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Background
Circuit simulation is an important phase during the development of new electronic cir-
cuits. As for the integrated circuit design, this phase is vital and requires advanced tools 
capable to perform faster and accurate analysis. The DC analysis, also known as operat-
ing point calculation, commonly is the first step in circuit analysis. For a nonlinear cir-
cuit, the DC analysis provides a nonlinear algebraic equation system (NAES). The NAES, 
usually, is solved using the Newton–Raphson Method (NRM). Nevertheless, this method 
occasionally fails, leading to oscillations or diverging to infinity; another shortcoming 
of the method is its inefficiency to find multiple operating points. The NRM method 
performs in such a way that once a solution is found, stops and no further operations 
are performed. As an alternative, the homotopy continuation method (HCM) (Jimenez-
Islas et al. 2013; Oliveros-Munoz and Jimenez-Islas 2013; Jimenez-Islas 1996; Bates et al. 
2008; Ushida et al. 2002; Melville et al. 1993; Vazquez-Leal et al. 2005, 2011a, b, 2012, 

Abstract 

In the present work, we introduce an improved version of the hyperspheres path 
tracking method adapted for piecewise linear (PWL) circuits. This enhanced version 
takes advantage of the PWL characteristics from the homotopic curve, achieving 
faster path tracking and improving the performance of the homotopy continuation 
method (HCM). Faster computing time allows the study of complex circuits with higher 
complexity; the proposed method also decrease, significantly, the probability of having 
a diverging problem when using the Newton–Raphson method because it is applied 
just twice per linear region on the homotopic path. Equilibrium equations of the 
studied circuits are obtained applying the modified nodal analysis; this method allows 
to propose an algorithm for nonlinear circuit analysis. Besides, a starting point criteria is 
proposed to obtain better performance of the HCM and a technique for avoiding the 
reversion phenomenon is also proposed. To prove the efficiency of the path tracking 
method, several cases study with bipolar (BJT) and CMOS transistors are provided. 
Simulation results show that the proposed approach can be up to twelve times faster 
than the original path tracking method and also helps to avoid several reversion cases 
that appears when original hyperspheres path tracking scheme was employed.
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2013; Yamamura et al. 1999; Kuno and Seader 1988; Watson 1986, 2009; Sosonkina et al. 
1996; Watson et al. 1987; Allgower and Georg 1993, 1997; Gritton et al. 2001; Trajkovic 
et al. 1990; Verschelde 2011; Gunji et al. 2003; Torres-Munoz et al. 2014) was developed 
to find multiple solutions providing good convergence characteristics (Watson 1990). 
Besides, HCM has been applied to calculate multiple operating points of circuits con-
taining components described by exponential (Vazquez-Leal et  al. 2011b), polynomial 
(Torres-Munoz et al. 2014), or PWL (Vazquez-Leal et al. 2014) models.

Recently, analysis based on piecewise-linear modeling has emerged and gained popularity 
in circuit simulation and other related areas (Vazquez-Leal 2013; Guerra-Gómez et al. 2013; 
Junaid and Wang 2006; D’Arco and Suul 2014; Li et al. 1997; Lin and Wang 2009). This kind 
of analysis is based on replacing traditional nonlinear models by piecewise-linear (PWL) 
approximations (Trejo-Guerra et  al. 2013, 2012; Jimenez-Fernandez et  al. 2013a, b). This 
approach helps to reduce the complexity of equations, which practically are linear. Unfor-
tunately, it implies a trade-off because the number of subdivided linear regions that must be 
computed to obtain an acceptable solution accuracy. This strategy helps to reduce conver-
gence issues that may arise when performing numerical analysis (Roos and Valtonen 1999), 
although it has to deal with the task of providing an adequate description of the nonlinear 
device (Jimenez-Fernandez et al. 2007). To achieve this, several methodologies have been 
proposed to find multiple solutions of PWL circuits (Pastore 2009; Yamamura and Yomog-
ita 2000; Ying et al. 2008; Yamamura and Ohshimar 1998; Yamamura 1993a; Yamamura and 
Tanaka 2000; Tadeusiewicz and Halgas 1999; Pastore and Premoli 1993; Katzenelson 1965; 
Yammamura and Horiuchi 1990; Stevens and Lin 1981; Eyndhoven 1986; Tadeusiewicz 
and Kuczynski 2013). Nevertheless, these methodologies exhibit some drawbacks like the 
requirement of several simulations to find multiple solutions (Katzenelson 1965; Yamma-
mura and Horiuchi 1990), the use of implicit PWL models (Stevens and Lin 1981; Eynd-
hoven 1986), or the need to provide circuit equations in terms of the linear complementary 
problem (LCP), which implies to compute state variable models (Tadeusiewicz and Kuczyn-
ski 2013). The use of implicit models means that the number of linear regions may become 
useless when node synthesis is applied. Besides, compared to explicit models, implicit PWL 
models require a more complex algorithm to compute the model state variables.

Among all piecewise-linear models, the canonical piecewise-linear model proposed by 
Chua has been widely accepted due to its compact structure (De Jesus-Ventura et al. 2009). 
This model describes a device in a compact global representation, taking into account its 
two terminal V–I characteristic. This model describes a device in a concise representation, 
taking into account its two terminal V–I characteristics. Because no redundant data is 
stored, this approach greatly reduces the memory space required for storing device param-
eters. Besides, due to the continuity of this model, it is no required to store information 
about the boundaries for each linear region. All these characteristics makes Chua’s canoni-
cal PWL model a suitable option to be employed in circuit analysis. In Vazquez-Leal et al. 
(2014) it was proposed for the first time a numerical continuation technique of homotopy 
trajectories for PWL circuits that is based on path tracking of hyperspheres centered over 
the homotopy curve. The advantages of this technique are: uses Chua’s canonical PWL 
model and does not require to express equations in terms of the LCP. Therefore, this work 
will use the path tracking method proposed in Vazquez-Leal et al. (2014) and will perform 
some modifications to reduce computing time without losing accuracy. Also, we propose 
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a method capable to avoid the reversion phenomenon (Yamamura 1993b). Additionally, a 
selection criteria for the path tracking starting point is addressed.

This paper is organized as follows. “Original HCM scheme for studying PWL circuits” 
section provides a brief description on PWL modelling, a short introduction to the HCM 
method, and a summary of the proposed method in Vazquez-Leal et al. (2014). The sug-
gested technique for avoiding the reversion phenomenon, the proposed path tracking 
method, and selection criteria for the starting point are provided in “Proposed homotopy 
scheme” section. In “Cases study” section, five cases study of nonlinear circuits are pre-
sented and solved using an HCM and the proposed path tracking method. Numerical simu-
lations and discussion about results are provided in “Numerical simulation and discussion” 
section. Finally, our conclusions about this work are given in “Conclusions” section.

