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Abstract. We have quantitatively evaluated generation

mechanisms of a sporadic sodium layer (SSL) based on ob-

servational data obtained by multiple instruments at a high-

latitude station: Ramfjordmoen, Tromsø, Norway (69.6◦ N,

19.2◦ E). The sodium lidar observed an SSL at 21:18 UT on

22 January 2012. The SSL was observed for 18 min, with a

maximum sodium density of about 1.9× 1010 m−3 at 93 km

with a 1.1 km thickness. The European Incoherent Scatter

(EISCAT) UHF radar observed a sporadic E layer (Es layer)

above 90 km from 20:00 to 23:00 UT. After 20:00 UT, the

Es layer gradually descended and reached 94 km at 21:18 UT

when the SSL appeared at the same altitude. In this event,

considering the abundance of sodium ions (10 % or less), the

Es layer could provide only about 37 % or less of the sodium

atoms to the SSL. We have investigated a temporal devel-

opment of the normal sodium ion layer with a considera-

tion of chemical reactions and the effect of the (southwest-

ward) electric field using observational values of the neu-

tral temperature, electron density, horizontal neutral wind,

and electric field. This calculation has shown that those pro-

cesses, including contributions of the Es layer, would provide

about 88 % of sodium atoms of the SSL. The effects of me-

teor absorption and auroral particle sputtering appear to be

less important. Therefore, we have concluded that the major

source of the SSL was sodium ions in a normal sodium ion

layer. Two processes – namely the downward transportation

of sodium ions from a normal sodium ion layer due to the

electric field and the additional supply of sodium ions from

the Es layer under relatively high electron density conditions

(i.e., in the Es layer) – played a major role in generating the

SSL in this event. Furthermore, we have found that the SSL

was located in a lower-temperature region and that the tem-

perature inside the SSL did not show any remarkable temper-

ature enhancements.

Keywords. Ionosphere (auroral ionosphere)

1 Introduction

A sporadic sodium layer (SSL), first reported by Clemesha

et al. (1978) in São Paulo, Brazil (23◦ S, 46◦W), is a dense

thin sodium layer superposed on a normal sodium layer. Ma-

jor characteristics of SSLs would be summarized as follows:

(1) there is a large difference in vertical and horizontal dis-

tribution; (2) there is a high ratio of peak sodium density

to background normal sodium density; and (3) SSLs experi-
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ence rapid growth and an extended life span. SSLs typically

have a thin vertical extent with a full width at half maximum

(FWHM) of 1–2 km (e.g., Batista et al., 1989; Clemesha et

al., 1999). On the other hand, the typical horizontal extent

is between about 100 and 300 km (cf. Batista et al., 1991;

Fan et al., 2007). Clemesha et al. (1999) mentioned that the

median value was about 420 km as a typical horizontal di-

mension at São Jose dos Campos. SSLs that extended far-

ther than 1000 km were also observed by an airborne lidar

(e.g., Kane et al., 1991; Gu et al., 1995; Qian et al., 1998).

SSLs have concentrations about 2–10 times higher than that

of the background normal sodium layer (cf. Nagasawa and

Abo, 1995; Simonich, 2005). For example, a typical sodium

density at 95 km in winter is about 3× 109 m−3, and typical

SSLs may have concentrations of about 2× 1010 m−3 at the

same altitude (Clemesha, 1995). SSLs typically reach their

maximum concentration at an interval between 2 and 20 min

and last for a few tens of minutes to several hours (e.g., Cox

and Plane, 1998; Batista et al., 1989).

Generation mechanisms of SSLs have been discussed for

more than 3 decades but questions remain. Proposed mecha-

nisms are as follows: direct meteor deposition, release from

aerosol particles, chemical reduction of appropriate metal

compounds, redistribution of existing atoms, and recombina-

tion of ions (Clemesha et al., 1999). There may be two candi-

dates for the source of sodium atoms: one is neutral sodium-

bearing molecules and atoms and the other is sodium ions.

For example, the altitudinal redistribution of sodium atoms

has been proposed as one of the major generation mech-

anisms of SSLs by Clemesha (1995). Kirkwood and von

Zahn (1991) proposed a generation mechanism in which a

concentration of metallic ions transported downward by elec-

tric fields could generate an SSL at high latitudes. In the first

report of an SSL, Clemesha et al. (1978) suggested that the

origin of the excess sodium atoms must be due to meteor

deposition, and in a later paper Clemesha et al. (1988) sug-

gested a mechanism whereby an initially thick layer caused

by meteor deposition could be converted into a thin layer by

wind shear. This mechanism requires a large meteor and/or

a large meteor shower with a total mass greater than 100 kg,

but it is believed that occurrence of such a meteor event is

rare (Keay and Ceplecha, 1994). By using model calcula-

tions, Plane (2004) proposed that sodium atoms in the topside

of a normal sodium layer are in equilibrium with sodium ions

through several chemical reactions. Among sodium com-

pound ions, NaN+2 contributes greatly to the generation of

sodium atoms. Since chemical reactions of NaN+2 are sensi-

tive to the background temperature, an investigation of the

background temperature is also important for understanding

of the generation mechanisms. Chemical reactions show an

inverse correlation between sodium atom production and the

background temperature (Plane, 2004). On the other hand,

based on observations, Zhou et al. (1993) argued that a tem-

perature increase due to tide and/or gravity wave may pro-

duce a sodium enhancement. Gardner et al. (1993) reported

that there was a temperature enhancement over 40 K inside

an SSL. Based on 43 SSL events obtained during the Air-

borne Lidar and Observations of Hawaiian Airglow/Airborne

Noctilucent Cloud (ALOHA/ANLC-93) campaigns, Qian et

al. (1998) reported that the majority of the SSLs had consid-

erably higher temperatures than the mean; the average tem-

perature enhancement was about 13 K. Therefore, the impor-

tance and role of the temperature in generating SSLs are con-

troversial (cf. Delgado et al., 2012). It should be pointed out

that due to quick temporal and large altitudinal variations in

the sodium density inside an SSL (cf. Liu and Yi, 2009), the

derivation of the temperature requires a high-performance li-

dar system.

