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Abstract. The growth function of a group is a generating function whose co-

efficients an are the number of elements in the group whose minimum length

as a word in the generators is n . In this paper we use finite state automata

to investigate the growth function for the Baumslag-Solitar group of the form

{a, b | a~lba = a2) based on an analysis of its combinatorial and geometric

structure. In particular, we obtain a set of length-minimal normal forms for the

group which, although it does not form the language of a finite state automata, is

nevertheless built up in a sufficiently coherent way that the growth function can

be shown to be rational. The rationality of the growth function of this group is

particularly interesting as it is known not to be synchronously automatic.

The results in this paper generalize to the groups (a, b \ a~lba = am) for

all positive integers m .

1. Introduction

Let G be a group generated as a monoid by the finite set X ; that is, every

element of G can be written as a word formed from X without using inverses.

Throughout this paper we will take X to be V U V~x , where F is a finite set

generating G as a group. Let «j bea word in X. We denote the group element

corresponding to w as w , and we define the length of w , l(w), as the word

length of w with respect to X. For any g e G, we define the length 1(g) of

g to be the minimum length of all words in X representing g ; so

1(g) = min{/(u;) | w = g}.

In geometric terms, 1(g) is the length of the shortest path from the identity

element to g in the group graph of G with respect to X, where each edge is

assumed to have length 1. Let a„ := card{g G G 11(g) — n} . Then the growth
series T(G, X)(x) of G is defined to be the usual generating function for the

sequence an :
oo

T(G,X)(x) = Y<a»xn-

A group G is said to have rational growth if the function T(G, X)(x) is a

rational function of x for some choice of X. This is equivalent to saying that

the a„'s satisfy some recurrence relation.
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Also, throughout this paper we will denote by N the set of natural numbers

{1, 2, 3,...}, and by N0 the set {0, 1,2,3,...}.
The class of groups with presentation (a, 11 taP = aqt), p, q e N, are often

referred to as the Baumslag-Solitar groups (after Baumslag and Solitar's classi-

fication of when these group groups are Hopfian in [1]). The Baumslag-Solitar

groups for which p = q have been shown to be (synchronously) automatic; how-

ever, the groups for which p ^ q are not synchronously automatic, or indeed

even combable, but are asynchronously automatic, that is, have an automatic

structure based on two tape automata. Details of these results can be found

in [2, 6]. Edjvet and Johnson [5] have shown that the Baumslag-Solitar groups

with p = q have rational growth. In this paper we will show that the group

G2 = (a, t | ta2 = at) also has rational growth, with respect to the symmetric
generating set X = {a~l, t~l, a, t} . This appears to be the first known exam-

ple of a nonautomatic group with rational growth. We will also briefly indicate

how this result can be generalized to all groups Gp = (a, t \ taP = at).

A basic method of showing a group has rational growth is to find a regular

set S of length-minimal normal forms for the group (by 'regular' we mean that

S is the language of a finite state automaton). That the existence of such a set

implies rational growth follows from the following theorem.

Theorem 1.1. Let G be a group generated as a monoid by the finite set X. Let

S be a regular set of length-minimal normal forms for G with respect to X.

Then the growth function F(G, X)(t) is a rational function of t.

The proof of this theorem (which can be found in [3]) is a simple application

of the fact that the adjacency matrix of the finite state automaton satisfies its
own characteristic equation. The result is a generalization of a theorem of Ghys

and de la Harpe [7, Chapter 9, 2.14].
The strategy of this paper is to apply this theorem to the vertices of a par-

ticular subgraph of the Cayley graph of G2, and then show that geodesies in

the Cayley graph can be expressed in terms of paths in this subgraph. In §2 we

specify this particular subset of Gi and show that it has a set of length-minimal

normal forms which is regular. Then, in §3 we use these normal forms to find

length-minimal normal forms for the entire group.

The motivation for these normal forms comes from the geometry of the

Cayley graph of C?2. So we will first describe how to form a picture of the

group. The Cayley graph can be thought of as a directed graph with each edge

labelled a or /. We think of all the edges labelled a as running horizontally

from left to right, and all the edges labelled t as running vertically from top

to bottom. The graph is built out of closed circuits, each corresponding to

the group's relation, ta1 = at. Each of these circuits has one edge labelled a

running across the top and two consecutive edges labelled a running across the

bottom. We can form an infinite horizontal strip of these circuits by demanding

each edge t be shared by two consecutive circuits. Now each of the vertices

along the top of this strip must have an edge labelled / running into it. In

order for this to occur there must be two more such horizontal strips attached
above this one, positioned so that an edge labelled t meets each vertex from

above, as shown in Figure 1. In this way we build up a picture of the entire

group as a (vertical) binary tree whose branches are built from these horizontal
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a a

Figure 1. Part of the Cayley graph of Gj

strips. It will be helpful to keep this picture in mind throughout the following

two sections.

