Inequalities for certain means in two arguments

Zhen-Hang Yang and Yu-Ming Chu*

"Correspondence:
chuyuming2005@126.com
School of Mathematics and
Computation Sciences, Hunan City University, Yiyang, 413000, China

Abstract

In this paper, we present the sharp bounds of the ratios $U(a, b) / L_{4}(a, b), P_{2}(a, b) / U(a, b)$, NS $(a, b) / P_{2}(a, b)$ and $B(a, b) / N S(a, b)$ for all $a, b>0$ with $a \neq b$, where $L_{4}(a, b)=\left[\left(b^{4}-a^{4}\right) /(4(\log b-\log a))\right]^{1 / 4}, U(a, b)=(b-a) /[\sqrt{2} \arctan ((b-a) / \sqrt{2 a b})]$, $P_{2}(a, b)=\left[\left(b^{2}-a^{2}\right) /\left(2 \arcsin \left(\left(b^{2}-a^{2}\right) /\left(b^{2}+a^{2}\right)\right)\right)\right]^{1 / 2}$, $N S(a, b)=(b-a) /\left[2 \sinh ^{-1}((b-a) /(b+a))\right], B(a, b)=Q(a, b) e^{A(a, b) / T(a, b)-1}, A(a, b)=(a+b) / 2$, $Q(a, b)=\sqrt{\left(a^{2}+b^{2}\right) / 2}$, and $T(a, b)=(a-b) /[2 \arctan ((a-b) /(a+b))]$. MSC: 26E60 Keywords: logarithmic mean; Yang mean; first Seiffert mean; Neuman-Sándor mean; Sándor-Yang mean

1 Introduction

For $r \in \mathbb{R}$, the r th power mean $M(a, b ; r)$ of two distinct positive real numbers a and b is defined by

$$
M(a, b ; r)= \begin{cases}\left(\frac{a^{r}+b^{r}}{2}\right)^{1 / r}, & r \neq 0, \tag{1.1}\\ \sqrt{a b}, & r=0\end{cases}
$$

It is well known that $M(a, b ; r)$ is continuous and strictly increasing with respect to $r \in$ \mathbb{R} for fixed $a, b>0$ with $a \neq b$. Many classical means are the special cases of the power mean, for example, $M(a, b ;-1)=2 a b /(a+b)=H(a, b)$ is the harmonic mean, $M(a, b ; 0)=$ $\sqrt{a b}=G(a, b)$ is the geometric mean, $M(a, b ; 1)=(a+b) / 2=A(a, b)$ is the arithmetic mean, and $M(a, b ; 2)=\sqrt{\left(a^{2}+b^{2}\right) / 2}=Q(a, b)$ is the quadratic mean. The main properties for the power mean are given in [1].

Let

$$
\begin{align*}
& L(a, b)=\frac{a-b}{\log a-\log b}, \quad P(a, b)=\frac{a-b}{2 \arcsin \left(\frac{a-b}{a+b}\right)}, \\
& U(a, b)=\frac{a-b}{\sqrt{2} \arctan \left(\frac{a-b}{\sqrt{2 a b}}\right)}, \quad N S(a, b)=\frac{a-b}{2 \sinh ^{-1}\left(\frac{a-b}{a+b}\right)}, \tag{1.2}\\
& T(a, b)=\frac{a-b}{2 \arctan \left(\frac{a-b}{a+b}\right)}, \quad B(a, b)=Q(a, b) e^{A(a, b) / T(a, b)-1} \tag{1.3}
\end{align*}
$$

be, respectively, the logarithmic mean, first Seiffert mean [2], Yang mean [3], NeumanSándor mean [4, 5], second Seiffert mean [6], Sándor-Yang mean [3, 7] of two distinct positive real numbers a and b.
Recently, the sharp bounds for certain bivariate means in terms of the power mean have attracted the attention of many mathematicians.

Radó [8] and Lin [9], Jagers [10] and Hästö [11, 12] proved that the double inequalities

$$
\begin{align*}
& M(a, b ; 0)<L(a, b)<M(a, b ; 1 / 3) \tag{1.4}\\
& M(a, b ; \log 2 / \log \pi)<P(a, b)<M(a, b ; 2 / 3) \tag{1.5}
\end{align*}
$$

hold for all $a, b>0$ and $a \neq b$ with the best possible parameters $0,1 / 3, \log 2 / \log \pi$, and $2 / 3$.
In [13-17], the authors proved that the double inequalities

$$
\begin{align*}
& M(a, b ; \alpha)<N S(a, b)<M(a, b ; \beta), \tag{1.6}\\
& M(a, b ; \lambda)<U(a, b)<M(a, b ; \mu) \tag{1.7}
\end{align*}
$$

hold for all $a, b>0$ and $a \neq b$ if and only if $\alpha \leq \log 2 / \log [2 \log (1+\sqrt{2})], \beta \geq 4 / 3, \lambda \leq$ $2 \log 2 /(2 \log \pi-\log 2)$ and $\mu \geq 4 / 3$.