Sodium atoms can be sputtered by energetic auroral par-

ticles from dust particles (von Zahn and Hansen, 1988).

Though Hansen and von Zahn (1990) dismissed this idea

because of the poor correlation between sodium densities

and cosmic noise absorption measured by a riometer, Gu et

al. (1995) proposed that the aurora was the cause of the SSL

formation because an SSL and an aurora seemed to be colo-

cated in space. On the other hand, Tsuda et al. (2013) clearly

showed the anticorrelation of sodium number densities and

auroral particle precipitation based on simultaneous obser-

vations of the sodium lidar and European Incoherent Scatter

(EISCAT) VHF radar at Ramfjordmoen, Tromsø. Therefore,

the role of auroral particle precipitation in generating an SSL

is controversial.

A sporadic E layer (Es layer) is an appearance of an

unusual plasma layer in the upper-mesosphere and lower-

thermosphere (MLT) region (Whitehead, 1989; Mathews,

1998). Since Es layers consist of metal ions (Fe+, Mg+, Na+,

etc.), it has been thought that Es layers would play an impor-

tant role in generating SSLs. High correlations between the

occurrence of SSLs and Es layers have been reported (cf. von

Zhan et al., 1987; von Zhan and Hansen, 1988; Nagasawa

and Abo, 1995). A problem with this idea is a low abun-

dance (about 10 % or less) of sodium ions in Es layers (cf.

Clemesha et al., 1999). Heinselman (2000) reported, how-

ever, that an SSL could form via the chemical reactions pro-

posed by Cox and Plane (1998) and that an Es layer could

supply enough sodium atoms to generate the SSL. Es layers

have been recently considered as the most likely candidate

for the generation mechanisms of an SSL (cf. Clemesha et

al., 1999; Yuan et al., 2014). However, SSLs were rarely ob-

served at midlatitudes where the occurrence of Es layers is

greater than at low and high latitudes (cf. Arras et al., 2008;

Wu et al., 2005). This implies that SSLs cannot be generated

by Es layers alone. Matuura et al. (2013) proposed the hori-

zontal redistribution of ions as a new mechanism capable of

providing a sufficient reservoir necessary for the formation

of Es layers and subsequent metallic atom layers.

Existing observations suggest that different processes may

be involved, depending on the latitude and altitude of the

event (Qian et al., 1998). Contrary to studies of SSLs ob-
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served at low latitudes, not much work has been conducted

using an incoherent scatter (IS) radar and a sodium tem-

perature lidar to investigate generation mechanisms of SSLs

at high latitudes. In this paper, we have evaluated genera-

tion mechanisms of an SSL appearing in the polar MLT re-

gion on the night of 22 January 2012 by using data obtained

with the sodium–temperature lidar, the EISCAT UHF radar,

the meteor radar, an all-sky digital camera, and the three-

wavelength photometer operated at the same observational

field. Such a study using comprehensive data sets (in par-

ticular, simultaneous observations of a common volume of

an IS radar and a sodium temperature lidar) is, as far as we

know, conducted for the first time at high latitudes. The 3-

hour Kp index was 4+, 4−, 5−, and 5− between 15:00 UT

on 22 January and 03:00 UT on 23 January 2012. The aurora

activity was high throughout the night. Conditions resembled

those of the event reported by Heinselman et al. (1998) and

Heinselman (2000). Contrary to Heinselman (2000), who as-

sumed that the source of the SSL was sodium atoms, we pro-

pose that the major source may be sodium ions in a normal

sodium layer. Furthermore, we will show the SSL was lo-

cated in a lower-temperature region and there is no signifi-

cant temperature enhancement inside the SSL. In Sect. 2, we

will describe instruments and data sets utilized in this study.

In Sect. 3, observational results will be presented. In Sect. 4,

possible generation mechanisms are evaluated and then ma-

jor mechanisms are proposed. This paper ends with a sum-

mary in Sect. 5.

2 Data sets and instruments

In this section, we briefly describe instruments used in this

study. It should be pointed out that all the instruments were

operated at the same observational field: Ramfjordmoen,

Tromsø, Norway (69.6◦ N, 19.2◦ E), the so-called EISCAT

Tromsø site.

2.1 The sodium lidar

The sodium temperature lidar (hereafter, sodium lidar) has

a stable laser unit and five sets of telescopes (355 mm di-

ameter Schmidt–Cassegrain) and receivers. The laser unit

consists of an all-solid-state Q-switched single-frequency

source tuned to the sodium D-2 line at 589.1583 nm. The

source is based on sum frequency mixing two injection-

locked Nd:YAG lasers in LiB3O5, which was used under

90◦ phase-matching conditions at a temperature of 40.7◦ on

the night of 22 January 2012. Transmitted laser power was

about 2.4 W. Photons returned from the sodium layer and

collected by the receiving telescopes were integrated for 5 s

with a 96 m range resolution. Five receivers were utilized for

the night, and the five telescopes were pointed in a vertical

direction. Under a two-frequency mode used to calculate a

neutral temperature (cf. She et al., 1990; She and Yu, 1995),

we changed the frequency every 1 min, so that we can derive

temperature data with a 2 min temporal resolution. An optical

filter with 1 nm bandwidth was employed with each receiver.

More information on the sodium lidar system at Tromsø is

described in Nozawa et al. (2014).

