2 has been shown to
down-regulate pituitary fshβ gene expression during secondary oocyte growth (Dickey &
Swanson, 1998). In the present study, plasma E2 was suppressed in maidens but not repeats
maintained at 22 ◦C in February and March. Therefore a reduction in negative feedback by
E2 on the pituitary may have resulted in an increase in plasma Fsh in maidens maintained
at 22 ◦C as suggested previously for this stock of S. salar (Anderson & Elizur, 2012).

There was no evidence to suggest that treatment with GnRH at 22 ◦C compensated for
the negative effects of elevated temperature on the production of T in the present study,
other than in February in repeat spawning fish when plasma T was higher in GnRH-treated
fish than in the corresponding control group at 22 ◦C. The stimulatory effect of GnRH
on plasma T for repeat fish at that sample did not correspond to an increase in plasma E2
for the same or following months. In a previous study on S. salar, treatment with GnRH
increased plasma T levels relative to sham treated fish during vitellogenic development
(Crim, Glebe & Scott, 1986). This implies that any stimulatory effect of GnRH-treatment
achieved in the present study was not significant enough to compensate for impairment of
endocrine function at 22 ◦C.

In the present study, plasma E2 levels were generally lower in maiden and repeat
spawning fish treated with GnRH at 22 ◦C compared to the corresponding control group
at 14 ◦C. This is presumably due to the inability of GnRH to stimulate the production
of T, and the down-regulation of P450 aromatase A (cyp19a1a) typically observed in
this stock of fish at 22 ◦C (Anderson & Elizur, 2012). In pink salmon (Oncorhynchus
gorbuscha), prolonged treatment with GnRH effectively elevated plasma E2 levels during
reproductive development only when administrated in combination with T in fish reared
at between 8.9–12.3 ◦C (Crossin et al., 2010). However, co-treatment of fish with GnRH
and Tmay not promote vitellogenic development at higher temperatures in S. salar if there
is thermal inhibition at the level of gonadal cyp19a1a. In addition, thermal impairment of
steroidogenesis upstream of T may have played a role, as the gene expression of several
steroidogenic enzymes are downregulated in S. salar at 22 ◦C (Anderson et al., 2017;
Anderson et al., 2012).

Plasma F was elevated in maiden fish relative to repeats in October, which is likely to be a
reflection of the crowding method used to capture this group of fish early in the experiment
(Pankhurst et al., 2011). Between January and March plasma F levels in all fish were lower
than those typically observed in stressed S. salar (Thomas, Pankhurst & Bremner, 1999)
which indicates that treatment with GnRH and exposure to high temperature was not
perceived as stressful. In April, plasma F was elevated in repeat fish reared at 14 ◦C relative
to all other groups. However, the concentration of plasma F in repeat fish maintained
at 14 ◦C (23.14 ± 6.4 ng ml−1) was similar to the level observed in unstressed S. salar
and O. mykiss (∼15 ng ml−1 for each study) (Pankhurst & Van Der Kraak, 2000; Thomas,
Pankhurst & Bremner, 1999), and it is therefore unlikely that F levels in repeat fish were
high enough to significantly impact reproductive development in the present study.
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Treatment with GnRH at 22 ◦C had no effect on vtg gene expression in maiden or repeat
fish, except in February where vtg gene expression was up-regulated in repeat fish after
GnRH-treatment relative to untreated repeats at 22 ◦C. However, the stimulatory effect of
GnRH-treatment observed for repeat fish in February did not cause a subsequent increase
in plasma Vtg. Furthermore, treatment with GnRH at 22 ◦C had no effect on plasma levels
of Vtg in maiden and repeat spawning female S. salar ; except in March when plasma Vtg
was significantly suppressed in GnRH-treated repeat fish at 22 ◦C relative to the control at
14 ◦C. This is not surprising since Vtg production is regulated by E2 (Lubzens et al., 2010),
and GnRH-treatment failed to elevate plasma E2 or vtg gene expression levels at 22 ◦C.

Treatment with GnRH did not help to maintain zpb gene expression levels at 22 ◦C
in repeat fish at any time during reproductive development. For maidens, treatment
with GnRH had an inhibitory effect on zpb gene expression in February and March,
and no effect in April. Similarly, zpc gene expression was down-regulated in response to
GnRH-treatment in maiden but not repeat fish in February and March, and there was no
significant effect on any fish in April. This suggests that female S. salar respond differently
to GnRH-treatment on the basis of stock age in terms of Zp transcription, although the
molecular basis for this phenomenon is unclear given the fact that plasma E2 levels were
similar between GnRH-treated maidens and repeats throughout the study.

The present study was undertaken to determine whether reductions in egg quality caused
by thermally induced endocrine impairment could be compensated for by prolonged
treatment with GnRH during vitellogenic development. It is clear that treatment with
GnRH alone is not an effective strategy for enhancing the endogenous production of
plasma E2 and maintaining egg quality at elevated temperature. While maiden and
repeat fish responded in a similar way to treatment with GnRH for almost all of the
parameters measured, we have provided evidence suggesting that S. salar broodstock
respond differently to hormonal manipulation in terms of zp gene expression although the
molecular basis for this effect is unclear. As GnRH-treatment was not able to overcome
the thermal inhibition of multiple endocrine events upstream of E2 production, the direct
administration of E2 warrants investigation. Direct administration of E2 may maintain
egg quality at high temperature in female S. salar broodstock by surpassing upstream
endocrine impairments, and stimulating the down-stream synthesis of Vtg and Zps.
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