2.  A REGULAR SET OF LENGTH-MINIMAL NORMAL FORMS

Throughout this paper we will be investigating the group G% — (a, t \ ta2 =

at). Note that G2 is generated as a monoid by the set X = {a-1, t~l, a, t} .

Our general aim is to find a way of describing length-minimal normal forms

for the elements of this group, and show that these imply that the group grows

rationally. In this section we will show that a particular subset of G2 has a set

of length-minimal normal forms which is regular, that is, is the language of a

finite state automaton.
Before stating our main theorem for this section, we need to define some

partial orderings for Gt. Let x, y G G2. We say that x y y if y - xtma"
for some m, n e No ; and that x y y if n > 0. Similarly we say that y ■< x
if y = xtma~n for some m, n e No ; and that y -< x if n > 0. It will also
be useful to define a more restricted partial ordering. We write that x \ y, if
x y y but y -< xa ; and similarly that y / x if y -< x but xa~l y y.

When considering words in X the following definition will be useful. Let v

and w be words in X. We say that v is a head of w if w = vwq for some

wq in X, and similarly that v is a tail of w if w — wqv for some word wo
in X.

Theorem 2.1. Let S = { g e G2 | e \ g } . Then there is a set M(S) of length-
minimal normal forms for elements of S, such that M(S) is regular.

We chose M(S) so that, under the ordering t~l < a~l < t < a, M(S) is

the set of lexicographically smallest length-minimal normal forms for S. We
will show that this set is regular via a sequence of short lemmas each of which

tell us something about the form of elements in M(S).

The first lemma, whose proof is trivial, constitutes an important combinato-

rial tool which will be used repeatedly throughout this paper.

Lemma 2.2. Let w be a word in X such that w = ak for some k e Z. Then

alw = wal for all l Ç.Z.
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Lemma 2.3. Let w be a length-minimal word in X such that

(i) either t or at is a head of w , and

(ii) either w -< e or ey_w .

Then w does not contain the letter t~l or any subword of the form a±m where

m > 1.

Proof. Assume w contains the letter t~x . Then we can write w in the form

w0talt~xwl where wq and w\ are words in X suchthat wq does not contain

t~x, and / is an integer. We consider separately the cases where / is even and

/ is odd. First, assume I = 2k for some k G Z. In this case ta2kt~x — ak,

and hence ta2kt~x is not length-minimal, giving a contradiction.

Alternatively, assume / is odd. Since w -< e or e yw ,we can write w as

wotalt~xvoVi where t~xVQ = am for some meZ. So, by Lemma 2.2,

wT = wott~xvoa'v\.

But, clearly, l(wç,talt~xW\) = l(wott~xvoalVi), while W(>tt~xVQalV\ is not

length-minimal since it is not reduced, contradicting the assumption that w

is length-minimal.
For the second part of the lemma, assume w contains a subword of the

form a±m . Then it follows that ta±2 is a subword of w . But ta2 = at and

ta~2 = a~xt hence ta±2 is not length-minimal.   □

Lemma 2.4. Let w G M (S), and let v be a tail of w such that
(i) v does not contain thesubwords t~x, ta2, or ta~2, and

(ii) t is the first letter of v .
Then either e\v or v / e.

Proof. It follows from conditions (i) and (ii) that v can be written in the form

v = u\U2---Uk where each u¡ e {t, ta~x, ta}. But if a~x y vö then a~x y
VqUí for any u¡ in the above set. Similarly, if Uq -< a then Vqu¡ -< a. Hence

a~x y v and v -< a.   □

It will be useful in the following lemmas to consider a slightly larger set than

S. Let S' = Sö {atk | k e N0} , and let M(S') be the set of lexicographically
smallest length-minimal normal forms for 5'.

Lemma 2.5. Let w G M (S), and let v be a head of w . Then v G M (S1).

Proof. Let g = w and assume that w is not the empty word. We will first

show that either t or at is a head of w . Let w = wotWi where wo is a word

in X not containing the letter /. We wish to show that t^o is either a or the

empty word. First suppose that w0 does not contain t~x ; that is, Wo - aP for

some peZ. But in this case either g -< wo or Wq h g ■ So, by Lemma 2.3, W\
does not contain the subwords t~x, ta2 or ta~2, and hence, by Lemma 2.4,

g / tub" or two \ i? • This implies p = 0 or 1 as desired.
Now assume wç, contains the letter t~x. We will show this leads to a contra-

diction. Since e y g, we can write w as w - wotvoVi where VqV\ = W\ and
WqíVo = aP for some p G Z. Again by the above argument we can assume that

p = 0 or 1, which contradicts the assumption the too^o is length-minimal.