2.2 The EISCAT UHF radar

The EISCAT UHF radar (cf. Folkestad et al., 1983) was op-

erated continually from about 07:40 UT on 13 January to

23:00 UT on 23 January 2012 with a scanning mode (so-

called ip2) with three antenna positions. The antenna posi-

tions of azimuth and elevation were set to be (186, 70◦), (0,

90◦), and (98, 70◦), and hereafter we call them position 1,

position 2, and position 3, respectively. The sequence of the

scanning was position 1, position 2, position 3, position 2,

and back to position 1, and the dwell times were 95, 55,

95, and 55 s, respectively, i.e., the cycle time was 5 min. In

other words, the three positions can be called south, vertical,

and east positions, and the spatial separation between posi-

tion 2 (vertical) and position 1 (south) or 3 (east) is about

36 km at 100 km altitude. The EISCAT UHF radar in this ex-

periment (named “beata”) transmitted two kinds of pulses:

one alternating code and two power profiles. Data from the

alternating code are used to derive ionospheric plasma pa-

rameters, such as ion and electron temperature. The power

profile data enable us to derive an electron density profile as-

suming a fixed temperature ratio (i.e., Te / Ti= constant; Te

and Ti are electron and ion temperature, respectively). One

of the power profile pulses covered an altitude range in a ver-

tical position between 92.7 and 736.7 km with a 95.9 km al-

titude resolution, and the other covered an altitude range be-

tween 49.5 and 277.4 km with a 2.2 km altitude resolution. In

this study, we used higher-resolution (i.e., 2.2 km) data. The

transmit power was about 1.8 MW, and the electron density

values were calibrated by using ionosonde data.

2.3 The photometer and the meteor radar

The photometer was pointed along the approximately local

geomagnetic field line (azimuth: 182.6◦; elevation: 77.5◦)

with a field of view of 1.2◦. It was equipped with three op-

tical filters tuned for wavelengths of 427.8, 557.7, 630.0 nm

with FWHMs of 2, 3, and 2 nm, respectively. The photome-

ter receives photons through the three filters simultaneously,

at a sampling rate of 20 Hz.

The meteor radar (MR) at Tromsø (Hall et al., 2005) in-

stalled in 2003 can continually provide neutral wind velocity

data, together with a meteor count with a 2 km altitude and

1 h time resolution in the height range from approximately

80 to 100 km. This radar system operates at 30.25 MHz. The

field of view of this MR is about 140◦: a spatial averaging

over perhaps 200 km at the peak echo occurrence height.

Descriptions of the determination of wind velocity may be
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944 T. Takahashi et al.: Generation mechanisms of SSL in the polar region

found, for example, in works by Aso et al. (1979) and Tsut-

sumi et al. (1999).

3 Observational results

In this section, we describe observational results obtained by

the sodium lidar, the EISCAT UHF radar (vertical position),

and the photometer. Since the photometer was pointed at the

field-aligned position, the volume of the photometer obser-

vation was about 22 km southward from the vertical observa-

tion at an altitude of 100 km. Figure 1a and b show temporal

and altitude variations in the sodium density and the neutral

temperature, respectively, from 16:00 UT on 22 January to

04:00 UT on 23 January 2012, obtained by the sodium lidar.

The sodium density and the neutral temperature were derived

with a 2 min temporal and about a 0.5 km altitude resolution

(smoothing in altitude with Hanning window). From Fig. 1a,

we can identify a peculiar region with higher sodium den-

sity at 93–94 km between 21:18 and 21:36 UT above a nor-

mal sodium layer located at about 80–90 km. After 21:40 UT

there is a thinner sodium density layer at around 95–97 km,

which gradually descends to about 90 km by 24:00 UT. These

higher sodium density regions are thought to be so-called

SSLs, and we mainly focus on generation mechanisms of the

SSL appearing at 93–94 km in this paper.

From Fig. 1b, below 90 km, the neutral temperature var-

ied from about 210 to 260 K. There seemed to be a lower-

temperature region around 92–98 km between 20:00 and

22:00 UT, indicating that the SSL appeared in the lower-

temperature region. This lower-temperature region would re-

sult mainly from a semidiurnal tidal variation. Due to quick

temporal and large altitudinal variations in the sodium den-

sity, the temperature values around and inside the SSL re-

gion could be unreliable, and we have derived the values with

higher temporal resolution and present the results later in this

session.

Figure 1c, d, and e show temporal and altitude variations

in the electron density and emission intensities at 427.8 and

557.7 nm obtained by the EISCAT UHF radar in the verti-

cal position and the photometer with the field-aligned po-

sition, respectively. The photometer measurements clearly

showed that auroral particle precipitation intermittently oc-

curred throughout the night, and the electron density profile

indicated that the auroral particle precipitation often reached

95 km and below, indicating frequent precipitation of high-

energy (greater than 30 keV) particles (cf. Rees, 1963).

In addition to the auroral ionizations, there are two layered

structures associated with a relatively high electron density

of over 1010 m−3 appearing between 20:00 and 24:00 UT.

Although auroral ionization contaminated their identifica-

tion, the upper layer appeared at about 105 km at 20:00 UT,

gradually descended, and stayed at around 94 km between

21:18 and 21:40 UT, ascended and reached about 97 km at

21:50 UT, and again descended to 88 km afterwards. The

Figure 1. Variations in the sodium density (a), the neutral temper-

ature (b), and the electron density (c); the emission intensity (10 s

averaged values) of 427.8 nm (d) and 557.7 nm (e) from 16:00 UT

on 22 January to 04:00 UT on 23 January are shown. The temporal

and altitude resolution in (a) and (b) is 2 min and 0.5 km, and it is

30 s and about 2.2 km in (c).

lower layer appeared at 90 km at 19:30 UT and descended

and reached at 87 km at 20:00 UT and stayed there until

24:00 UT. These layers were likely sporadic E (Es) layers

consisting of metal ions (Fe+, Ca+, Na+, etc.) and electrons.