Very recently, Yang and Chu [18] presented that $p=4 \log 2 /(4+2 \log 2-\pi)$ and $q=4 / 3$ are the best possible parameters such that the double inequality

$$
\begin{equation*}
M(a, b ; p)<B(a, b)<M(a, b ; q) \tag{1.8}
\end{equation*}
$$

holds for all $a, b>0$ and $a \neq b$.
Let

$$
\begin{equation*}
L_{4}(a, b)=L^{1 / 4}\left(a^{4}, b^{4}\right)=\left(\frac{b^{4}-a^{4}}{4(\log b-\log a)}\right)^{1 / 4} \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{2}(a, b)=P^{1 / 2}\left(a^{2}, b^{2}\right)=\left(\frac{b^{2}-a^{2}}{2 \arcsin \left(\frac{b^{2}-a^{2}}{b^{2}+a^{2}}\right)}\right)^{1 / 2} \tag{1.10}
\end{equation*}
$$

be, respectively, the fourth-order logarithmic and second-order first Seiffert means of a and b.

Then from (1.4)-(1.10) we clearly see that $M(a, b ; 4 / 3)$ is the common sharp upper power mean bound for $L_{4}(a, b), U(a, b), P_{2}(a, b), N S(a, b)$, and $B(a, b)$. Therefore, it is natural to ask what are the size relationships among these means? The main purpose of this paper is to answer this question.

2 Lemmas

In order to prove our main results we need several lemmas, which we present in this section.

Lemma 2.1 (See Lemma 7 of [19]) Let $\left\{a_{k}\right\}_{k=0}^{\infty}$ be a nonnegative real sequence with $a_{m}>0$ and $\sum_{k=m+1}^{\infty} a_{k}>0$, and

$$
P(t)=-\sum_{k=0}^{m} a_{k} t^{k}+\sum_{k=m+1}^{\infty} a_{k} t^{k}
$$

be a convergent power series on the interval $(0, \infty)$. Then there exists $t_{m+1} \in(0, \infty)$ such that $P\left(t_{m+1}\right)=0, P(t)<0$ for $t \in\left(0, t_{m+1}\right)$ and $P(t)>0$ for $t \in\left(t_{m+1}, \infty\right)$.

Lemma 2.2 Let $n \in \mathbb{N}$. Then

$$
9(n-3) 4^{2 n}-8 n(4 n-11) 3^{2 n}+72 n(n-1) 2^{2 n}-72 n(20 n-13)>0
$$

for all $n \geq 6$.

Proof Let

$$
\begin{align*}
& v_{n}=9(n-3) 4^{2 n}-8 n(4 n-11) 3^{2 n}+72 n(n-1) 2^{2 n}-72 n(20 n-13) \tag{2.1}\\
& v_{n}^{*}=9 \times\left(\frac{4}{3}\right)^{2 n}-\frac{8 n(4 n-11)}{n-3}
\end{align*}
$$

Then we clearly see that

$$
\begin{align*}
& v_{6}^{*}=\frac{4,495,024}{59,049}>0, \tag{2.2}\\
& v_{n} \geq 9(n-3) 4^{2 n}-8 n(4 n-11) 3^{2 n}+72 n(n-1) 2^{12}-72 n(20 n-13) \\
&=9(n-3) 4^{2 n}-8 n(4 n-11) 3^{2 n}+72 n(4,076 n-4,083) \\
&>9(n-3) 4^{2 n}-8 n(4 n-11) 3^{2 n} \\
&=(n-3) 3^{2 n} \times v_{n}^{*}, \tag{2.3}\\
& v_{n+1}^{*}-\left(\frac{4}{3}\right)^{2} v_{n}^{*}=\frac{8\left(28 n^{3}-169 n^{2}+334 n-189\right)}{9(n-2)(n-3)}>0 \tag{2.4}
\end{align*}
$$

for $n \geq 6$.
It follows from (2.2) and (2.4) that

$$
\begin{equation*}
v_{n}^{*}>0 \tag{2.5}
\end{equation*}
$$

for $n \geq 6$.
Therefore, Lemma 2.2 follows easily from (2.1), (2.3), and (2.5).

Lemma 2.3 Let $t>0$ and

$$
\begin{equation*}
g_{1}(t)=\frac{\sqrt{2}}{2} \arctan (\sqrt{2} \sinh (t))-\frac{4 t \sinh ^{2}(2 t)}{\sinh (4 t) \sinh (t)+4 t \sinh (3 t)} . \tag{2.6}
\end{equation*}
$$

Then there exists a unique $t_{0} \in(0, \infty)$ such that $g_{1}(t)<0$ for $t \in\left(0, t_{0}\right), g_{1}\left(t_{0}\right)=0$, and $g_{1}(t)>$ 0 for $t \in\left(t_{0}, \infty\right)$.