So, either / or at is a head of w .

The consequence of this is that Lemma 2.3 applies to every w G M (S), and

that Lemma 2.4 applies to any tail of w beginning with t. Now let v be a
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head of w , so w = vw2 for some length-minimal word in X, w2. If v G S'

then clearly v e M(S'). If v £ S then, by Lemma 2.4, either v / e or

a\v . Assume v / e. If í is the first letter of w2 then, again by Lemma 2.4,

w~2 -< vä, and hence g < e which is a contradiction to the assumption that

g is an element of M(S'). If a is the first letter of w2 then we can write

w2 = awj, such that t is the first letter of w$. Either vä = t" for some

n G N, in which case va is not length-minimal, or va / e, in which case we

get the same contradiction as above. The same contradiction also occurs if a~x

is the first letter of w2.
A similar argument shows there is also no suitable v for which a \ v,

completing the proof.   D

Before stating the next lemma it will be useful first to define the length of

elements or words in the group with respect to t. This concept will also be used

extensively in §3. Let g £ G2 such that g = tka' with k > 0. Then we call

k the t-length of g, written lt(g). Similarly, if tu is a word in X such that

w = tkal with k > 0, then lt(w) = k .

Lemma 2.6. Let g, ga G S' such that 1(g) = l(ga), and let W\,w2 e M(S')
such that W\ = g and wi = gan, where n > 0. Then, under the lexicographical

ordering, W\ <w2.

Proof. Let V\, U\ G M (S') and let v[ = g\ and ü¡ = g\am for some m G N.
Furthermore, let v2, u2 e M(S'), with v2^u2, such that V\ is a head of v2,

u\ is a head of u2, vl = g2 and ui = g2ak for some k G Z. We claim that

k>0.
We prove this claim by induction on the /-length of g2 . The claim is clearly

true if lt(gi) — h(gi) by the uniqueness of normal forms in M(S), so assume

h(g\) < h(gi) ■ Let v' be a head of v2 and u' be a head of u2 , with v1 = g',
such that It(g') = ¡¡(u1) = h(gi) - 1 and w7 = g'aP where, by the inductive

assumption, n > 0. Then, by Lemma 2.4, g2 G {g'ta~x, g'/, g'ta}, while
Si G {g'anta-x, g'aPt, g'aPta}, that is, Si g {g'ta2"-x, g-'ta2", g'ta2n+1}.

But g2 ¥=~ü~2 since Af (5) gives unique normal forms, hence «J = g2ak , where

fc>0.
It follows from this that if b\w\, b2w'2 g M (S) such that b\,b2e {a~x, t, a},

lt(b\W\') = lt(b2w2'), and ¿i < ¿>2, then b\W\'ak — b2w2' where k > 0. The
statement of the lemma now follows immediately by contradiction.   □

In order to show there exists a finite state automaton whose language is M(S)

we introduce a concept of 'types', which will enable us to construct a finite

state automaton whose language is M(S'). Let g G S' and let gi = ga~2,

Si = ga~x, c?3 = ga, gt = ga2. We define the 4-type of g to be the 4-tuple

(ex ,e2,ei,e4) where

„ _¡l(g¡)-l(g)   if il* S',
ei - \2 if g, i S'.

So, for example, the 4-type of tla is (2, -1, 0, 1).
The following two lemmas make it clear why this definition of type is a useful

one.
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Lemma 2.7. Let w e M(S'). The 4-type of w determines whether or not wa x,

wt, and wa are elements of M (S1).

Proof. Let g = w and 1(g) = n . Note that w e M(S') implies wt e M(S'),

since no elements of M(S') contain a2 or a~2 as a subword. For wa~x and

wa, however, there are a couple of different cases to look at.
First we consider wa~x .\ie2<Qor'ue2 = 2 then clearly wa~x £ M(S').

So assume e2 = 1. If e\ > 1 then wa~x G M(S'). Now let e\ = 0, so

^(g) = K8a~2) - n ■ There are two possibilities for the position of g within
S':  either ga~xt "' G S'  or ga~2r gt~x G S'.   (These two possibilities

correspond to Figures 2 and 3 respectively.) Assume ga~xt~x G S'. Then

l(ga~xt~x) = n. But since l(ga~2) = n we must have l(ga~*) = n - 1 and

hence l(ga~*t~x) = n — 2 (see Figure 2).  But this is a contradiction, since

ga~h- 1 = ga' xrxa-x

Hence, g a 2t ' gt x G S' and the relevant section of the Cayley graph
looks like Figure 3. In particular, note that l(ga 2t x) = l(gt x) — n - 1. Let

Wi, w2 be elements of M(S') such that Wi = ga~2fx, tU2 = gt~x. Clearly,
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tüi<2 = tü2, hence w\ < w2 by Lemma 2.6. So, tuiia < w2ta~ wa' , and
consequently wa~x £ M(S'), since it is not lexicographically minimal.