Figure 2a shows variations in the sodium density as well

as the altitude of the maximum sodium density from 20:00

to 24:00 UT between 90 and 100 km with a 2 min and a

0.5 km resolution (smoothing in altitude with Hanning win-

dow). Figure 2b and c present temporal variations in the max-

imum sodium density of the SSL and the ratio of the maxi-

mum sodium density to the background normal sodium den-

sity at the same altitude, respectively. The background nor-

mal sodium density is the averaged value between 16:00 and

19:00 UT at each altitude when the sodium density varied

smoothly with time. The ratio rapidly increased from 1.9 to

5.8 for 2 min from 21:16 to 21:18 UT. In this study, the SSL

was defined by stating that the ratio of the maximum den-

sity to the background normal density is greater than 2 (cf.

Simonich, 2005).

Ann. Geophys., 33, 941–953, 2015 www.ann-geophys.net/33/941/2015/



T. Takahashi et al.: Generation mechanisms of SSL in the polar region 945

 

         
90
92
94
96
98

100
Al

tit
ud

e 
(k

m
)

 

         
90
92
94
96
98

100
Al

tit
ud

e 
(k

m
) (a)

  
 

 

0
5.0•109

1.0•1010

1.5•1010

2.0•1010

So
di

um
 d

en
si

ty
 (m

-3
)

 

         
 

0
5.0•109

1.0•1010

1.5•1010

2.0•1010

So
di

um
 d

en
si

ty
 (m

-3
)

(b)
 

         
 

0
5.0•109

1.0•1010

1.5•1010

2.0•1010

So
di

um
 d

en
si

ty
 (m

-3
)

 

20:00 20:30 21:00 21:30 22:00 22:30 23:00 23:30 24:00
UT

0
1
2
3
4
5
6
7

R
at

io

(c)
 

20:00 20:30 21:00 21:30 22:00 22:30 23:00 23:30 24:00
UT

0
1
2
3
4
5
6
7

R
at

io

Figure 2. (a) Variations in the sodium density from 20:00 to

24:00 UT on 22 January 2012 between 90 and 100 km are presented.

Black dots denote altitudes of the maximum density of the SSL(s).

(b) The maximum sodium density of the SSL(s). (c) The ratio of

the maximum sodium density to the background sodium density at

the same altitude. Red dots in (b) and (c) denote data values with

a ratio greater than 2. In this study, we mainly focus on the SSL

occurring for time intervals shown in the gray shade (i.e., 21:18 and

21:36 UT).

The maximum altitude of the SSL changed by 1 km to

about 93 km at 21:28 UT when the sodium density max-

imized, and rose by 1 km to about 94 km from 21:30 to

21:36 UT. At around 21:38 UT, another SSL appeared at

around 97 km. After 22:00 UT, the maximum altitude of the

SSL gradually fell and reached about 92 km at 24:00 UT.

The sodium density inside the first SSL rapidly increased

from ∼ 6.0× 109 to ∼ 1.7× 1010 m−3 in 2 min between

21:16 and 21:18 UT. After the first sudden enhancement, the

sodium density inside the SSL decreased to 1.2× 1010 m−3

at 21:22 UT and again increased to ∼ 1.9× 1010 m−3 at

21:28 UT. From 21:28 to 21:36 UT, the sodium density of the

SSL gradually decreased from 1.9× 1010 to 8.0× 109 m−3;

at 21:38 UT the ratio of the maximum sodium density to

the background sodium density became lower than 2. The

FWHM of the SSL at 21:28 UT was ∼ 1.1 km. At 21:38 UT,

another SSL appeared at 97 km. The maximum sodium den-

sity of the later SSL was lower than that of the earlier one, but

between 21:40 and 23:00 UT the maximum sodium density

was still a few times higher than that of the background.

The sodium density inside the SSL observed from 21:18

to 21:36 UT drastically changed with time and altitude; thus,

the derivation of the temperature requires a high spatial and

temporal resolution. The sodium lidar at Tromsø recorded

signals every 5 s and switched the frequencies every 1 min.

Since data obtained during the frequency-switching interval

have to be removed due to a possible mixing of the two types

of frequency data, we have derived the temperature with 15 s

temporal and 96 m altitude resolution every 1 min.
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Figure 3. Altitude profiles of sodium density (red line) and neu-

tral temperature (black line) from 21:14 to 21:37 UT every 1 min

on 22 January 2012 are presented. These values are derived with a

15 s temporal and 96 m height resolution. A 1 km running average

is applied to the temperature profile. The gray shade shows standard

deviations of the temperature data (1σ ).

Figure 3 compares the altitude profile of the sodium den-

sity and the neutral temperature derived with a 15 s temporal

and 96 m altitude resolution. For temperature data, 1 km run-

ning averaged values are presented every 96 m with a 15 s

temporal resolution. The enhancement of the sodium density

began at 21:17 UT around 94 km. The maximum density alti-

tude was located at the local temperature minimum at 21:17,

21:19, and 21:20 UT in contrast to Gardner et al. (1993),

who pointed out that the SSL was located in the higher-

temperature region. Although at times the temperature in-

creased inside or nearby the SSL, no trend of temperature

can be seen inside the SSL. Considering possible variations

in temperature due to atmospheric waves, we can conclude

that the SSL in this event was not located in an enhanced

temperature region.

4 Discussion

Much attention has been paid to the generation mechanisms

of SSLs for about 35 years since Clemesha et al. (1978) first

reported an SSL. Possible proposed candidates are the sup-

ply of sodium atoms from an Es layer, an effect of the elec-

tric field (downward ion motion), chemical reactions due to

www.ann-geophys.net/33/941/2015/ Ann. Geophys., 33, 941–953, 2015



946 T. Takahashi et al.: Generation mechanisms of SSL in the polar region

local temperature enhancements, meteor absorption, and au-

roral particle sputtering (cf. Kane et al., 1993; Heinselman,

2000; Kirkwood and von Zahn, 1991; Gardner et al., 1993;

Clemesha et al., 1988; von Zahn and Hansen, 1988). The key

requirements for any mechanism to fulfill are how to supply

enhanced sodium atoms and how to make a thin layer struc-

ture with a large horizontal extent. Supply of sodium atoms

from an Es layer has been considered the most possible gen-

eration mechanism. Kane et al. (1993) argued that an Es layer

triggered the release of sodium atoms, but the Es layer was

not the major source of the SSL observed at Arecibo. This is

because the number of sodium ions contained in the Es layer

was not enough for the generation of the SSL compared to IS

radar and lidar observations.