Original HCM scheme for studying PWL circuits
Equilibrium system of equations

The equilibrium system of equations are obtained applying the modified nodal analysis 
(MNA) (Ho et al. 1975), which is a method that allows the systematic study of circuits 
containing devices incompatible with the classic nodal analysis like voltage sources, volt-
age-dependent voltage sources, among others.

As a result of the MNA a set of equations of the form

will be obtained; where x represents the vector of unknowns (electrical variables) of the 
circuit.

Piecewise linear (PWL) model

The Piecewise Linear Model is an approximation of a nonlinear equation to a set of lin-
ear equations which, altogether, exhibit the same behavior as the original system. In this 
work, Chua’s model serves as base for the proposed homotopy scheme; this model is 
described as follows

model parameters are computed by

where β represents the breakpoints, � represents the number of breakpoints, and Ji rep-
resents the slope of the i-th straight line segment in the PWL model.

Homotopy continuation method (HCM)

To solve a system of equations using the HCM, first, the actual solution is introduced in 
a set of solutions described by

(1)f(x) = 0

(2)y(x) = a+ bx +

σ
∑

i=1

ci|x − βi|,

(3)a = y(0)−

σ
∑

i=1

ci|βi|, b =
J1 + Jσ+1

2
, ci =

Ji+1 − Ji

2
, i = 1, 2, . . . σ ,

(4)H(f(x), �) = 0, H ∈ R
n ×R → R

n
,
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where � is the homotopic parameter and f(x) is the system of equations to be solved. 
To find the solution of the original system, the HCM starts from a known solution of 
the homotopic system, which is commonly given at � = 0. Afterwards, a path tracking 
method is employed to calculate subsequent points within the homotopic curve. Each 
time the homotopic path intercepts the solution line (generally placed at � = 1) a solu-
tion to the original system is found (Vazquez-Leal et al. 2011a).

The HCM is commonly used to find multiple solutions as it does not stop the calcula-
tion of solutions once it has found one, unlike the NRM which is designed to find just 
one solution per simulation.

An important issue of the HCM is the possibility that path tracking fails by following 
an incorrect path, this will cause losing solutions or not finding any solution at all, even 
if the Homotopy path exist and several, or all, solutions may be located.

Homotopy formulation

Homotopy formulation

The homotopy formulation used in this work is Newton’s homotopy given by

As reported in Vazquez-Leal et al. (2014), it is possible to model devices using PWL 
techniques by applying Newton’s Homotopy during DC analysis. Nevertheless, it is 
important to notice that experiments in Vazquez-Leal et al. (2014) proved that homo-
topic curves are also PWL as long as Newton’s Homotopy is employed. This impor-
tant characteristic will be applied in this work to propose a novel initial point selection 
scheme and a new scheme to accelerate the trace for the homotopic path.

Modified spheres algorithm (MSA)

In Vazquez-Leal et al. (2014) the modified spheres algorithm path tracking method was 
used to find the homotopic curve. This method consists in including the equation of a 
sphere within the original homotopic system (Vazquez-Leal et al. 2011b; Torres-Munoz 
et  al. 2014; Yamamura 1993b; Oliveros-Munoz and Jimenez-Islas 2013; Jimenez-Islas 
1996). It is expressed as

where c is the center of the sphere, r is its radius, and n is the number of variables from 
the equilibrium system of equations. By incorporating (6) into the homotopic system (4) 
the system of equations become

(5)H(f(x), �) = f(x)+ (�− 1)f(xi) = 0.

(6)
S(x1, x2, . . . , xn, �) = (x1 − c1)

2 + (x2 − c2)
2 + · · · + (xn − cn)

2

+ (�− cn+1)
2 − r2 = 0,

(7)

H1(f1(x), �) = 0,

H2(f2(x), �) = 0,

.

.

.

Hn(fn(x), �) = 0,

S(x1, x2, · · · , xn, �) = 0,
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the system contains n+ 1 equations and n+ 1 variables.
Figure 1 shows the application of the MSA. When the center of the sphere is located 

at c1, the NRM is applied with predictor vector k1; corrector steps are applied to achieve 
the intersection between the sphere and the homotopic path which will be used as center 
of the next sphere S2.

Proposed homotopy scheme
Starting point criteria

Chua’s model possess the characteristic of having upper and lower limits, this means that 
its linear behavior will not suffer any change because there are no breakpoints affecting 
its linearity. In addition, when using an HCM, the starting point is selected far from the 
interest area as a means to induce the homotopy to run through an entire region where 
a solution may be located, this is known as feasible region. Therefore, two tests are pro-
posed for the selection of the starting point.

• • Test 1 Every value of the starting point vector must not have a value located within 
the feasible region. In electrical terms, the values for voltage variables must be higher 
(or equal) than the highest positive voltage supply or lower (or equal) than the low-
est negative voltage supply; the values for current variables should be in a higher 
range than the possible normal operating currents for the circuit, for instance, flip-
flops typically work in the range of milliamperes so setting the values in the range of 
amperes would be suitable for current variables.

• • Test 2 This work proposes circuits modeled by devices of type i = y(u). Therefore, 
the test will focus on this kind of elements. Nevertheless, a simple extrapolation of 
the explanation in this section may be extended to elements of type u = y(i). As it 
has been explained in Test 1, it is important that initial point should be located above 
or below the maximum and minimum values of the power supply, respectively. By 
doing this, the chance of the homotopic path to cross all the feasible region of solu-
tions is increased. However, it is important to understand that initial point consist 
in a set of electrical values (nodal currents and nodal voltages). Therefore, given the 
nature of the MNA formulation, most of the electrical variables for the circuits under 
study are nodal voltages, being the only variable of type current the unknown cur-
rent from the power source. Besides, we know that every PWL device has an specific 
number of breakpoints (�) and within them are breakpoints that may cause multiple 
operating points. Therefore, it is important to assure that proposed initial point in 

c1

c2

c3

k1

k2

S1

S2

S3

S4

Homotopy trajectory

Fig. 1  PWL homotopy path tracking using the MSA (Torres-Munoz et al. 2014)
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terms of nodal voltages (vk and vn for each pair of terminals of the PWL devices), 
produce a voltage drop u outside the bounded region by the lower breakpoint (BL ) 
and upper breakpoint (BU) as it can be seen in Fig. 2. The shaded region is the feasi-
ble region for solutions although solutions, in fact, could be located out of this region 
for some devices. Therefore, Test 1 and Test 2 are complementary; helping to pro-
pose initial points capable to provide the most number of solutions for simulation or 
path tracking.