Proof It follows from (2.6) that

$$
\begin{equation*}
g_{1}\left(0^{+}\right)=0, \quad \lim _{t \rightarrow \infty} g_{1}(t)=\frac{\sqrt{2}}{4} \pi>0, \tag{2.7}
\end{equation*}
$$

$$
\begin{align*}
& g_{1}(t)=\frac{\sqrt{2}}{2} \arctan (\sqrt{2} \sinh (t))-\frac{16 t \sinh (t) \cosh ^{2}(t)}{\sinh (4 t)+16 t \cosh ^{2}(t)-4 t}, \\
& g_{1}^{\prime}(t)=\frac{\cosh (t)}{\left(1+2 \sinh ^{2}(t)\right)\left(\sinh (4 t)+16 t \cosh ^{2}(t)-4 t\right)^{2}} g_{2}(t), \tag{2.8}
\end{align*}
$$

where

$$
\begin{align*}
g_{2}(t)= & t^{2}\left[128 \cosh ^{2}(t) \sinh ^{2}(t)-512 \cosh ^{4}(t) \sinh ^{2}(t)-64 \cosh ^{2}(t)+256 \sinh ^{4}(t)\right. \\
& \left.+128 \sinh ^{2}(t)+16\right]+t\left[16 \sinh (4 t) \cosh ^{2}(t)-32 \sinh (4 t) \cosh ^{2}(t) \sinh ^{2}(t)\right. \\
& +128 \cosh (4 t) \cosh (t) \sinh ^{3}(t)+64 \cosh (4 t) \cosh (t) \sinh (t) \\
& \left.-64 \sinh (4 t) \sinh ^{4}(t)-32 \sinh (4 t) \sinh ^{2}(t)-8 \sinh (4 t)\right] \\
& +\sinh ^{2}(4 t)-32 \cosh (t) \sinh (4 t) \sinh ^{3}(t)-16 \cosh (t) \sinh (4 t) \sinh (t) \\
= & -\frac{3}{2} \cosh (8 t)+2 t \sinh (8 t)-16 t^{2} \cosh (6 t)+12 t \sinh (6 t)+16 t^{2} \cosh (4 t) \\
& -4 t \sinh (4 t)-80 t^{2} \cosh (2 t)+12 t \sinh (2 t)+32 t^{2}+\frac{3}{2} . \tag{2.9}
\end{align*}
$$

Making use of power series formulas, (2.9) gives

$$
\begin{equation*}
g_{2}(t)=\sum_{n=2}^{\infty} \frac{v_{n}}{18 \times(2 n)!}(2 t)^{2 n} \tag{2.10}
\end{equation*}
$$

where v_{n} is defined by (2.1).
Note that

$$
\begin{equation*}
v_{2}=v_{3}=0, \quad v_{4}=-258,048, \quad v_{5}=-940,032 \tag{2.11}
\end{equation*}
$$

From Lemma 2.1, (2.8), (2.10), and (2.11) we know that there exists $t_{1} \in(0, \infty)$ such that $g_{1}(t)$ is strictly decreasing on $\left(0, t_{1}\right]$ and strictly increasing on $\left[t_{1}, \infty\right)$.

Therefore, Lemma 2.3 follows easily from (2.7) and the piecewise monotonicity of $g_{1}(t)$.

Lemma 2.4 The inequality

$$
-2 x^{2} \cos x+\sin ^{2} x \cos x+2 x^{2} \cos ^{2} x+x \sin x+x^{2}-3 x \cos x \sin x>0
$$

holds for all $x \in(0, \pi / 2)$.

Proof Simple computations lead to

$$
\begin{align*}
& -2 x^{2} \cos x+\sin ^{2} x \cos x+2 x^{2} \cos ^{2} x+x \sin x+x^{2}-3 x \cos x \sin x \\
& =x^{2} \cos (2 x)-2 x^{2} \cos x+\frac{1}{4} \cos x-\frac{1}{4} \cos (3 x)+x \sin x-\frac{3}{2} x \sin (2 x)+2 x^{2} \\
& =\sum_{n=2}^{\infty}(-1)^{n-1} \frac{3^{2 n}+4 n(n-2) 2^{2 n}-32 n^{2}+24 n-1}{4 \times(2 n)!} x^{2 n} . \tag{2.12}
\end{align*}
$$

Let

$$
\begin{align*}
& \omega_{n}=\frac{3^{2 n}+4 n(n-2) 2^{2 n}-32 n^{2}+24 n-1}{4 \times(2 n)!} x^{2 n}, \tag{2.13}\\
& \omega_{n}^{*}=3^{2 n}+4 n(n-2) 2^{2 n}-32 n^{2}+24 n-1 . \tag{2.14}
\end{align*}
$$

Then

$$
\begin{align*}
& \omega_{2}=0, \quad \omega_{3}=\frac{4 x^{6}}{9}>0, \tag{2.15}\\
& \omega_{n}^{*}>4 n(n-2) 2^{6}-32 n^{2}+24 n=8 n(28 n-61)>0 \quad(n \geq 3), \tag{2.16}\\
& \omega_{n+1}^{*}-9 \omega_{n}^{*}=-\left(5 n^{2}-18 n+4\right) 4^{n+1}+256 n(n-1)<0 \quad(n \geq 4), \tag{2.17}\\
& \frac{\omega_{4}}{\omega_{3}}=\frac{x^{2}}{56} \frac{\omega_{4}^{*}}{\omega_{3}^{*}}=\frac{x^{2}}{56} \times \frac{14,336}{1,280}=\frac{x^{2}}{5}<\frac{\pi^{2}}{20} . \tag{2.18}
\end{align*}
$$