Similarly, for wa we have that if e^ < 0 or if e3 = 2 then wa <£ M(S'),

while if e-i = 1 then toa G AT(S') for all values of e4 .   n

Lemma 2.8. Let w G M (S1), let g = w, and let b\,b2 G {a~x, t, a}. If

wb\b2 G M(S') then the 4-type of wb\b2 is uniquely determined by the 4-type

of g.
Proof. Consider the section of the Cayley graph of S' shown in Figure 4. Clearly

the 4-type of g allows us to determine the length (in terms of 1(g)) of all the

vertices shown in the diagram. In other words, we can determine the length

of all h G S' such that ga~2 y h and h < ga2. But by Lemmas 2.3 and

2.5, wb\b2 must be one of the five circled vertices, each of whose 4-type is

determined by the 4-type of g.   □

Proof of Theorem 2.1. It is now a simple matter to show there is a finite state

automaton whose language is M(S') (as defined above). Let g be any noniden-
tity element of S' and let w be the corresponding word in M(S'). Write w

as W\bi where toi g M (S') and b\ G {a~x, t, a} . Define the state of g to be

the ordered pair (T\, T2) where T\ is the 4-type of W\ and T2 is the 4-type
of g. By Lemma 2.7 we can now determine exactly which words wa~x, wt

and wa are in M(S') and for those that are in M(S'), we can determine the

4-types (and hence the states) of the corresponding elements, by Lemma 2.8.

Consequently, these states form an automaton whose language is M(S'), and

since the number of different 4-types is clearly finite this automaton has a finite

number of states. From this we can now produce an automaton whose language

is M(S). Observe that the elements of S' \ S can be characterized by their
4-types alone; in particular, they are precisely the elements of 5" with 4-type

(ei, e2, 2, 2). Hence, the elements of M(S') \ M(S) are precisely character-

ized by the states (T\, T2) for which T2 is of the form (¿i, e2, 2, 2). By
changing all the states of this form from accepting states to failing states we

obtain a finite state automaton whose language is M(S). So M(S) is regular,

and thus, by Theorem 1.1, has rational growth.   □
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It is not difficult to construct an actual automaton whose language is M(S)

(as defined in the proof of the theorem) by applying the procedure in the above

proof and removing redundant states. Figure 5 shows a suitable automaton

5?, where the square vertices represent accepting states and the circular ones

represent failing states. The automaton in the diagram has been superimposed

upon a representation of the Cayley graph of S in order to give an idea of what

these minimal paths in S look like geometrically.

An easy consequence of M(S) being regular is the following proposition.

Proposition 2.9. The monoid H = (a, a~x, t \ aa~x = e, ta2 = at) has rational
growth.

To prove this we will find a regular set of length-minimal normal forms for

elements of H, and then apply Theorem 1.1. Let T = {g e G2 | g / e} . We

can repeat the arguments of Theorem 2.1 to show there is a regular set M(T)

of length-minimal normal forms for T based on the lexicographical ordering

a < t < a~x. Again we can construct an actual finite state automaton, y,

whose language is M(T). This automaton, which is basically just a mirror

image of &, is shown in Figure 6 on p. 146. We claim that the set

M(H) = {akw0 | k G No, w0 E M(S)} U {a~lwx | / G N0, wx G M(T)}

is a set of length-minimal normal forms for H.

In order to show this, the following definition is useful. Let g e H (or, more

generally, G2) such that e y g. Then the a-reach of g is the unique positive

integer, p , for which aP \ g. Similarly, if g < e , we define the a~x-reach of

g to be value of p for which g / a~p .

The elements of M(H) clearly provide unique normal forms for H. That
this normal form for any g £ H is length-minimal now follows by induction

on the a-reach or a-'-reach of g, where the inductive step is provided by the
next lemma (which will also be used in §3).

Lemma 2.10. Let g £ H such that a y g, and let w be a length-minimal
word representing g. Then the first letter of w is not t or a~x. Similarly, if

g -< a~x, the first letter of a representative length-minimal word is not a or t.