Avoiding the reversion phenomenon

The MSA path tracking method consists in calculating the point where the circumfer-
ence of a sphere crosses the homotopic path; nevertheless, this sphere always intersects 
the homotopic path in two points, as for our purposes we are only interested in just one. 
It is possible that the NRM calculations for the new point in the path converge to a point 
already found, this situation cause a backward path tracking, thus causing the method to 
fail. This situation is known as the reversion phenomenon (Yamamura 1993b).

This work introduces a technique capable to avoid the reversion phenomenon. It 
consists in perturbing the hypersphere equation (6) to avoid one of the interceptions 
between the hypersphere and the homotopic path.

To understand the proposed technique, it is necessary to study the concept of an 
inverted sphere which is described by

where xn+1 represents the homotopic variable (�), cinv represents the inverted sphere 
center and rinv represents its radius. This equation is the same as obtaining the square 
root of (6). When substituting any value of x located inside the sphere in (8), it will gen-
erate a negative number inside the square root and create an empty region in the domain 
of real numbers as shown in Fig. 3.

(8)
Sinv(x1, x2, . . . , xn+1) =

(

(x1 − cinv1)
2 + (x2 − cinv2)

2 + · · ·

+(xn+1 − cinvn+1
)2 − r2inv

)1/2
≥ 0,

Fig. 2  Starting point criteria
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In order to take advantage of the properties from the inverted sphere we add (6) and 
(8), placing the center of the inverted sphere at the unwanted interception and the center 
of the original sphere at the point obtained in the previous iteration, the result is

here j represents the j-th iteration and Kinv is an arbitrary constant used to reduce the 
contribution of the inverted sphere to the equation in order to deform the shape of the 
sphere as little as possible.

As shown in Fig. 4, the resulting system has a cavity in its circumference. In fact, this 
empty spot covers the unwanted interception of the original sphere and the homotopic 
path. This factor allows the NRM to find the next point in the homotopic path as it is the 
only solution for

which is the new system of equations to trace the homotopic path.

(9)

Snew(x1, x2, . . . , xn+1) =
(

1/Kinv

)(

(x1 − xj−1,1)
2 + (x2 − xj−1,2)

2 + · · ·

+ (xn+1 − xj−1,n+1)
2 − r2inv

)1/2
+ (x1 − xj,1)

2

+ (x2 − xj,2)
2 + · · · + (xn+1 − xj,n+1)

2

− r2 = 0,

(10)

H1(f1(x), �) = 0,

H2(f2(x), �) = 0,

.

.

.

Hn(fn(x), �) = 0,

Snew(x1, x2, . . . , xn, �) = 0,

Fig. 3  Graphical inverted sphere domain

cinv=xj−i c = xj

xj+1

Homotopic path

Fig. 4  MSA with an inverted hypersphere
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In order to avoid a possible oscillation of the NRM or iterations with complex 
numbers, when it approaches the empty region, a limit in the number of iterations 
is established. When the limit is reached, the NRM is executed with a different start-
ing point as described in Torres-Munoz et al. (2014). Empirically, we found that the 
radius of the inverted sphere should be smaller than the radius of the original one, a 
range between 1,000 to 10,000 times smaller is proposed in this work. If the inverted 
sphere radius is too small, the NRM might find the unwanted root even if it does not 
exist, because the radius from the inverted sphere is smaller than the error tolerance 
from the NRM as seen in Fig. 5a. If it is too big, the homotopic path tracking may fail 
because next point in the path could be inside the empty region of the original sphere 
as shown in Fig. 5b.

Speed‑up hyperspheres path tracking method (SHPT)

This work proposes a modification to the path tracking method presented in 
Vazquez-Leal et  al. (2014). It is capable to reduce the computing time for tracking 
homotopic paths having PWL characteristics. Taking advantage of the local linear-
ity of PWL models, a parameterized straight line equation is deduced from the first 
two points (x0 and x1) obtained using the MSA (see Fig.  6). After that, this linear 
equation is used to calculate the next point (x2) in the straight line and the values 
obtained are substituted in the homotopic system of equations, if these values satisfy 
the system of equations, the next iteration will be performed in the same way to find 
(x3, x4, . . .) as depicted in Fig. 7a; otherwise, it means that we found a break point and 
the MSA must be used again two times in order to obtain a new straight line equation 
as depicted in Fig. 7b.

Homotopy formulation

The Newton Homotopy should be formulated based on (1). As shown in Vazquez-Leal 
et al. (2014), the homotopic curves obtained with this formulation have a PWL nature, 
this will hold as long as all of the nonlinear devices in the circuit are PWL modelled. 
This property allows to execute the following steps for the proposed path tracking 
method.

Inverted sphere

Homotopic path

NRM error tolerance

c = xj

xj+1

cinv=xj−1

Homotopic path

a b

Fig. 5  Inverted sphere problems in the MSA. a Small radius problem. b Big radius problem
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Starting point criteria

Once the homotopic system is defined, the SP should be arranged in a way to accomplish 
both Test 1 and Test 2 (see Fig. 2).

Modified hypersphere equation (hypersphere iterations)

Once the starting point (x0) is defined, the sphere equation (6) should be formulated 
with a center located at c = x0. With this formulation the NRM must be applied to (10). 
If the found solution is within the region of � < 0 (Fig. 6a), it will be used as the center 
of the inverted sphere for the next iteration and the center of the normal sphere will be 
located at x0 in order to induce the NRM to find the interception on the positive side of 
� and follow the path heading to � = 1. If the found solution is within the region of � > 0 
(Fig. 6b), the next sphere will have a center located at x1 and the inverted sphere will 
have a center at x0.

x0

x1

λ = 0
Homotopic path

x

x0

x1

λ = 0
Homotopic path

xa b

Fig. 6  First iteration of the path tracking. a Case with negative solution found. b Case with positive solution 
found

x0

x1

λ = 0

λ

x

x2

x3

Breakpoint

Homotopic
Path

xj−1

xj

λ

x

Homotopic path

Breakpointa b

Fig. 7  Path tracking method. a Straight line segment iterations. b PT method in breakpoints
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Straight line equation formulation

Once the direction of the path tracking has been set to the positive region of �, it is pos-
sible to formulate the straight line equation given by

where j represents the j-th iteration and m represents the slope of the straight line that 
crosses from xj to xj−1.