4.1 Production from the Es layer

As shown in Fig. 1c, the two Es layers appeared between 80

and 110 km between approximately 20:00 and 24:00 UT on

22 January 2012. Figure 4a compares maximum density alti-

tudes of the SSL and the upper Es layer. When the SSL ap-

peared at 21:18 UT, the SSL was located at almost the same

altitude of the upper Es layer (observed in the vertical direc-

tion (position 2) of the EISCAT UHF radar). The maximum

altitude of the SSL descended and then ascended between

about 93 and 94 km between 21:18 and 21:36 UT, while the

Es layer remained at 94 km. During the time interval, the dif-

ference in the altitudes between the Es layer and the SSL

was about 1 km at most. Thus we can propose that the SSL

and the Es layer were located at the same altitude consid-

ering the lower altitude resolution (2.2 km) of the EISCAT

measurements. This implies that the Es layer contributed to

the generation of the SSL (to some extent). Furthermore, the

Es layer was observed at almost the same altitude as three po-

sitions of the EISCAT measurements, suggesting the Es layer

and (probably) the SSL extended at least 36 km in a horizon-

tal direction. Figure 4c shows the ratio of the sodium density

(red: 0.5 km resolution; blue: 2.2 km resolution) to the elec-

tron density. The ratio with the 0.5 km (2.2 km) resolution

data varied from 0.56 (0.31) to 0.27 (0.16) between 21:18

and 21:30 UT. Figure 4d shows column densities integrated

between 92 and 97 km of the electron densities and sodium

densities. An increase in the sodium column density requires

source(s) of sodium atoms (cf. Simonich, 2005).

The conversion of sodium ions in an Es layer to sodium

atoms through a charge exchange process or clustering reac-

tions has been discussed as a major source of high-density

SSLs appearing between 90 and 100 km (von Zahn and

Hansen, 1988). Some in situ measurements suggest that

sodium ion abundance is several percent of the total abun-

dance. Kane et al. (1993) estimated that the sodium ion abun-

dance in an Es layer was 10 % at most. Figure 4b shows

variations in sodium and electron densities. The red and

blue lines show variations in the peak sodium densities of

the SSL with altitude resolutions of 0.5 and 2.2 km, respec-
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Figure 4. (a) Variations in altitudes of the maximum SSL (red line)

and the Es layer for three different directions (square, closed circle,

and triangle) of the EISCAT UHF radar measurements are com-

pared. Shaded area denotes the time interval when the SSL was

seen. (b) Same as (a) except for the density with 0.5 km (red line)

and 2.2 km (blue line) altitude resolution. (c) Variations in the ratio

of the maximum sodium density of the SSL with 0.5 km (red line)

and 2.2 km (blue line) altitude resolution to the maximum electron

density in the Es layer (in the vertical position of the EISCAT mea-

surements) are shown. (d) Comparison of column densities inte-

grated between 92 and 97 km are shown.

tively. The averaged maximum electron density from 20:00

to 21:18 UT was 3.0× 1010 m−3, with a standard deviation

of 1.3× 1010 m−3. The averaged maximum sodium densities

of the SSL with an altitude resolution of 0.5 and 2.2 km from

21:18 to 21:36 UT were 1.4× 1010 and 8.2× 109 m−3, with

standard deviations of 3.3× 109 and 1.7× 109 m−3, respec-

tively. When we assume that the Es layer contained sodium

ions numbering 10 % of the total (cf. Hansen and von Zahn,

1990; Kane et al., 1993; Heinselman, 2000), the amount of

the sodium ions was 3.0× 109 m−3, which corresponds to

about 21 % for the 0.5 km resolution data and to about 37 %
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for the 2.2 km resolution data of the averaged maximum

sodium density of the SSL. Furthermore, even if we assume

the abundance of sodium ions to be 20 % in the Es layer,

the amount of sodium ions corresponds to less than 74 %.

These results indicate that the Es layer alone could not pro-

vide enough of a supply of sodium atoms in this event but

probably contributed to their generation to some extent.

4.2 Concentration from a sodium ion layer through

electric field

Kirkwood and von Zahn (1991) proposed a possibility

for concentration of metallic ions through electric fields.

Plane (2004) proposed that Na+ distributes around the top-

side of a sodium layer as a reservoir of the sodium layer,

and its shape is the Gaussian distribution with an altitude

of maximum density of about 105 km. We evaluate the ef-

fects of the electric field for Na+. A normal sodium ion layer

usually exists under equilibrium conditions with a sodium

layer (cf. Plane, 2004). On the other hand, the source of an

Es layer would be somewhat different: a sufficient abundance

of metallic ions is required (cf. Bedey and Watkins, 1997,

1998). Bedey and Watkins (1997) proposed large-scale trans-

port of metallic ions in the polar ionosphere as the source of

an Es layer. Here, we assume that the Es layer coexisted with

the normal sodium ion layer.

Figure 5 shows the direction and the strength of the elec-

tric field derived by the EISCAT UHF radar data with a

10 min resolution from 18:00 to 24:00 UT on 22 January

2012. Before 20:00 UT, the direction of the electric field fluc-

tuated between the north, west, and south with a strength of

25 mV m−1 or less. From 20:20 to 21:30 UT, the direction

gradually changed from the south through the west to the

northwest with an intensity of 17–45 mV m−1. The south-

westward electric field works most effectively for the down-

ward motion of charged particles below 120 km (Bedey and

Watkins, 2001; Oyama et al., 2012). From 21:30 to 22:40 UT,

the direction of the electric field changed from the northwest

to the south with an intensity of 10–60 mV m−1, and from

22:40 to 24:00 UT the direction was approximately south-

ward.