It follows from (2.13), (2.14), (2.16), and (2.17) that

$$
\begin{align*}
& \omega_{n}>0 \quad(n \geq 3) \tag{2.19}\\
& \frac{\omega_{n+1}}{\omega_{n}}=\frac{x^{2}}{(2 n+1)(2 n+2)} \frac{\omega_{n+1}^{*}}{\omega_{n}^{*}}<\frac{9 x^{2}}{(2 n+1)(2 n+2)}<\frac{\pi^{2}}{40} \quad(n \geq 4) . \tag{2.20}
\end{align*}
$$

Inequalities (2.18)-(2.20) imply that the sequence $\left\{\omega_{n}\right\}$ is strictly decreasing for $n \geq 3$, $\lim _{n \rightarrow \infty} \omega_{n}=0$ and $\sum_{n=2}^{\infty}(-1)^{n-1} \omega_{n}$ is a Leibniz series. Therefore, Lemma 2.4 follows from (2.12), (2.13), and (2.15).

Lemma 2.5 The inequality

$$
\frac{\sqrt{2} \sinh (2 t) \cosh (t) \arcsin (\tanh (2 t))}{\sinh (2 t)+\cosh (2 t) \arcsin (\tanh (2 t))}-\arctan (\sqrt{2} \sinh (t))>0
$$

hold for all $t \in(0, \infty)$.

Proof Let $x=\arcsin (\tanh (2 t)) \in(0, \pi / 2)$ and

$$
\begin{equation*}
h_{1}(t)=\frac{\sqrt{2} \sinh (2 t) \cosh (t) \arcsin (\tanh (2 t))}{\sinh (2 t)+\cosh (2 t) \arcsin (\tanh (2 t))}-\arctan (\sqrt{2} \sinh (t)) . \tag{2.21}
\end{equation*}
$$

Then

$$
\begin{align*}
& \sinh (2 t)=\tan x, \quad \cosh (2 t)=\frac{1}{\cos x}, \quad \tanh (t)=\frac{1-\cos x}{\sin x} \\
& h_{1}\left(0^{+}\right)=0, \tag{2.22}\\
& h_{1}(t)=\frac{\sqrt{2} x \sin x}{x+\sin x} \cosh (t)-\arctan (\sqrt{2} \sinh (t)) \\
& h_{1}^{\prime}(t)
\end{align*}=\frac{d}{d x}\left(\frac{\sqrt{2} x \sin x}{x+\sin x}\right) \frac{d[\arcsin (\tanh (2 t))]}{d t} \cosh (t)+\frac{\sqrt{2} x \sin x}{x+\sin x} \sinh (t)-\frac{\sqrt{2} \cosh (t)}{\cosh (2 t)} .
$$

$$
\begin{align*}
& =\sqrt{2} \cosh (t)\left[\frac{\cos x\left(2 x^{2} \cos x-2 x \sin x-x^{2}+\sin ^{2} x\right)}{(x+\sin x)^{2}}+\frac{x \sin x(1-\cos x)}{\sin x(x+\sin x)}\right] \\
& =\frac{\sqrt{2} \cosh (t)\left[-2 x^{2} \cos x+\sin ^{2} x \cos x+2 x^{2} \cos ^{2} x+x \sin x+x^{2}-3 x \cos x \sin x\right]}{(x+\sin x)^{2}} . \tag{2.23}
\end{align*}
$$

Therefore, Lemma 2.5 follows easily from (2.21)-(2.23) and Lemma 2.4.

3 Main results

Theorem 3.1 The double inequality

$$
\lambda_{1} L_{4}(a, b) \leq U(a, b)<\mu_{1} L_{4}(a, b)
$$

holds for all $a, b>0$ with $a \neq b$ if and only if $\lambda_{1} \leq c_{0}$ and $\mu_{1}=\infty$, where

$$
c_{0}=e^{\log \left(\sinh \left(t_{0}\right)\right)-\log \left(\arctan \left(\sqrt{2} \sinh \left(t_{0}\right)\right)\right)-\log \left(\sinh \left(4 t_{0}\right) / t_{0}\right) / 4+\log 2}
$$

and $t_{0} \in(0, \infty)$ is defined by Lemma 2.3. Moreover, numerical computations show that $t_{0}=1.1336 \ldots$ and $c_{0}=0.9991 \ldots$.

Proof Since $U(a, b)$ and $L_{4}(a, b)$ are symmetric and homogeneous of degree 1, without loss of generality, we assume that $b>a>0$. Let $t=\log \sqrt{b / a}>0$, then (1.2) and (1.9) lead to

$$
\begin{gather*}
U(a, b)=\frac{\sqrt{2 a b} \sinh (t)}{\arctan (\sqrt{2} \sinh (t))}, \quad L_{4}(a, b)=\sqrt{a b}\left(\frac{\sinh (4 t)}{4 t}\right)^{1 / 4}, \tag{3.1}\\
\log \frac{U(a, b)}{L_{4}(a, b)}= \\
\log (\sinh (t))-\log (\arctan (\sqrt{2} \sinh (t))) \tag{3.2}\\
\quad-\frac{1}{4} \log (\sinh (4 t))+\frac{1}{4} \log t+\log 2 .
\end{gather*}
$$