Proof. First consider the case for a y g. Let w0 be a word representing any

go such that e y go. Assume the first letter of too is /. It follows from
Lemma 2.3 that wq contains no subword of the form ta±2 , hence wo can be

written in the form too = U\U2---uk where each w, G {/, ta~x, ta}. But if

w~i -< g\ then W\Ui ■< g\ for any u¡ in the above set, and so go -< a .
If, on the other hand, we assume the first letter of wo is a~x, then wq begins

with the subword a~ja or a~H. The first of these subwords is not reduced

and the second leads to a contradiction of the fact that e y go, again by the
above argument.

The case for g -< a~~x follows similarly.   D

It is easy to see that M(H) is regular. Indeed, Figure 7 on p. 147 shows

how to construct a nondeterministic finite-state automaton whose language is

M(H). So it follows from Theorem 1.1 that H has rational growth.
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Figure 5. The automaton S?
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Figure 6. The automaton y
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Figure 7. An automaton with language M(H)

3. The growth of G2

Before demonstrating that G2 has rational growth, it will be useful to have

the following elementary and standard result on rational generating functions.

Lemma 3.1. Let (a„) and (bn) be integer sequences such that

oo oo

y^ a¡xl   and   ^ b¡x'

;'=0 ¡=0

are rational functions of x. Then Ylu^o cix' /5 a^so a rational function of x if:

(i) Ci = (a¡ ± bi+k) for some k £ No;

(ii) c^E^o^-;
(iii) c¡ = ia¡ ; or

(iv) Ci = Y!j=oJcii-j.

Proof. Part (i) is trivial, while part (ii) follows immediately from the observation
that Ci - Ci-i = a¡.  For part (iii), let the a,-'s satisfy the recurrence relation

E/=o a'an-' f°r a^ n sufficiently large. Then

k k

Y^(n - i + i)otian-i = ^ai(cn-i + ia„-¡) = 0;

(=0 i=0

that is,
k k

Y^OiiCn-i = -^TiatOn-i.
¡=0 (=0

By (i) and (ii), the right-hand side of this equation satisfies some recurrence

relation and hence the c,'s satisfy a recurrence relation. Finally, for part (iv),

note that
i i      k

Z>i-7 = ££>;•
j=0 k=0 j=0

The result then follows by applying (ii) twice.   D
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We will now use the elements of M(S) to construct length-minimal normal

forms for G2.

Theorem 3.2.  G2 has rational growth.

Proof. The strategy of the proof is to construct length-minimal normal forms for

the elements of G2 using the normal forms developed in the proof of Theorem

2.2, and then show that these imply the group has rational growth. We divide the

elements of G2 into a number of different types, based on the partial ordering

on G2 , and look at each of these cases individually.

Case 1. Let g £ G such that e y g. We will show that g can be written

uniquely in the form

(i)  am°w , where m0 G {0, 1,2,3} and w £ M(S), if g -< a4 , or

(ii)  t~kamiwk, where k £ N, mx £ {2, 3}, and wk g M(S) such that

h(Wk) > k, if a4hg,

and that these normal forms are length-minimal.

It is easy to see that this definition gives a unique normal form for each

g £ G2 such that e y g. Recall that the a-reach of such a g is the unique

positive integer p such that aP \ g. Furthermore, if g\, g2£ G2 with g\ y g2

we define the a-reach from g\ to g2 to be the a-reach of g[ xg2. To show

that the normal forms above are length-minimal we argue by induction on the

a-reach of g.
Let p be the a-reach of g, and let g have a normal form corresponding

to (i) or (ii) above. Arguing by contradiction, assume there is a length-minimal

word v with v - g such that l(v) < l(am°w) if p < 4, or l(v) < l(t~kamiwk)

if P > 4. By the proof of Lemma 2.10, we can assume that the first letter

of v is not t or a~x. (However note that in the second case there is an

extra possibility that has to be considered, namely that v could begin with a

subword of the form a~H~x . By applying Lemma 2.2 it is an easy exercise

to show that v begins with a~jt~x only if there is another length-minimal

word v\ representing g, such that V\ begins with the letter t~x .) So we can

assume v begins with t~x or a. If p = 0 then clearly no such v exists since

tt; G M (S). If p = 1 then t~x must be a head of v . But t~x \ g, so either

t~xt or t~xat must be a head of g, which contradicts v being length-minimal.

Similarly, no suitable v exists if p = 2 or p = 3 .
Now let p > 4, and assume that the normal form is length-minimal for all

elements with smaller a-reach. We consider in turn the two possibilities: t~x

is a head of v , and a is a head of v .

So assume t~x is a head of v , that is, there is a word t>o such that v = t~xvo .