To evaluate the effects of the electric field, we have calcu-

lated its contributions based on a continuity equation in the

vertical direction:

dnsi(z)

dt
= qsi(z)−Lsi(z)−

d

dz
(nsi(z)vsi(z)) , (1)

where nsi(z) is sodium ion density at height z, qsi(z) is the

sodium ion production rate,Lsi(z) is the sodium ion loss rate,

and vsi(z) is the vertical sodium ion velocity and is counted

positively upwards. The vertical sodium ion velocity is ex-

pressed as follows (cf. Kirkwood and von Zahn, 1991):
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Figure 5. Temporal variations in the direction (red line) and the

strength (blue line) of the electric field derived by the EISCAT UHF

radar from 18:00 to 24:00 UT on 22 January 2012 are shown.
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where �si is sodium ion gyro frequency, νin is ion neutral

collision frequency (given by Eq. (2.29a) in Kelley, 2009), I

is the inclination of the earth’s magnetic field obtained with

IGRF geomagnetic model (I = 78.1◦ at Tromsø at 100 km),

EN and EE are the northward and eastward components of

the electric field, WN(z), WE(z), and Wz(z) are the north-

ward, eastward, and upward components of the neutral wind,

and B0 is the strength of the earth’s magnetic field. Kirkwood

and von Zahn (1991) simulated Fe+ development based on

the continuity equation, but they used the continuity equa-

tion without the ion production and the ion loss rate. Because

related chemical reactions cannot be negligible below about

100 km, the ion production and the loss rate in the continuity

equation are included in this study.

Chemical reaction processes for sodium atoms and ions in

a sodium layer are complicated. For simplification, we con-

sider the circular reactions as shown in Fig. 6. The processes
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consist of the following reactions (Plane, 2004):

Na+O2
+
→ Na++O2

: k20 = 2.7× 10−15 (m3 s−1) (R1)

Na+NO+→ Na++NO

: k21 = 8.0× 10−16 (m3 s−1) (R2)

Na++N2+N2→ NaN+2 +N2

: k22 = 4.8× 10−42(T /200)−2.2 (m6 s−1)

(R3)

NaN+2 +H2O→ NaH2O++N2

: k24 = 6× 10−16 (m3 s−1) (R4)

NaN+2 +CO2→ NaCO+2 +N2

: k24 = 6× 10−16 (m3 s−1) (R5)

NaN+2 +O→ NaO++N2

: k25 = 4× 10−16(m3 s−1) (R6)

NaN+2 + e
−
→ Na+N2

: k29 = 1× 10−12(T /200)−0.5 (m3 s−1)

(R7)

NaH2O++ e−→ Na+H2O

: k29 = 1× 10−12(T /200)−0.5 (m3 s−1)

(R8)

NaCO+2 + e
−
→ Na+CO2

: k29 = 1× 10−12(T /200)−0.5 (m3 s−1)

(R9)

NaO++ e−→ Na+O

: k29 = 1× 10−12(T /200)−0.5 (m3 s−1)

(R10)

NaO++N2→ NaN+2 +O

: k27 = 1× 10−18 (m3 s−1) (R11)

NaO++O→ Na++O2

: k26 = 1× 10−17 (m3 s−1), (R12)

where T is the temperature. In this study, we calculate the

density developments of sodium atoms, sodium ions, NaN+2 ,

NaCO+2 , NaH2O+ and NaO+ by numerical analysis of the

following equations:

d[Na]

dt
= k29[NaN+2 ][e

−
] + k29[NaO+][e−]

+ k29[NaCO+2 ][e
−
] + k29[NaH2O+][e−]

− k20[Na][O2
+
] − k21[Na][NO+] (3)

d[Na+]

dt
= k20[Na][O2

+
] + k21[Na][NO+]

+ k26[NaO+][O] − k22[Na+][N2][N2] (4)

d[NaN+2 ]

dt
= k22[Na+][N2][N2] + k27[NaO+][N2]

− k29[NaN+2 ][e
−
] − k25[NaN+2 ][O]

− k24[NaN+2 ][CO2] − k24[NaN+2 ][H2O] (5)

d[NaO+]

dt
= k25[NaN+2 ][O] − k26[NaO+][O]

− k27[NaO+][N2] − k29[NaO+][e−] (6)

d[NaCO+2 ]

dt
= k24[NaN+2 ][CO2] − k29[NaCO+2 ][e

−
] (7)

d[NaH2O+]

dt
= k24[NaN+2 ][H2O] − k29[NaH2O+][e−]. (8)

The initial condition of an altitude profile of sodium atoms is

given by the averaged profile between 16:00 and 19:00 UT.

For Na+, a Gaussian distribution is assumed with a maxi-

mum altitude of 105 km, an FWHM of 10 km, and a peak

density of 3.5× 109 m−3 after Plane (2004). Additional

sodium ions from the Es layer are included: the amount is

10 % of the electron density at 104 km. The initial condi-

tion for NaCO+2 is assumed with 1 / 10 of the density of

Na+ at 20:00 UT. The initial condition of densities of NaN+2 ,

NaH2O+, and NaO+ are assumed to be 0. We assumed the

molecular ion abundance (e.g., 77 % NO+ and 17 % O+2 at

94 km) of the total electron density (obtained by the EISCAT

UHF radar measurements) with reference to the IRI (Interna-

tional Reference Ionosphere) model (Bilitza, 2001) outside

the Es layer (in particular, during auroral particle precipita-

tion intervals (e.g., around 20:57 UT)), while 10 % (NO+)

and 1 % (O+2 ) were assumed in the Es layer: the latter as-

sumption values are somewhat arbitrary. It should be pointed

out that the molecular ions (NO+ and O+2 ) work on the loss

of sodium atoms through Reactions (R1) and (R2). The neu-

tral densities of major species (e.g., N2, O2, O) are given

by mass spectrometer incoherent scatter (MSIS-E-90) Atmo-

sphere Model (Hedin, 1991). The densities of CO2 and H2O

are given as follows (Allen, 1963):

[CO2] = (3× 10−4/0.7811)[N2] (9)

[H2O] = (5× 10−7/0.7811)[N2]. (10)

The calculation started at 20:00 UT. The number density of

each species was calculated with a time step of 1 min and

vertical resolution of 0.1 km between 80 and 120 km until

22:00 UT.