Next iterations will be predicted substituting �j+1 = 2�j − �j−1 in (11), as shown in 
Fig. 7. If the values calculated using (11) satisfy (7) it can be assured that they belong 
to the homotopic path. This procedure shall be repeated for next predictions until the 
obtained values no longer satisfies (7). It means that iterations with straight lines found a 
breakpoint on the homotopic path just like the one in Fig. 7b. Therefore, two new itera-
tions using the hypersphere tracing point should be performed to create a new straight 
line and predict points for the new segment.

The straight line path tracking does not need any correcting steps like those needed 
when using the NRM, this results in greatly reducing the computing resources and time 
required. It also avoids the calculation of different starting points when NRM fails. Fur-
thermore, the diverging issues present sometimes in the NRM are moderated for these 
iterations. Finally, no reversion phenomenon will appear as (11) has only one solution 
and it leads to the forward path tracking.

Path tracking technique near breakpoints

When the homotopic path crosses a breakpoint of the PWL model (see Fig. 7b), (11) 
will not satisfy (7). At this point, (10) has to be solved, placing the center of the nonin-
verted sphere at the last calculated point that was part of the homotopic path and the 
center of the inverted sphere at the second to the last calculated point; NRM is applied 
to calculate the next point in the path. Afterwards, another point should be calcu-
lated by solving (10) in order to repeat the hypersphere iterations procedure explained 
in “Straight line equation formulation” section. When a path has a high density of 
straight line segments, the SHPT will tend to slow down, although not as slow like the 
method proposed in Vazquez-Leal et al. (2014). This characteristic shows that SHPT, 
compared to MSA, requires lower computation time (CP) or could perform almost 
identical if the homotopic curve exhibits a high number of break points.

Find zero strategy

As reported in Vazquez-Leal et al. (2014), if the homotopic path crosses the solution line 
(� = 1), the exact solution to the PWL system can be obtained by calculating (11) using 
the last point before the homotopic path crossed the solution line and the next point 
after it, as shown in Fig. 8, and substituting �j+1 = 1. In other words, a linear interpola-
tion at � = 1 is performed among the two iterations crossing � = 1.

SHPT algorithm

In this section we introduce an algorithm for the SHPT method.

(11)

xj+1 = m�j+1 + xj−1 −m�j−1,

m =
xj − xj−1

�j − �j−1

,



Page 11 of 29Ramirez‑Pinero et al. SpringerPlus  (2016) 5:890 

The general procedure work as follows: first, the system of equations is generated as 
shown in (14). Second, the user provides a starting point. This starting point has to fulfill 
Test 1 and Test 2 already introduced in the previous section. For the case when starting 
point does not fulfill any of the tests, the user is requested to provide another starting point 
and the verification process is performed until a valid point is achieved. Then, the pro-
cess continues by generating the Homotopic formulation for the system. Afterwards, the 
hypersphere formulation is given. It is important to mention that, at this point, the inverse 
hypersphere formulation is also generated to avoid the reversion phenomenon. Notice that 
the hypersphere and inverse hypersphere formulation will be updated after every itera-
tion by adjusting its center. Once all necessary equations are already provided and a valid 
starting point is given, the main loop is started. It begins with a hypersphere iteration, the 
result of the iteration and the starting point allows the calculation of another point that 
allows calculation of a predictive straight line in the next block. Once this step is done, the 
Straight Line Iteration block is performed as explained in the corresponding section. As 
iteration continues, detection for crossing at � = 1 is performed; for the case that it is not 
detected, break point detection is applied. If a break point is not found, the process returns 
to the Straight Line Iteration block. For the case that a break point is detected, two hyper-
sphere iterations are performed to correct the homotopic path (see Fig. 7). When � = 1 is 
located, linear interpolation (see Fig. 8) is applied to provide a very accurate approximation 
that is stored in a solution vector. Once the store block is executed, the process returns to 
the straight line iteration block. The algorithm will repeat until maximum number of itera-
tions limit is reached. Figure 9 shows the flow diagram for the entire process.

Cases study
In this section we provide five circuits to be analysed using the proposed path tracking 
method. All the proposed SP for the circuits fulfils the Test 1 and Test 2 starting point 
criteria. Also, we compare the proposed path tacking method against the proposed in 
Vazquez-Leal et al. (2014), this comparison includes the results using the inverted sphere 
and without it. The value for Kinv was set to 50000 for all the cases.

Example 1

The circuit in Fig.  10a (Tadeusiewicz and Kuczynski 2013) has two BJT Transistors 
which were modelled using the Ebers–Moll model shown in Fig. 10b. The PWL equa-
tions for these devices are

xj−1

S∗

xj
λ = 1

Solution found

Fig. 8  Find zero strategy
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Fig. 9  Flow diagram for the SHPT algorithm
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Fig. 10  Example 1: Schematic Circuits. a Schematic Circuit for example 1. b Ebers–Moll model. c Schematic 
Circuit for example 1 with the Ebers–Moll model
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Figure 10c shows the equivalent circuit once the Ebers–Moll has been substituted.
Applying the MNA method to the circuit, the equilibrium system of equations are 

obtained as

which is used as the base to create a Newton homotopy, and results in the following 
homotopic system of equations

(12)

iBE(vB, vE) = 0.1861|vB − vE − 0.68| + 1.4760|vB − vE − 0.75|

+ 9.8375|vB − vE − 0.8| + 27.7312|vB − vE − 0.85|

+ 67.1356|vB − vE − 0.87| + 106.3693|vB − vE | − 91.0832,

iBC(vB, vC) = 0.3685|vB − vC − 0.68| + 2.2023|vB − vC − 0.75|

+ 12.8961|vB − vC − 0.79| + 50.5505|vB − vC − 0.84|

+ 200.5718|vB − vC − 0.87| + 266.5949|vB − vC |

− 229.0503.