Note that t~x y g, but the a-reach from t~x to g is smaller than that from e

to g. Hence, by induction, the word t~^k~x^am'wk represents a shortest path

in the Cay ley graph from t~l to g, contradicting the assumption that there is

a shorter path v0 .
Alternatively, let a be a head of v . Again we note that a y g, but the a-

reach from a to g is smaller than that from e to g . So v must be of the form

t-k'am\Wk, > where k' £ N, m'1e{2, 3} and wk, £ M(S) such that lt(wk,) >

k'. Let l(t~kamiwk) = q. Since l(v) < q, we have l(t~k'am'>wk,) < q - 2.

Now consider the words t~(-k~x^am,wk and t~^k'~xxam^wki. Both these words

are length-minimal and l(t~Vc~x"lam{wk) = q - 1  while l(t~(k'~X)am'iwk,) <
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q - 3. We can write wk, as W\w2 where lt(w\) = k'. Consider the word

t~(k'~xïam'iwiaw2. Clearly, by Lemma 2.2,

t~k' am'\w\aw2 — at~k' am'\wk, = g,

hence

t-(k'-l)am[WiaW2 _ t-(k-l)amiWk.

But l(t~(k'~xïam'iw\aw2) < q - 2, contradicting the fact that t~^k~x^am,wk is

length-minimal.

Case 2. Let g £ G2 such that g < e . Here the length-minimal normal forms

for g are of the form

(i) a~m°w , where mo £ {0, 1,2,3} and w £ M(T), if a~2 y g, or

(ii) t~ka~m,wk, where k £ N, mi G {2, 3}, and u^ G Af(T) such that

/((tüfc) >k,ii g <a2.
The proof of this is identical in method to the proof in Case 1.

Case 3. Let g £ G2 such that g h e or e < g, and in either case g ^ aq

for any q G Z. From Cases 1 and 2 we already know a minimal path in the

Cayley graph from g to e, hence our length-minimal normal forms for this

case are simply the formal inverses of the normal forms in Cases 1 and 2, for

which lt(wk) > k .

Case 4. Let g £ G2 such that g and e are incomparable under the partial

ordering on G2. First observe that in this case there is an obvious (non-length-

minimal) normal form for g: namely, g = taaH~y where a, y £ N and ß

is an odd integer. (Insisting that ß be odd is necessary for uniqueness since

aß = ta2h~x . It is equivalent to minimizing a and y.) We will call a the

t-height of g and y the t-depth of g. Saying that g and e are incomparable

under the partial ordering on G2 is exactly equivalent to saying that the ¿-height

and i-depth of g are both strictly greater than zero. We will look in turn at

two subcases based on the comparative size of a the Z-height of g, and y the
¿-depth of g . These subcases are:

(1) a>7,
(2) a<y.

For the first subcase we will show that an appropriate length-minimal normal

form for g is wt~y where w is the normal form for taaß given in Cases

1 and 2. That this gives a unique normal form follows immediately from the

uniqueness of w.

Define the elements g[k, i] £ G2, where k G No and /' G Z, as g[k, i] =

tka' and let w[k, i] be the length-minimal normal form for g[k, i] given

in Cases 1 and 2. We wish to show that the word w[a, ß]t~~y is length-

minimal. Clearly, l(w[a, ß]t~y) = l(w[y, 0]) + l(w[a, ß]). Now any path

v in the Cayley graph from e tô g must pass through a vertex correspond-

ing to an element of the form g[a, i] for some / G Z. If v is length-

minimal then the two subpaths from e to g [a, i] and from g [a, i] to g

are each length-minimal, and, by the symmetry of the Cayley graph l(v) =

l(w[a, i]) + l(w[y, j]) where j = ß - i. So what we now want to show is that

the expression, l(w[y, i]) + l(w[a, ß - i]) is minimal when i = Ó.
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By the normal forms given in Cases 1 and 2 there exist l\, l2£ No such that

t~l,amtt is a head of w[y, i] and t~'2am2t is a head of tufa, /? - z] for some

m\,m2 £ Z. First consider the case where y + l\ < a + l2 , as illustrated in

Figure 8(a). In this case we can write

w[y, i] = tllam[taEltae2---taEk,

w[a, ß - i] = t~ham2WotaônaS2 ■ ■ ■ taôk

where w0 is a word of Z-height a + l2 - y - l\, k = y + l\, and e,, ¿, G
{-1,0, 1} . Now let wß = rl2am2woamnas'+enaÔ2+e2 ■ ■ • taSk+tk. It is easy to

see (by, for example, repeated applications of Lemma 2.2) that Wjj = g[a, ß].
Thus, by the construction of Wß we have

l(w[y, i]) + l(w[a, ß - i]) > l(ty) + l(wß) > l(w[y, 0]) + l(w[a, ß]).