Let

$$
\begin{align*}
g(t)= & \log (\sinh (t))-\log (\arctan (\sqrt{2} \sinh (t))) \\
& -\frac{1}{4} \log (\sinh (4 t))+\frac{1}{4} \log t+\log 2 . \tag{3.3}
\end{align*}
$$

Then

$$
\begin{align*}
g\left(0^{+}\right) & =0, \quad \lim _{t \rightarrow \infty} g(t)=\infty, \tag{3.4}\\
g^{\prime}(t) & =\frac{\cosh (t)}{\sinh (t)}-\frac{\sqrt{2} \cosh (t)}{\arctan (\sqrt{2} \sinh (t)) \cosh (2 t)}-\frac{\cosh (4 t)}{\sinh (4 t)}+\frac{1}{4 t} \\
& =\frac{\sinh (4 t) \sinh (t)+4 t \sinh (3 t)}{4 t \sinh (4 t) \sinh (t)}-\frac{\sqrt{2} \cosh (t)}{\arctan (\sqrt{2} \sinh (t)) \cosh (2 t)} \\
& =\frac{\sqrt{2}(\sinh (4 t) \sinh (t)+4 t \sinh (3 t))}{4 t \sinh (4 t) \sinh (t) \arctan (\sqrt{2} \sinh (t))} g_{1}(t), \tag{3.5}
\end{align*}
$$

where $g_{1}(t)$ is defined by (2.6).

It follows from Lemma 2.3 and (3.5) that there exists a unique $t_{0} \in(0, \infty)$ such that $g_{1}\left(t_{0}\right)=0, g(t)$ is strictly decreasing on $\left(0, t_{0}\right]$ and strictly increasing on $\left[t_{0}, \infty\right)$.

Therefore, Theorem 3.1 follows from (3.2)-(3.4) and the piecewise monotonicity of $g(t)$.

Theorem 3.2 The double inequality

$$
\lambda_{2} U(a, b)<P_{2}(a, b)<\mu_{2} U(a, b)
$$

holds for all $a, b>0$ with $a \neq b$ if and only if $\lambda_{2} \leq 1$ and $\mu_{2} \geq \sqrt{\pi / 2}=1.2533 \ldots$.

Proof Since $U(a, b)$ and $P_{2}(a, b)$ are symmetric and homogeneous of degree 1, without loss of generality, we assume that $b>a>0$. Let $t=\log \sqrt{b / a}>0$, then (1.10) and (3.1) lead to

$$
\begin{align*}
& P_{2}(a, b)=\sqrt{a b}\left(\frac{\sinh (2 t)}{\arcsin (\tanh (2 t))}\right)^{1 / 2}, \tag{3.6}\\
& \log \frac{P_{2}(a, b)}{U(a, b)}=\log (\arctan (\sqrt{2} \sinh (t)))
\end{align*}
$$

$$
\begin{equation*}
-\frac{1}{2} \log (\arcsin (\tanh (2 t)))-\frac{1}{2} \log (\tanh (t)) \tag{3.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
h(t)=\log (\arctan (\sqrt{2} \sinh (t)))-\frac{1}{2} \log (\arcsin (\tanh (2 t)))-\frac{1}{2} \log (\tanh (t)) . \tag{3.8}
\end{equation*}
$$

Then simple computations lead to

$$
\begin{align*}
h\left(0^{+}\right)= & 0, \quad \lim _{t \rightarrow \infty} h(t)=\frac{1}{2}(\log \pi-\log 2), \tag{3.9}\\
h^{\prime}(t)= & \frac{\sqrt{2} \cosh (t)}{\cosh (2 t) \arctan (\sqrt{2} \sinh (t))}-\frac{1}{\cosh (2 t) \arcsin (\tanh (2 t))}-\frac{1}{\sinh (2 t)} \\
= & \frac{\sinh (2 t)+\cosh (2 t) \arcsin (\tanh (2 t))}{\sinh (2 t) \cosh (2 t) \arcsin (\tanh (2 t)) \arctan (\sqrt{2} \sinh (t))} \\
& \times\left[\frac{\sqrt{2} \sinh (2 t) \cosh (t) \arcsin (\tanh (2 t))}{\sinh (2 t)+\cosh (2 t) \arcsin (\tanh (2 t))}-\arctan (\sqrt{2} \sinh (t))\right] . \tag{3.10}
\end{align*}
$$

It follows from Lemma 2.5 and (3.10) that $h(t)$ is strictly increasing on $(0, \infty)$. Therefore, Theorem 3.2 follows easily from (3.7)-(3.9) and the monotonicity of $h(t)$.