(13)

f1 = 0.16667× 10
−2v1 − 0.83333× 10

−3v2 − 0.83333× 10
−3v4 + iVS1 = 0,

f2 = −0.83333× 10
−3v1 + 0.12878× 10

−2v2 − 0.45454 × 10
−3v3

− iBC(v5, v2)+ 0.99iBE(v5, v6) = 0,

f3 = −0.45454 × 10
−3v2 + 0.45454 × 10

−3v3 + 0.5iBC(v3, v4)

+ 0.01iBE(v3, v7) = 0,

f4 = −0.83333× 10
−3v1 + .12878× 10

−2v4 − .45454 × 10
−3v5 − iBC(v3, v4)

+ .99iBE(v3, v7) = 0,

f5 = −0.45454 × 10
−3v4 + .45454 × 10

−3v5 + 0.5iBC(v5, v2)

+ 0.01iBE(v5, v6) = 0,

f6 = (1/10)v6 − iBE(v5, v6)+ 0.5iBC(v5, v2) = 0,

f7 = (1/10)v7 − iBE(v3, v7)+ 0.5iBC(v3, v4) = 0,

f8 = v1 − 5 = 0,

(14)

H1 = �
[

0.16667× 10
−2v1 − 0.83333× 10

−3v2 − 0.83333× 10
−3v4

+ iVS1

]

(1− �)(6.00166) = 0,

H2 = �
[

−0.83333× 10
−3v1 + 0.12878× 10

−2v2 − 0.45454 × 10
−3v3

− iBC(v5, v2)+ 0.99iBE(v5, v6)
]

+ (1− �)(−53.05737) = 0,

H3 = �
[

−0.45454 × 10
−3v2 + 0.45454 × 10

−3v3 + 0.5iBC(v3, v4)

+ 0.01iBE(v3, v7)
]

+ (1− �)(37.77025) = 0,

H4 = �
[

−0.83333× 10
−3v1 + .12878× 10

−2v4 − .45454 × 10
−3v5

− iBC(v3, v4)+ .99iBE(v3, v7)
]

+ (1− �)(−53.05737) = 0,

H5 = �
[

−0.45454 × 10
−3v4 + .45454 × 10

−3v5 + 0.5iBC(v5, v2)

+ 0.01iBE(v5, v6)
]

+ (1− �)(37.76480) = 0,

H6 = �
[

(1/10)v6 − iBE(v5, v6)+ 0.5iBC(v5, v2)
]

+ (1− �)(15.89174) = 0,

H7 = �
[

(1/10)v7 − iBE(v3, v7)+ 0.5iBC(v3, v4)
]

+ (1− �)(15.89174) = 0,

H8 = �
[

v1 − 5
]

+ (1− �)(2) = 0.



Page 14 of 29Ramirez‑Pinero et al. SpringerPlus  (2016) 5:890 

The proposed starting point for the homotopic path tracking is shown in Table  1. 
Table 2 shows that the SP fulfils both Test 1 and Test 2 criteria. The first column con-
tains the variables of the NAES and the PWL model dependent variables u = vk − vn, 
where k and n represent the diodes nodes; the second column shows that every variable 
is greater than or equal to the value of the voltage source (VS1 = 5), accomplishing Test 
1; the third column shows the fulfilment of Test 2 as every PWL model dependent vari-
able u = vk − vn is less than or equal to the lowest breakpoint (BL = 0) in (12).

The resulting homotopic path when using the proposed SP is depicted in Fig. 11 for v4 
and v2.

In Tadeusiewicz and Kuczynski (2013) three operating points were reported for this 
circuit, in Fig. 11 can be seen that all of them were found using the proposed methodol-
ogy. The solutions found are listed in Table 3.

The errors of the obtained solutions are calculated by

where N represents the number of equations in the original system and f(Si) represents 
the substitution of the solution Si in the vector of equations (1).

(15)
Error =

√

√

√

√

N
∑

i=1

f(Si)2,

Table 1  Starting Point (SP) for Example 1

Variable Starting point (SP)

v1 7

v2 7

v3 6

v4 7

v5 6

v6 7

v7 6

iVS1 6

Table 2  Test 1 and Test 2 proof

Variable Test 1

v1 7 ≥ 5

v2 7 ≥ 5

v3 6 ≥ 5

v4 7 ≥ 5

v5 6 ≥ 5

v6 7 ≥ 5

v7 6 ≥ 5

iVS1 6 ≥ 5

 Voltage drop in PWL devices Test 2

v5 − v2 −1 ≤ 0

v5 − v6 −1 ≤ 0

v3 − v4 −1 ≤ 0

v3 − v7 0 ≤ 0
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Example 2

The circuit shown in Fig. 12 is the classical Chua’s circuit, this circuit has nine solutions. 
The values of the resistors are taken from Reyes (1994) and BJT Transistors were mod-
elled using a simplified version of the Ebers–Moll model, see Fig. 13. The V–I character-
istics of the model in this model are given by

The equilibrium system of equations obtained using the MNA has sixteen variables, 
thirteen are voltage variables and three are current variables from the three independent 
voltage sources.

(16)

iD(vB, vE) = −0.05486+ 0.14827|vB − vE | + 0.01157|vB − vE − 0.306|

+ 0.01181|vB − vE − 0.3375| + 0.04904|vB − vE − 0.366|

+ 0.07583|vB − vE − 0.3875|.
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Fig. 11  Homotopic paths from example 1. a Homotopic path for v4. b Zoom to the homotopic path for v4. c 
Homotopic path for v2. d Zoom to the homotopic path for v2

Table 3  Obtained operating points for example 1

Solution S1 S2 S3

Variable

 v1 5 5 5

 v2 2.63687 0.79633 0.43999

 v3 0.73608 0.71936 0.41549

 v4 0.43999 0.79633 2.63687

 v5 0.41549 0.71936 0.73608

 v6 0.01116 0.03503 0.04652

 v7 0.04652 0.03503 0.01116

 iVS1 −0.00576 −0.00700 −0.00576

Error15 2.56330E−9 2.6000E−9 1.8497E−9

Error7 7.65891E−9 5.5292E−9 1.3424E−8
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In order to be able to calculate all the solutions of this circuit three SP were needed. 
These SPs are listed in Table 4 and all of them fulfil the starting point selection criteria 
proposed in this work.

The resulting homotopic paths for variable v5 are shown in Fig. 14. A total of eleven 
solutions were found using three different SP, nevertheless, there are only nine different 
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Table 4  Starting points for example 2

Starting point SP1 SP2 SP3

Variable

 v1 −13 −14 −15

 v2 −13 −15 −15

 v3 −13 −16 13

 v4 −13 17 16

 v5 −13 18 −13

 v6 20 12 23

 v7 −13 16 −13

 v8 20 15 19

 v9 20 14 13

 v10 20 −14 21

 v11 −13 −16 −13

 v12 −13 −14 13

 v13 −13 −12 15

 iVS1 −13 2 −1

 iVS2 −13 2 −1

 iVS3 −13 2 −1
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solutions because S5 was found using the SP3 and SP2, and S9 was found using SP1 and 
SP3.