Figure 7a and b illustrate temporal variations in the density

profiles of sodium ions and sodium atoms, respectively. In

this calculation, the electric field values, horizontal wind ve-

locity values (above 100 km), and the electron density values
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are given from the EISCAT radar measurements; horizontal

wind velocities at and below 100 km are given from MR data.

Neutral temperature values at and below 100 km are given

by the sodium lidar measurements, while above 100 km, they

are given by the MSIS-E-90 Atmosphere Model. The vertical

wind velocity was assumed to be 0 over the height region.

We briefly summarize the development of layers of sodium

ions and sodium atoms. Sodium ions in the normal sodium

ion layer were transported downward by the electric field.

The vertical profile of the sodium ion layer becomes sig-

nificantly thinner because collisional coupling with the neu-

tral atmosphere significantly increases with decreasing al-

titude, causing the sodium ions to “pile up” as the calcu-

lation progresses (cf. Bedey and Watkins, 1997). Thus, a

thin dense layer of the sodium ions forms around 94 km.

Since the molecular nitrogen density around 94 km is high,

sodium ions were swiftly converted to NaN+2 due to the Re-

action (R3). In this event, the Es layer was located at ap-

proximately the same altitude as the SSL. The NaN+2 were

likely neutralized with the electrons in the Es layer, and then

sodium atoms were produced around 94 km with a thickness

of about 2 km. An SSL was generated through these pro-

cesses with the loss processes of Reactions (R1) and (R2).

The densities of molecular ions (NO+ and O+2 ), which con-

tribute to loss of the sodium atoms, are very low around

94 km when no auroral particle precipitation occurs. In addi-

tion, we neglect the diffusion effect in this calculation. There-

fore, the generated SSL can last for 30 min or longer in this

calculation.

Figure 7a shows a temporal development of the redistribu-

tion of sodium ions. At 21:18 UT, the altitude of maximum

sodium ions reached 94.2 km, and the maximum sodium ion

density decreased with time after 20:45 UT, indicating the

chemical recombination of sodium ions to sodium atoms.

Since N2 density increases exponentially with decreasing al-

titude, the conversion of sodium ions to sodium atoms en-

hances with decreasing altitude. Furthermore, the altitude of

the maximum sodium ion density ascended from 21:20 to

21:40 UT by about 2 km.

Figure 7b shows that the calculation suitably produced a

thin layer with high sodium density and with an FWHM

of about 2 km. The sodium density steadily increased from

21:10 to 21:40 UT. The sodium density was enhanced from

2.4× 109 m−3 at 20:00 UT to 1.5× 1010 m−3 at 21:18 UT at

94.4 km. The value at 21:18 UT corresponds to about 88 %

of the observed value at 94 km, and at 21:28 UT the calcu-

lated density of the sodium atom was 1.7× 1010 m−3, which

was about 89 % of the observed value. The calculation shows

that the maximum sodium density reached 1.9× 1010 m−3 at

21:40 UT, which was about the same as the observed maxi-

mum sodium density at 21:28 UT. Although the calculation,

which mainly used observational values, did not completely

reproduce the observational results, some important features

(e.g., a thin layer, a maximum sodium density altitude, and

an enhanced sodium density) were well produced. Therefore,
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Figure 7. Temporal developments of sodium ions (a) and sodium

atoms (b) are illustrated.

we propose that (1) the major source was sodium ions in a

normal sodium ion layer and (2) the electric field played a

major role in generating the SSL in this event.

4.3 Effect of temperature

Figure 8 compares sodium column density and mean neu-

tral temperature between 92 and 97 km derived with a 15 s

temporal and 96 m altitude resolution. The mean temperature

decreased from 18:00 to 20:45 UT, while the sodium column

density gradually increased. The mean temperature increased

from 20:45 to 21:00 UT and decreased again from 21:00 to

22:00 UT. After about 22:00 UT, the mean temperature in-

creased and the sodium column density tended to decrease.

The background temperature between 20:30 and 23:30 UT

was lower by about 20 K than that for the other intervals.

Thus, there was a tendency for the background temperature

to be in inverse proportion to sodium column density. Since

the sodium production is in inverse proportion to the back-

ground neutral temperature Reactions (R7, R8, R9, R10),

the background temperature condition seemed to support the

generation of the SSL in this event. The calculation also sup-

ports the idea that when the temperature was set to be con-

stant (230 K), the calculated maximum sodium density was

reduced by about 6 % from the value of the calculation using

the real temperature conditions.

4.4 Meteor absorption and auroral particle sputtering

Figure 9 shows variations in the meteor count observed by

MR at Tromsø from 12:00 to 24:00 UT on 22 January 2012.

Monthly averaged values for January 2012 are also illustrated

for comparison. Figure 9 shows no remarkable increase in the

meteor count between 12:00 and 24:00 UT, not even around

21:00 UT on 22 January 2012. Moreover, the temporal vari-

ation in the meteor count for 22 January is similar to that

of the monthly average, but the number of counts was lower
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Figure 8. Comparison of sodium column density (red line) and

mean temperature (black line) between 92 and 97 km every 1 min.