Remark 3.1 Let $b>a>0$ and $t=\log \sqrt{b / a}>0$. Then

$$
\begin{equation*}
A(a, b)=\sqrt{a b} \cosh (t), \quad Q(a, b)=\sqrt{a b} \cosh ^{1 / 2}(2 t) . \tag{3.11}
\end{equation*}
$$

It follows from Lemma 2.5 that

$$
\begin{equation*}
\frac{\sqrt{2} \sinh (t)}{\arctan (\sqrt{2} \sinh (t))}>\frac{\frac{\sinh (2 t)}{\arcsin (\tanh (2 t))}+\cosh (2 t)}{2 \cosh ^{2}(t)} . \tag{3.12}
\end{equation*}
$$

Equations (3.1), (3.6), and (3.11) together with inequality (3.12) lead to the conclusion that the inequality

$$
U(a, b)>\frac{P_{2}^{2}(a, b)+Q^{2}(a, b)}{2 A^{2}(a, b)} G(a, b)
$$

holds for all $a, b>0$ with $a \neq b$.

Theorem 3.3 The double inequality

$$
\lambda_{3} P_{2}(a, b)<N S(a, b)(a, b)<\mu_{3} P_{2}(a, b)
$$

holds for all $a, b>0$ with $a \neq b$ if and only if $\lambda_{3} \leq 1$ and $\mu_{3} \geq \sqrt{\pi} /[2 \log (1+\log 2)]=$ 1.0055....

Proof Since $N S(a, b)$ and $P_{2}(a, b)$ are symmetric and homogeneous of degree 1, without loss of generality, we assume that $b>a>0$. Let $t=\log \sqrt{b / a}>0$, then (1.2) and (3.6) lead to

$$
\begin{align*}
N S(a, b)=\sqrt{a b} & \frac{\sinh (t)}{\sinh ^{-1}(\tanh (t))}, \tag{3.13}\\
\log \frac{N S(a, b)}{P_{2}(a, b)}= & \frac{1}{2} \log (\tanh (t))-\log \left(\sinh ^{-1}(\tanh (t))\right) \\
& +\frac{1}{2} \log (\arcsin (\tanh (2 t)))-\frac{1}{2} \log 2 . \tag{3.14}
\end{align*}
$$

Let

$$
\begin{align*}
h_{2}(t)= & \frac{1}{2} \log (\tanh (t))-\log \left(\sinh ^{-1}(\tanh (t))\right) \\
& +\frac{1}{2} \log (\arcsin (\tanh (2 t)))-\frac{1}{2} \log 2 . \tag{3.15}
\end{align*}
$$

Then simple computations lead to

$$
\begin{align*}
h_{2}\left(0^{+}\right) & =0, \quad \lim _{t \rightarrow \infty} h_{2}(t)=\log \left(\frac{\sqrt{\pi}}{2 \log (1+\sqrt{2})}\right), \tag{3.16}\\
h_{2}^{\prime}(t) & =\frac{1}{\sinh (2 t)}-\frac{1}{\cosh (t) \sqrt{\cosh (2 t)} \sinh ^{-1}(\tanh (t))}+\frac{1}{\cosh (2 t) \arcsin (\tanh (2 t))} \\
& =\frac{\sinh (2 t) \cosh (t)+\cosh (t) \cosh (2 t) \arcsin (\tanh (2 t))}{\sinh (2 t) \cosh (2 t) \cosh (t) \sinh ^{-1}(\tanh (t)) \arcsin (\tanh (2 t))} h_{3}(t), \tag{3.17}
\end{align*}
$$

where

$$
\begin{align*}
& h_{3}(t)=\sinh ^{-1}(\tanh (t))-\frac{2 \sqrt{\cosh (2 t)} \sinh (t) \arcsin (\tanh (2 t))}{\sinh (2 t)+\cosh (2 t) \arcsin (\tanh (2 t))}, \tag{3.18}\\
& h_{3}\left(0^{+}\right)=0, \tag{3.19}\\
& h_{3}^{\prime}(t)=\frac{\sqrt{\cosh (2 t)}[\arcsin (\tanh (2 t))-\tanh (2 t)][\sinh (2 t)-\arcsin (\tanh (2 t))]}{\cosh (t)[\sinh (2 t)+\cosh (2 t) \arcsin (\tanh (2 t))]^{2}} . \tag{3.20}
\end{align*}
$$

Let $x=\arcsin (\tanh (2 t)) \in(0, \pi / 2)$. Then

$$
\begin{align*}
& \arcsin (\tanh (2 t))-\tanh (2 t)=x-\sin x>0, \tag{3.21}\\
& \sinh (2 t)-\arcsin (\tanh (2 t))=\tan x-x>0 . \tag{3.22}
\end{align*}
$$

From (3.17)-(3.22) we clearly see that $h_{2}(t)$ is strictly increasing on $(0, \infty)$. Therefore, Theorem 3.3 follows from (3.14)-(3.16) and the monotonicity of $h_{2}(t)$.

Remark 3.2 From the proof of Theorem 3.2 we know that

$$
h_{3}(t)=\sinh ^{-1}(\tanh (t))-\frac{2 \sqrt{\cosh (2 t)} \sinh (t) \arcsin (\tanh (2 t))}{\sinh (2 t)+\cosh (2 t) \arcsin (\tanh (2 t))}>0,
$$

which is equivalent to

$$
\begin{equation*}
\frac{\frac{\sinh (2 t)}{\arcsin (\tanh (2 t))}+\cosh (2 t)}{2 \sqrt{\cosh (2 t)}}>\frac{\sinh (t)}{\sinh ^{-1}(\tanh (t))} . \tag{3.23}
\end{equation*}
$$

Equations (3.6), (3.11), and (3.13) together with inequality (3.23) lead to the conclusion that the inequality

$$
N S(a, b)<\frac{P_{2}^{2}(a, b)+Q^{2}(a, b)}{2 Q(a, b)}
$$

holds for all $a, b>0$ with $a \neq b$.