Numerical solutions are listed in Tables 5 and 6.

Example 3

This circuit has been proposed for this work (see Fig. 15). Contains three flip-flops con-
nected in a cascade configuration. The transistors are modelled using the Ebers–Moll 
model. The V–I characteristics for diodes D1,D2, D3, and D4 are given by

where vD represents the voltage drop in diode D and iD represents its current.
This circuit contains twenty variables; calculating one SP (listed in Table 7) found five 

different operating points. Table 8 shows the operating points and Fig. 16 presents the 
homotopy path for v12.

Example 4

This circuit (see Fig. 17) was studied in Tadeusiewicz and Kuczynski (2013); it contains 
five NMOS transistors and five PMOS transistors. The CMOS transistors are repre-
sented by using the Shichmann–Hodges model (Shichman and Hodges 1968) (Fig. 18) 
and simulated in SPICE setting the following parameters: LEVEL =  1, VT0 =  0.5705, 
RD = RS = 0, LAMBDA = 0. For NMOS transistors Kp = 79.173u, W = 51u, L = 4u, 
and for PMOS Kp = 19.485u, W = 102u, L = 2u. The V–I characteristics for NMOS and 

(17)

iD = −66.24887+ 78.72290vD + 0.28774E − 2|vD| + .9397385778|vD − 0.7|

+ 10.44408|vD − 0.8| + 67.33621|vD − .85|,

Table 5  Operating points from Example 2 using SP1

Starting point SP1

Solution S1 S2 S3 S4 S5

Variable

 v1 12 12 12 12 12

 v2 10.75096 10.43859 10.39498 4.84208 2.47682

 v3 1.38307 −1.27205 −1.64274 −2.96478 −2.38453

 v4 −0.61692 −3.27205 −3.64274 −4.96478 −4.38453

 v5 −7.45041 −7.98903 −8.08633 −8.38692 −8.21367

 v6 2.54958 2.01096 1.91366 1.61307 1.78632

 v7 −4.54315 −0.75565 −0.07147 7.38990 8.58443

 v8 −1.14428 −0.19032 −0.01800 1.62547 1.82001

 v9 2.16789 1.63661 1.54063 1.27021 1.45263

 v10 2.16789 1.69623 1.80832 1.80832 1.45263

 v11 10.51566 −0.83173 −2.34971 −2.50524 2.24153

 v12 −4.54315 10.13282 10.84530 10.84530 8.58443

 v13 −1.14428 2.07001 2.18505 2.18505 1.82001

 iVS1 −0.00895 −0.00725 −0.00729 −0.00685 −0.00652

 iVS2 −0.00068 −0.00047 −0.00044 −0.00034 −0.00038

 iVS3 0.00031 0.00039 0.000401 0.00026 0.00016

Error15 4.3457E−8 3.9249E−9 3.9283E−10 1.3055E−8 3.5880E−10

Error7 4.0033E−7 1.2607E−7 1.1384E−7 1.0513E−7 1.6096E−7
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PMOS transistors are given by Adby (1980), Tadeusiewicz (2001) and Tadeusiewicz and 
Kuczynski (2013)

where vG represents the voltage at the gate node, vS the voltage at the source node, vD the 
voltage at the drain node, iS and iD represent the branch currents in source and drain, 
respectively.

The value of k is calculated (Tadeusiewicz and Kuczynski 2013) as

(18)

iS(vG , vS) =

{

0 if vG − vS < 0,

k(vG − vS − vth)
2 if vG − vS ≥ 0,

iD(vG , vD) =

{

0 if vG − vD < 0,

k(vG − vD − vth)
2 if vG − vD ≥ 0,

Table 6  Operating points from Example 2, using SP2 and SP3

Starting point SP2 SP3

Solution S6 S7 S8 S9 S10 S11

Variable

 v1 12 12 12 12 12 12

 v2 −2.26995 −2.48607 −0.59643 −2.11441 −2.26995 2.47609

 v3 −2.96478 −4.80186 −1.27205 −1.64274 −2.96478 −2.38462

 v4 −4.96478 −6.80186 −3.27205 −3.64274 −4.96478 −4.38462

 v5 −8.38692 −8.93395 −7.98903 −8.08633 8.38692 −8.21370

 v6 1.61307 1.06604 2.01096 1.91366 1.61307 1.78629

 v7 10.84530 10.84531 10.13282 10.84530 10.84530 8.58478

 v8 2.18505 2.18505 2.07001 2.18505 2.18505 1.82007

 v9 1.80832 1.80832 1.69623 1.80832 1.80832 1.45268

 v10 1.27021 1.80832 1.63661 1.54063 1.27021 1.45260

 v11 4.60679 −2.72137 10.20329 10.15968 4.60679 2.24190

 v12 7.38990 10.84531 −0.75565 −0.07147 7.38990 8.58425

 v13 1.62547 2.18505 −0.19032 −0.01800 1.62547 1.81998

 iVS1 −0.00685 −0.00787 −0.00725 −0.00729 −0.00685 −0.00652

 iVS2 −0.00034 −0.00021 −0.00047 −0.00044 −0.00034 −0.00038

 iVS3 0.00002 0.00007 0.00002 −0.00001 0.00002 0.00016

Error15 3.7168E−11 5.4131E−9 4.8390E−12 4.4469E−5 1.6678E−9 2.5092E−6

Error7 1.1229E−7 1.4545E−7 1.2585E−7 4.4469E−5 1.1240E−7 2.5007E−6

Fig. 15  Proposed circuit for Example 3
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Table 7  Starting point selected for Example 3