The sodium density and the temperature are derived with a 15 s tem-

poral and 96 m height resolution. The gray shading denotes standard

deviations from the mean temperature.
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Figure 9. Variations in meteor count from 12:00 to 24:00 UT on 22

January 2012 observed by the meteor radar at Tromsø are shown by

the solid line. Dashed line denotes monthly averaged meteor counts

in January 2012.

than the monthly averaged values. These results imply that

the meteor shower did not occur during this time interval. If

a cosmic bombardment with a mass of over 100 kg comes

into the atmosphere, it must be detected as a bright trail by

an all-sky digital camera. Such a bright trail was not seen in

images operated at the same observational field. Therefore,

we can exclude the possibility of the effect of meteors and/or

meteor showers.

According to von Zahn and Hansen (1988), auroral parti-

cles with an energy higher 40 keV may provide sodium atoms

from dust particles. Figure 1c shows that the electron density

was enhanced below 90 km at 20:57 UT due to auroral par-

ticle precipitation. In this time interval, the auroral particles,

which penetrated into 90 km or lower, should have an energy

of 40 keV or higher (cf. Rees, 1963; Heinselman, 2000). Al-

though the sodium atoms are sputtered quickly from dust par-

ticles through the auroral sputtering process (von Zahn and

Hansen, 1988), the auroral particle precipitation occurred

about 20 min earlier than the time of the commencement of

the SSL generation. Therefore, the auroral particle sputter-

ing is unlikely to be a major contributor to the SSL gen-

eration. On the other hand, since the auroral activity was

high over the night, the aurora particle precipitation might

have produced additional sodium ions through the charge

exchange process (cf. Heinselman, 2000); consequently, the

background density of sodium ions might be increased. For

example, a life time of a sodium ion at 93 km is about 30 min

(Cox and Plane, 1998). Through this process, there would

be the possibility that the auroral particle precipitation (as

another source) contributed to the generation of the SSL to

some extent.

4.5 The effect of advection

For generation mechanisms of SSLs, such a rapid increase

in the sodium density implies a possibility of advection (cf.

Clemesha et al., 1978; Batista et al., 1991). Since the sodium

lidar observed only the vertical direction on the night of 22

January 2012, the evaluation of the effect of the advection is

rather difficult. As we mentioned, the Es layer extended at

least 36 km southward and eastward from the vertical posi-

tion at Tromsø. As the SSL advent and the Es layer occur at

the same time, we could assume the SSL would have also a

similar extent to the Es layer. The lifetime of the SSL (about

18 min) and the eastward wind (30 m s−1) might suggest the

advection effect and explain the rapid increase in the sodium

density, since the movement value (= 18 min × 30 m s−1) is

about 32 km, similar to the extent (about 36 km). Even if the

rapid increase in the sodium density from 21:16 to 21:18 UT

was due to the advection, we could say that the SSL was

generated nearby the field of view of the sodium lidar. This

is because, as already mentioned before, the EISCAT radar

and MR observational values, used in the calculation of the

temporal development of the normal sodium ion layer, are

spatial averages to some extent.

At any rate, by using the point measurement data of the

sodium lidar, we cannot exclude the possibility of (horizon-

tal) advection. We have made five beam observations (north,

south, east, west, and vertical positions) with the sodium li-

dar at Tromsø since October 2012. Thus, we will carry out

further investigations of the generation mechanisms of SSLs

at high latitudes including the advection effect in the near

future.

5 Conclusions

On 22 January 2012, an SSL was observed at about 93–

94 km by the sodium lidar operated at a high-latitude sta-

tion at Ramfjordmoen, Tromsø, Norway. The auroral activity

was high for the night. From 21:18 to 21:36 UT, the sodium

density inside the SSL was about 2 to 6 times greater than

the background sodium density. The EISCAT UHF radar de-

tected an Es layer above 90 km between about 20:00 and

23:00 UT. The Es layer was located at an altitude of about

94 km, where the SSL was observed from 21:18 to 21:36 UT.

Ann. Geophys., 33, 941–953, 2015 www.ann-geophys.net/33/941/2015/



T. Takahashi et al.: Generation mechanisms of SSL in the polar region 951

This result is likely to indicate that the Es layer contributed

to the SSL generation. The Es layer, however, could provide

less than 37 % (at most) of the sodium atoms of the SSL if

the abundance of sodium ions was 10 % and all the sodium

ions were transported.

By using observational values obtained with multiple in-

struments and some model values, we have calculated a tem-

poral development of sodium ions in a normal sodium ion

layer considering chemical reactions and the effect of the

electric field and the wind. In this calculation, we used ob-

servational data of the electric field, the horizontal wind ve-

locity, neutral temperature (below 100 km), and the electron

density. As the result of this calculation, those processes

can provide about 88 % of the sodium atoms of the SSL at

94.4 km. No enhancement of the meteor count or a bright

trail were observed, and auroral particle precipitation with

high energy (40 keV or so) occurred 20 min earlier than the

time of the commencement of the SSL generation. Thus, the

effects of meteor absorption and auroral particle sputtering

appear not to be dominant mechanisms in this event. There-

fore, we have concluded that the major source was sodium

ions in a normal sodium ion layer, and the SSL was gener-

ated by the conversion of sodium ions into sodium atoms by a

combination of the following effects: (1) the redistribution of

the sodium ions of a normal sodium ion layer due to the elec-

tric field with a strength of about 17–45 mV m−1 and (2) the

higher electron density of the sporadic E-layer, which facili-

tated the chemical reactions, and also the Es layer supplying

additional sodium ions. It should be pointed out that we have,

mainly based on observational data, for the first time, demon-

strated the possibility of sodium ions in a normal sodium ion

layer as a (major) source of an SSL. Furthermore, we have

shown that the SSL was located in the lower-temperature re-

gion and that there was no temperature enhancement inside

the SSL in this event. More efforts are needed to elucidate the

mechanisms of the rapid growth of the sodium atom density

as well as the effect of advection.
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