Theorem 3.4 The double inequality

$$
\lambda_{4} N S(a, b)<B(a, b)<\mu_{4} N S(a, b)
$$

holds for all $a, b>0$ with $a \neq b$ if and only if $\lambda_{4} \leq 1$ and $\mu_{4} \geq \sqrt{2} e^{\pi / 4-1} \log (1+\sqrt{2})=$ 1.0057....

Proof Since $N S(a, b)$ and $B(a, b)$ are symmetric and homogeneous of degree 1, without loss of generality, we assume that $b>a>0$. Let $t=\log \sqrt{b / a}>0$, then (1.3) and (3.13) lead to

$$
\begin{align*}
& B(a, b)=\sqrt{a b} \cosh ^{1 / 2}(2 t) e^{\arctan (\tanh (t)) / \tanh (t)-1} \\
& \log \frac{B(a, b)}{N S(a, b)}=\frac{1}{2} \log (\cosh (2 t))+\frac{\arctan (\tanh (t))}{\tanh (t)}-\log \left(\frac{\sinh (t)}{\sinh ^{-1}(\tanh (t))}\right)-1 . \tag{3.24}
\end{align*}
$$

Let

$$
\begin{equation*}
f(t)=\frac{1}{2} \log (\cosh (2 t))+\frac{\arctan (\tanh (t))}{\tanh (t)}-\log \left(\frac{\sinh (t)}{\sinh ^{-1}(\tanh (t))}\right)-1 \tag{3.25}
\end{equation*}
$$

Then simple computations lead to

$$
\begin{align*}
& f\left(0^{+}\right)=0, \quad \lim _{t \rightarrow \infty} f(t)=\frac{\pi}{4}-1+\frac{1}{2} \log 2+\log [\log (1+\sqrt{2})] \tag{3.26}\\
& f^{\prime}(t)=\frac{f_{1}(t)}{\sinh ^{2}(t) \sinh ^{-1}(\tanh (t))} \tag{3.27}
\end{align*}
$$

where

$$
f_{1}(t)=\frac{\sinh ^{2}(t)}{\sqrt{\cosh (2 t)} \cosh (t)}-\sinh ^{-1}(\tanh (t)) \arctan (\tanh (t)) .
$$

Let $x=\tanh (t) \in(0,1)$. Then

$$
\begin{align*}
& f_{1}(t)=\frac{x^{2}}{\sqrt{1+x^{2}}}-\sinh ^{-1}(x) \arctan (x):=f_{2}(x), \tag{3.28}\\
& f_{2}\left(0^{+}\right)=0, \tag{3.29}\\
& f_{2}^{\prime}(x)=\frac{1}{\sqrt{x^{2}+1}}\left[x \frac{x^{2}+2}{x^{2}+1}-\frac{\sinh ^{-1}(x)}{\sqrt{x^{2}+1}}-\arctan (x)\right]:=\frac{f_{3}(x)}{\sqrt{x^{2}+1}}, \tag{3.30}\\
& f_{3}\left(0^{+}\right)=0, \tag{3.31}\\
& f_{3}^{\prime}(x)=\frac{x}{\left(x^{2}+1\right)^{3 / 2}}\left[\sinh ^{-1}(x)-\frac{x-x^{3}}{\sqrt{x^{2}+1}}\right]:=\frac{x}{\left(x^{2}+1\right)^{3 / 2}} f_{4}(x), \tag{3.32}\\
& f_{4}\left(0^{+}\right)=0, \tag{3.33}\\
& f_{4}^{\prime}(x)=\frac{2 x^{2}\left(x^{2}+2\right)}{\left(x^{2}+1\right)^{3 / 2}}>0 \tag{3.34}
\end{align*}
$$

for $x \in(0,1)$.
It follows from (3.27)-(3.34) that $f(t)$ is strictly increasing on $(0, \infty)$. Therefore, Theorem 3.4 follows easily from (3.24)-(3.26) and the monotonicity of $f(t)$.

Remark 3.3 From the proof of Theorem 3.4 we know that the inequalities

$$
\begin{align*}
& \frac{x^{2}}{\sqrt{1+x^{2}}}>\sinh ^{-1}(x) \arctan (x) \tag{3.35}\\
& x \frac{x^{2}+2}{x^{2}+1}>\frac{\sinh ^{-1}(x)}{\sqrt{x^{2}+1}}+\arctan (x) \tag{3.36}\\
& \sinh ^{-1}(x)>\frac{x-x^{3}}{\sqrt{x^{2}+1}} \tag{3.37}
\end{align*}
$$

hold for all $x \in(0, \infty)$. Inequalities (3.35)-(3.37) lead to the conclusion that the inequalities

$$
\begin{aligned}
& N S(a, b) T(a, b)>A(a, b) Q(a, b), \\
& \frac{A^{2}(a, b)}{G^{2}(a, b)}>\frac{N S(a, b)}{Q(a, b)}, \\
& \frac{A(a, b)}{Q(a, b)}+\frac{Q(a, b)}{A(a, b)}>\frac{A(a, b)}{N S(a, b)}+\frac{Q(a, b)}{T(a, b)}
\end{aligned}
$$

hold for all $a, b>0$ with $a \neq b$.