Variable SP

v1 10

v2 −5

v3 0

v4 8

v5 0

v6 −8

v7 −6

v8 10

v9 7

v10 −2

v11 −1

v12 7

v13 9

v14 −8

v15 −1

v16 0

v17 0

v18 0

v19 0

iVS1 −1

Table 8  Operating points for Example 3

Solution S1 S2 S3 S4 S5

Variable

 v1 5 5 5 5 5

 v2 0.68446 0.78476 0.78492 0.78494 1.00839

 v3 0.64634 0.71514 0.71519 0.71520 0.71942

 v4 1.00839 0.78494 0.78492 0.78476 0.68447

 v5 0.71942 0.71520 0.71519 0.71514 0.64635

 v6 0.03487 0.03175 0.03174 0.03169 0.01737

 v7 0.01736 0.03169 0.03174 0.03175 0.03488

 v8 0.19391 0.63029 0.63306 0.63369 1.02235

 v9 0.05758 0.03918 0.03978 0.03975 0.01735

 v10 1.02234 0.63369 0.63306 0.63029 0.19391

 v11 0.17351 0.03975 0.03978 0.03918 0.05758

 v12 0.08463 0.50526 0.79630 2.21665 3.12335

 v13 0.06687 0.04471 0.03503 0.01662 0.00497

 v14 3.12334 2.21665 0.79630 0.50526 0.08464

 v15 0.00497 0.01662 0.03503 0.04471 0.06687

 v16 0.75199 0.72532 0.72606 0.72601 0.64577

 v17 0.64577 0.72601 0.72606 0.72532 0.75200

 v18 0.76623 0.73329 0.71937 0.61847 0.18512

 v19 0.18511 0.61847 0.71937 0.73329 0.76624

 iVS1 −0.01990 −0.02037 −0.02130 −0.02037 −0.01990

Error15 4.7344E−9 9.1796E−8 6.1874E−9 2.5534E−8 4.6363E−9

Error7 2.7554E−8 9.1849E−8 3.9932E−8 3.6188E−8 2.1458E−8
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Using (19) and (18) to set the PWL models; NMOS transistors are modelled as

(19)k =
KpW

2L
.
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Fig. 16  Homotopic path for v12 from the Example 3. a Homotopic path for v12. b Zoom to a

Fig. 17  Schematic circuit for Example 4
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as for the PMOS transistors, the model is as follows

Using the SP shown in Table  9, three operating points were found (Table  10). 
Figure 19a shows the resulting homotopic path for v6 and Fig. 19b a zoom to the homo-
topic path, it is possible to notice the location of the operating points more clearly.

(20)

iS(vg , vS) = .21475k|vG − vS − .57050| + .71475k|vG − vS − 1|

+ k|vG − vS − 2| + 1.5k|vG − vS − 3| + 2k|vG

− vS − 5| + 5.42950kvG − vS − 17.33726k ,

iD(vg , vD) = .21475k|vG − vD − .57050| + .71475k|vG − vD − 1|

+ k|vG − vD − 2| + 1.5k|vG − vD − 3| + 2k|vG

− vD − 5+ 5.42950kvG − vD − 17.33726k ,

(21)

iS = 0.08245k|vG − vS | − .835101+ .58245k|vG − vS − 1|

+ k|vG − vS − 2| + 1.5k|vG − vS − 3| + 2k|vG − vS − 5|

+ 5.16490kvG − vS − 17.15130k ,

iD = 0.08245k|vG − vD| − .835101+ .58245k|vG − vD − 1|

+ k|vG − vD − 2| + 1.5k|vG − vD − 3| + 2k|vG − vD − 5|

+ 5.16490kvG − vD − 17.15130k .

Table 9  Starting point for Example 4

Variable SP1

v1 −2

v2 −2

v3 −2

v4 12

v5 −2

v6 −2

v7 12

v8 12

iVS2 −2

iVS1 −2

Table 10  Operating points found for Example 4

Solution S1 S2 S3

Variable

 v1 2.5 2.5 2.5

 v2 −4.91517E−12 −2.76401E−12 1.10556E−12

 v3 4.99124 4.99026 4.99694

 v4 1.06307 1.06132 1.07323

 v5 −0.00875 −0.00973 −0.00030

 v6 1.49486 2.26321 4.98690

 v7 1.06307 1.06132 1.07323

 v8 4.82941 3.80844 0.00146

 iVS1 −4.91517E−12 −2.76401E−12 −1.10556E−12

 iVS2 −0.00875 −0.00973 −0.00305

Error15 1.2340E−11 1.0773E−11 5.0228E−6

Error7 1.0201E−7 4.9503E−7 5.0260E−6
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Example 5

The circuit shown in Fig. 20 was introduced in Tadeusiewicz and Kuczynski (2013), it has 
three operating points. The transistors in this circuit were modelled using (20) and (21) 
and setting k = 0.5 mA/V2 for every transistor, except for T12 and T4, for both transis-
tors it was set to k = 1 mA/V2. The model was simulated in SPICE using the parameter 
values given in Example 4, except for T12 and T4, their parameters were set as follows: 
W = 51u, L = 2u, and W = 102u, L = 1u, respectively.

The SP for the circuit is shown in Table 11. It was possible to find three solutions (see 
Table 12). The homotpic path is shown in Fig. 21. The obtained solutions are shown in 
Fig. 21d.

Numerical simulation and discussion
This section presents a performance comparison between the SHPT method proposed 
in this work and the MSA proposed in Vazquez-Leal et al. (2014). Also, the MSA method 
from Vazquez-Leal et al. (2014) was used without any modification. Besides, the inverted 
sphere technique was also applied to the MSA method and its performance evaluated. 
As will be seen, the SHPT path tracking method reduced, significantly, the computing 
time and the inverted sphere technique allowed, efficiently, to avoid the reversion phe-
nomenon. Besides, an starting point criteria was employed that, in fact, eased the pro-
cess to find multiple operating points using SHPT and MSA.

0 0.25 0.5 0.75 1 1.25
−2

0

2

4

6

8

Starting point
Homotopic path

λ

v6

0.98 0.99 1 1.01 1.02
0

1

2

3

4

5

S1

S2

S3

Operating points
Homotopic path

λ

v6

ba

Fig. 19  Homotopic path from Example 4. a Homotopic path of v6. b Zoom to a

800Ω

900Ω

10Ω

10Ω

V

V

S1

S2

v

v

v

v

v

vv
vv

9

5

1

3

2

4
6

78

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

1

9

2

10

3

11

4

12

5

13

6

14

7 8

15 16

Fig. 20  Schematic circuit for Example 5



Page 24 of 29Ramirez‑Pinero et al. SpringerPlus  (2016) 5:890 

0 0.25 0.5 0.75 1
0
2
4
6
8
10
12

Starting point
Homotopic path

λ

v9

0.75 0.8 0.85 0.9 0.95

4.5

5

5.5

6

6.5

Breakpoints
Homotopic path

λ

v9

a b

0.96 0.97 0.98 0.99 1

1

2

3

4

Breakpoints
Homotopic path

λ

v9

0.9990 0.9995 1 1.0005 1.001

1

1.5

2
S1

S2

S3

Operating points
Homotopic path

λ

v9

c d

Fig. 21  Homotopic path for v2 from Example 5. a Homotopic path for v2. b Zoom to a. c Zoom to a. d Zoom 
to a