If on the other hand y +1\ > a + l2 , as in Figure 8(b), we can write

w[y, z] = th ami w0taei tat2 ■ ■ ■ tatk,

w[a, ß- i] = r'2am2taälta02 ■ ■ ■ taôk

where too is a word of Z-height y + h - q - l2, k = a + l2, and e,, o¡ G
{-1,0, 1} . This time, let wß = t-(y+>>-a)amiwoam2tas<+eitaä2+e2 ■ ■ ■ taSk+£k. As

before, we again have that the minimum value of l(w[y, z']) + l(w[a, ß - i])

occurs when z = 0. Thus we have demonstrated for the first subcase that the

given normal forms for g are length-minimal.
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For the second subcase, where a < y, note that the first subcase already gives

us a unique minimal path in the Cayley graph from g to e. So a suitable set

of length-minimal normal forms here is the set of inverses of length-minimal

normal forms from subcase ( 1 ) where a > y. This concludes Case 4.

Cases 1 to 4 now give us a complete set of length-minimal normal forms for

G2, which we will call C. We will denote by C(j) the set of normal forms

given by Case j, and we will let c(j)n := card{tu G C(j) \ l(w) = n}. To
complete the proof of the theorem we will show that each C(j) has rational

growth, in other words that, for each ; , Eo° cU)ix' is a rational function of

x. Again we proceed on a case by case basis, considering each of the above

cases in turn.

Case 1. Define the integer sequences (a„), (b„) and (b'n) as follows
an — card{to g M(S) \ l(w) = n} ,
b„ - card{w G M(S) \ lt(w) = n},
b'„ = card{tt; g M (S) | lt(w) < n} .

From Section 2 we know that Eo° aix' is a rational function of x. To see that

Eo^ b¡x' is rational, consider again the finite state automaton S? in Figure 5
whose language is M(S). We can modify 5? as follows:

(i) For each set of states s\, s2 and s^ in S?, such that there is an edge from

s\ to s2 labelled Z, a loop at s2 labelled Z and an edge from 52 to S3 labelled
a (or a-1), relabel the edge from 52 to 53 as ta (or ta~x respectively) and

add an edge from s\ to 53 also labelled ta (or tarx respectively).
(ii) For each set of states s\, s2 and S3 in 5? (with S\ and s2 not necessarily

distinct), such that there is an edge from s\ to s2 labelled Z, an edge from s2

to S3 labelled a (or a~x) and no loop at S2, remove the edge from S2 to S3

and add an edge from si to S3 labelled ta (or ta~x respectively). See Figure 9.

(iii) Finally, remove the state in the top right-hand corner and its adjacent

edges, and add an edge from the initial state to the state below the removed

state, labelled at.
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This new automaton, say 5^t, has the same language as S? except that it

expresses the normal forms in terms of the subwords Z, at, ta and ta~x.

Hence the length associated with any w in the language of J?? is the Z-length

of w . It now follows from the proof of Theorem 1.1 that Eo° h*' is rational.

Also, it follows from Lemma 3.1 that Eo° b'ix' is rational.

Now let iieC(l). Then v must have one of the following forms:

( 1 )  v — w where w £ M(S) ;
(2) v — aw where w £ M(S) ;

(3) v - t~ka2wk where k £ No, and wk £ M(S) such that lt(wk) > k;
or

(4) v — rka3wk where k £ N0 , and wk £ M(S) such that lt(wk) > k.

Calculating the number of elements in C(l) of length n for each form of v

we have:

(1) card{tt; G M(S) | l(w) = n} = a„.

(2) card{atu | w £ M(S) and l(aw) = n} = an-\.

(3) caTd{rka2w \ w £ M(S), l(rka2w) = n, andlt(w) > k}

= card{to G M (S) \ l(w) = n - k - 2 and lt(w) > k}

= Y^l^rd{w G M (S) I l(w) = n-k-2)
k=0

- card{tu g M(S) \ lt(w) < k}]
n

k=0

(4) cardiz^a3™ | w g M(S), l(rka3w) = n, andlt(w) > k}
n

= ^[a„_fc_3 - b'k_x] (by the same argument).

fc=0

Hence
n

c(l)n = an + aH-\ + Y^ian-k-2 - b'k_x + a„-fc-3 - b'k_¡),

k=0

and so Eo° c(^)ix' ÏS a rational function of x by Lemma 3.1.