Remark 3.4 Let $I(a, b)=\left(b^{b} / a^{a}\right)^{1 /(b-a)} / e$ be the identric mean of two distinct positive real numbers a and b, and $I_{2}(a, b)=I^{1 / 2}\left(a^{2}, b^{2}\right)$ be the second-order identric mean. Then from Theorems 3.1-3.4 and the inequalities $M(a, b ; 2 / 3)<I(a, b)<M(a, b ; \log 2)$ [20, 21] and
$P_{2}(a, b)>L_{4}(a, b)$ [22] we get two inequalities chains as follows:

$$
\begin{aligned}
\frac{999}{1,000} L_{4}(a, b) & <U(a, b)<P_{2}(a, b)<N S(a, b) \\
& <B(a, b)<M(a, b ; 4 / 3)<I_{2}(a, b) \\
& <M(a, b ; 2 \log 2)
\end{aligned}
$$

and

$$
\begin{aligned}
L_{4}(a, b) & <P_{2}(a, b)<N S(a, b)<B(a, b) \\
& <M(a, b ; 4 / 3)<I_{2}(a, b) \\
& <M(a, b ; 2 \log 2)
\end{aligned}
$$

for all $a, b>0$ with $a \neq b$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Acknowledgements

The research was supported by the Natural Science Foundation of China under Grants 61374086 and 11171307, and the Natural Science Foundation of Zhejiang Province under Grant LY13A010004.

Received: 9 July 2015 Accepted: 15 September 2015 Published online: 25 September 2015

References

1. Bullen, PS, Mitrinović, DS, Vasić, PM: Means and Their Inequalities. Reidel, Dordrecht (1988)
2. Seiffert, H-J: Problem 887. Nieuw Arch. Wiskd. (4) 11 (2), 176 (1993)
3. Yang, Z-H: Three families of two-parameter means constructed by trigonometric functions. J. Inequal. Appl. 2013, 541 (2013)
4. Neuman, E, Sándor, J: On the Schwab-Borchardt mean. Math. Pannon. 14(2), 253-266 (2003)
5. Neuman, E, Sándor, J: On the Schwab-Borchardt mean II. Math. Pannon. 17(1), 49-59 (2006)
6. Seiffert, H-J: Aufgabe $\beta 16$. Wurzel 29, 221-222 (1995)
7. Yang, Z-H, Jiang, Y-L, Song, Y-Q, Chu, Y-M: Sharp inequalities for trigonometric functions. Abstr. Appl. Anal. 2014, Article ID 601839 (2014)
8. Radó, T: On convex functions. Trans. Am. Math. Soc. 37(2), 266-285 (1935)
9. Lin, TP: The power mean and the logarithmic mean. Am. Math. Mon. 81, 879-883 (1974)
10. Jagers, AA: Solution of problem 887. Nieuw Arch. Wiskd. (4) 12(2), 230-231 (1994)
11. Hästö, PA: A monotonicity property of ratios of symmetric homogeneous means. JIPAM. J. Inequal. Pure Appl. Math. 3(5), Article 71 (2002)
12. Hästö, PA: Optimal inequalities between Seiffert's mean and power means. Math. Inequal. Appl. 7(1), 47-53 (2004)
13. Costin, I, Toader, G: Optimal evaluations of some Seiffert-type means by power means. Appl. Math. Comput. 219(9), 4745-4754 (2013)
14. Yang, Z-H: Sharp power means bounds for Neuman-Sándor mean. arXiv:1208.0895 [math.CA]
15. Yang, Z-H: Estimates for Neuman-Sándor mean by power means and their relative errors. J. Math. Inequal. 7(4), 711-726 (2013)
16. Chu, Y-M, Long, B-Y: Bounds of the Neuman-Sándor mean using power and identric means. Abstr. Appl. Anal. 2013, Article ID 832591 (2013)
17. Yang, Z-H, Wu, L-M, Chu, Y-M: Optimal power mean bounds for Yang mean. J. Inequal. Appl. 2014, 401 (2014)
18. Yang, Z-H, Chu, Y-M: Optimal evaluations for the Sándor-Yang mean by power mean. arXiv:1506.07777 [math.CA]
19. Yang, Z-H, Chu, Y-M, Tao, X-J: A double inequality for the trigamma function and its applications. Abstr. Appl. Anal. 2014, Article ID 702718 (2014)
20. Stolarsky, KB: The power and generalized logarithmic means. Am. Math. Mon. 87(7), 545-548 (1980)
21. Pittenger, AO: Inequalities between arithmetic and logarithmic means. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 678-715, 15-18 (1980)
22. Yang, Z-H, Chu, Y-M: An optimal inequalities chain for bivariate means. J. Math. Inequal. 9(2), 331-343 (2015)