Table 11  Starting point for Example 5

Variable SP

v1 6

v2 −9

v3 6

v4 6

v5 12

v6 −9

v7 −9

v8 −9

v9 12

iVS2 6

iVS1 6

Table 12  Operating points found for Example 5

Solution S1 S2 S3

Variable

 v1 4.94280 4.94280 4.94280

 v2 3 2.99999 3

 v3 −0.05719 −0.05719 −0.05719

 v4 −4.9428E−12 −5.9576E−12 −1.1418E−12

 v5 0.39613 0.29148 0.24268

 v6 1.07929 1.49869 2.10639

 v7 0.25796 0.31132 0.51159

 v8 0.87633 1.50263 2.37228

 v9 2.10891 1.68416 0.89835

 iV1 −4.5210E−12 −5.9576E−12 −4.5210E−12

 iV2 −0.00571 −0.00571 −0.00571

Error15 1.3441E−11 9.4875E−11 2.3965E−6

Error7 1.8000E−7 1.8001E−7 1.8000E−6
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Tables 13, 14, and 15 show the comparison between the performance of three differ-
ent simulations for each example studied in the previous section. SHPT stands for the 
proposed path tracking method, MSA2 is the method introduced in Vazquez-Leal et al. 

Table 13  Comparison between the SHPT and the MSA path tracking methods

Example 1 2 2

Starting point SP1 SP1 SP2

Characteristic SHPT MSA1 MSA2 SHPT MSA1 MSA2 SHPT MSA1 MSA2

Total iterations 360 360 360 2500 2500 2500 1400 1400 2

Hypersphere radius 0.001 0.001 0.001 0.05 0.05 0.05 0.05 0.05 0.05

Reversion phenomenon No No No No No No No No Yes

Solutions found 3 3 3 4 4 4 2 2 0

Straight Line iterations 336 0 0 2443 0 0 1376 0 0

Hypersphere iterations (NRM) 24 360 360 57 2500 2500 24 1400 2

Total computing time (s) 4.30 22.33 22.27 10.71 92.44 92.36 7.05 56.08 *

Straight Line computing time 0.359 0 0 3.04 0 0 1.06 0 *

Hyperspheres computing time 3.94 22.33 22.27 7.67 92.44 92.36 5.99 56.08 *

Table 14  Comparison between the SHPT and the MSA path tracking methods

Example 2 3 4

Starting point SP3 SP1 SP1

Characteristic SHPT MSA1 MSA2 SHPT MSA1 MSA2 SHPT MSA1 MSA2

Total iterations 2000 2000 1501 1000 1000 345 400 400 2

Hypersphere radius 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1

Reversion phenomenon No No Yes No No Yes No No Yes

Solutions found 3 3 2 5 5 0 3 3 0

Straight Line iterations 1937 0 0 802 0 0 214 0 0

Hypersphere iterations (NRM) 63 2000 1501 198 2000 345 186 400 2

Total computing time (s) 12.48 87.65 * 224.73 798.16 * 48.75 90.35 *

Straight Line computing time 1.41 87.65 * 6.56 0 * 1.14 0 *

Hyperspheres computing time 11.07 87.65 * 218.16 798.16 * 47.61 90.35 *

Table 15  Comparison between the SHPT and the MSA path tracking methods

Example 5

Starting point SP1

Characteristic SHPT MSA1 MSA2

Total iterations 330 330 2

Hypersphere radius 0.1 0.1 0.1

Reversion phenomenon No No Yes

Solutions found 3 3 0

Straight Line iterations 249 0 0

Hypersphere iterations (NRM) 81 330 2

Total computing time (s) 26.36 61.49 *

Straight Line computing time 1.09 0 *

Hyperspheres computing time 25.27 61.49 *
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(2014), MSA1 is the method from Vazquez-Leal et al. (2014) but including the inverted 
hypersphere technique which is a proposal of this work.

Example 1 and example 2 did not show any sign of the reversion phenomenon in any 
of the simulations performed. Nevertheless, the rest of the simulations using the MSA2 
method showed reversion. No simulation using the MSA1 method showed reversion. 
It is important to make notice of the fact that the homotopic path is the same for the 
three types of simulation; this is because they are based on the same homotopy formula-
tion, and the difference lies in the applied path tracking method. The results prove that 
the efficiency is improved using the inverted sphere technique proposed in this work, 
as it helped to avoid the revision phenomenon and allowed to perform the path track-
ing without issues. The cases where reversion phenomenon were noticed are marked 
with an asterisk (*), the computing time for these cases was not possible to be calculated 
because the method locked and no further calculations were possible.

As shown in Tables 13, 14, and 15, the time spent in straight line iterations is mini-
mum compared to the time spent in iterations using hyperspheres. This characteristic 
allows the acceleration of the path tracking.

Computing time increases as the density of breakpoints grows. Nevertheless, for the 
worst case scenario, a curve with high density of breakpoints or a non-PWL curve, the 
proposed method would only spend the same computing time as the method proposed 
in Vazquez-Leal et al. (2014). The computing time spent by the MSA1 simulations and 
the SHPT method is noticeable different; the SHPT method performed up to twelve 
times faster. For the worst case scenario, the difference was 1.89 times faster than MSA1. 
The algorithm was implemented in Maple 15. Future work will focus on implementing 
the technique in Fortran, the goal is to improve the computation time and analyse larger 
circuits.

Conclusions
This work introduced a path algorithm for analysis of PWL circuits using the HCM, this 
algorithm exhibited improvements in the computing time compared to the algorithm 
proposed in Vazquez-Leal et al. (2014). Also, a starting point criteria was proposed in 
order to achieve better performance of the HCM, this criterion was proved useful but 
it does not assure an homotopic path that travels through all the root of the system. It 
just increase the probability of finding them. Furthermore, a technique for avoiding the 
reversion method was suggested and proved to be effective. By experimentation was 
possible to avoid reversion and allowed the continuation of the path tracking, neverthe-
less, for systems with a high density of variables (around one hundred) some instabilities 
were detected. Further work on this technique aims to improve the number of variables 
that is possible to work on. As it can be seen in Tables 13, 14, and 15, most of the simu-
lation time is spent in NRM iterations, this leads to focus future work on the reduction 
of time spent on them. As a final comment, the SHPT path tracking method does not 
have a stop criterion, thus, the development of a stop criterion would be an important 
improvement.
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