Case 2. As in the previous case we define integer sequences (A„), (Bn) and

(B'n) as follows:

An m card{tu G M(T) \ l(w) = n}

Bn = card{u; G M(T) \ lt(w) = n}
B'n = cardjtu G M(T) \ lt(w) < n} .
Again by a similar argument we deduce that

n

c(2)n =An + An-i + Y,(An-k-ï - B'k_i + An_k_i - B'k_x),
k=0

and hence that £o° c(2)ix' is rational.
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Case 3. The normal forms for this case are simply the inverses of the normal

forms for Cases 1 and 2 with the added condition that v ^ a9 for any q £ Z.
It immediately follows that c(3)0 = 0,c(3)i = l and

n n

c(3)n = an + a„-\ + Y^(an-k-i - b'k) + ^(a„_fc_3 - b'k)
k=0 k=0

n _n

+An + An_x + Y,(An-k-2 - B'k) + £>„_*_3 - B'k)
k=0 k=0

for n > 2.

Case 4. Let M(S*) = {w £ M(S) | a or a~x is a tail ofw} and M(T*) = {w £

M(T) | a or a-1 is a tail of w} . If we modify the finite state automaton 5? by

changing every state with an edge labelled Z pointing to it to a failing state, we

obtain a finite state automaton whose language is M(S*). Hence M(S*) and,
similarly, M(T*) are regular, and so if

an = card{w G M (S*) U M(T*) \ l(w) = n},

for all n > 0, then £o° aix' *s a rational function of x. Also, if ß'n =

card{tu g M(S*) U M(T*) \ lt(w) < n} , then a similar argument to that used in

Case 1 tells us that E^ ß'ix' is rational.
For subcase (1), the normal forms are of the form:

(i) am°wr

(ii) rkam,wr

Again, via a similar argument to that used in Case 1, we calculate that the
number of elements of length n for the first possibility is

¿(aB_/ + /?/_,) + ¿(a„_/_1+#_,).

/=i /=i

For the second possibility, if m = I + k then there are m - 1 distinct pairs

(/, k) with / G N and k £ N0. It follows that the number of elements of
length n for the second possibility is

n

Y,(m- l)[(aH-m-2 - ß'k-l) + («n-m-3 ~ ß'k-l)l

Now c(4.1)„ is the sum of these two expressions, and so it follows from

Lemma 3.1 that Ya c(4A)ix' is rational. Similarly, £o° c(4.2)ixi is ratio-
nal, completing Case 4.

where   w £ M(S*)U M(T*),
f{0,l}      if w£M(S*),

m°fc\{0,-l}   if w£M(T*)

and    1 < / < lt(w); or

where   w £ M(S*) U M(T*),
f{2,3} if W£M(S*),

Wlfc\{-2,-3}   if W£M(T*)

and   / G N, k £ N0 such that  k + / < lAw).
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Finally, if c„ = card{tu G C | l(w) = n} , then c„ = c(l)„ + c(2)n + c(3)„ +
c(4.1)„+ c(4.2)„ and hence Eo° cix' is rational.    D

Remarks. ( 1 ) In principle it should be possible to calculate the exact growth

function T(G2, {a,t, a~x, t})(x). For any sequence (d„) defined by dn =

card{tfj G M \ l(w) = n} where M is the language of a finite state automaton,

a closed form for the expression Eo° d¡x' can be determined by considering

the adjacency matrix of the automaton. An example of this is given in [3], and

an efficient computer algorithm for generating this closed form is discussed in

[8]. Basically, the proof of the above theorem shows how to express the growth

of G2 in terms of rational functions which can be exactly determined via finite

state automata. In practice, however, calculating the growth of G2 by this

method would be rather complicated and tedious.

(2) It is not hard to see that Theorem 3.2 can be generalized to all Baumslag-

Solitar groups of the form Gn = (a, Z | ta" = at). To prove this we define

partial orderings exactly as in the case of G2 and show that the obvious analogue

to Theorem 2.1 holds. Again every element of G„ can be written uniquely in

the form a^ry where ß £ Z, y £ N, or taa^ry where a, y £ N0 and ß eZ

such that ß ^ 0 (mod n), allowing us to construct length-minimal normal forms

for the elements of Gn in terms of words in M(S). A similar combinatorial

argument to that used above then shows that Gn has rational growth. In essence,

the proof of this result is no more difficult than the argument for G2 , but the

details are somewhat more technical. An outline of some of these details appears
in [4].

Note, however, that there is not an immediately obvious way to generalize

the theorem to the Baumslag-Solitar groups Gp<g — (a, t | taP = aqt) where

p t¿ q and p, q > 2. The problem is that for these groups normal forms are

considerably more complicated. Nevertheless, it seems reasonable to conjecture
that these groups also have rational growth, and it is possible that a variation

of the methods developed in this paper can be used to confirm this conjecture.
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