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Abstract

In high-speed railway (HSR) wireless networks, the link quality is greatly time-dependent and location-varying.
Due to the high randomness, it is challenging to predict the link quality in HSR wireless networks. In this paper,
we firstly conducted a certain amount of field measurement campaigns of HSR wireless network link quality. A great
number of practical datasets are collected regarding packet loss rate (PLR) and round-trip time (RTT). Then,
we analyzed its changing pattern in different time scales, and further model the link quality of HSR wireless
network using hidden Markov chain. Based on this, an improved algorithm was developed to simulate the
variation of HSR wireless network link quality. Simulation results prove that the proposed model is capable
of accurately reproducing the behavior of HSR wireless network link quality with regard to PLR and RTT.
This work will offer new inspiration to the prediction of link quality for HSR wireless networks.
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1 Introduction
High-speed railway (HSR) has brought substantial social
and economic benefits. Due to its great superiorities,
HSRs are widely built and operated around the world,
especially in Europe and East Asia. According to Inter-
national Union of Railways (UIC), 29792 km of HSR
lines had been built by April 2015. With its fast develop-
ment, the era of HSR has come [1].
Wireless networks play a very important role in the

operations of HSR. First, wireless communication is
the basis of train operation control systems, which in-
clude European Train Control System (ETCS) and
Communication-Based Train Control (CBTC) [2].
Second, wireless networks provide great convenience
to HSR passengers, such as enjoying multimedia services
or online gaming. Emerging wireless technologies have
been utilized in HSR. For example, the TD-LTE network
of China Mobile had covered 23500 km of high-speed
rails by August 2015 [3].
For HSR wireless networks, it is significant to establish

reliable wireless links between the trains and the ground.

However, the link quality in HSR usually suffers from sev-
eral sever limitations including complex terrains, Doppler
shift. and time-varying channel issue, as discussed in [4, 5].
Recently, many research have been carried out on

analyzing the propagation characteristics in typical HSR
scenarios, including viaduct, cutting, tunnels, crossing
bridges, and stations [5]. In [6–10], the path loss model
that considers the height of viaduct and BS antenna were
analyzed in viaduct scenario. In cutting scenario, the
small-scale fading characteristics were modeled at
2.35 GHz in [11, 12] and at 930 Mhz in [13–16]. In [17],
the wave propagation of railway tunnels were analyzed.
In [18, 19], the influence of crossing bridges and train
stations were reported on propagation loss model. As
regards to the measurement frequency, most of the
research mentioned above were done at 930 MHz
which is the downlink frequency of GSM-R in China.
While there exists channel measurement of broad-
band communication system including WCDMA [20]
and LTE [21].
Nevertheless, these research cannot characterize the

link quality of wireless networks already deployed along
the high-speed rails, so they have limited use in helping
improve the performance of existing HSR wireless
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networks. Also, the study on different HSR scenarios
cannot provide insight to the global behavior of wireless
network link quality of a complete railway line. Hence,
modeling the link quality characteristics and its long
term pattern of existing HSR wireless networks becomes
an issue.
By evaluating the upper layer performance of deployed

wireless networks, the variation of wireless link quality
along a realistic HSR line can be revealed. In this con-
text, the upper layer is considered as Internet Protocol
(IP) layer of protocol stack, whose performance are nor-
mally evaluated by parameters of packet loss rate (PLR),
round-trip time (RTT).
We reason that PLR and RTT are appropriate parame-

ters to characterize the link quality of HSR wireless
networks. First, IP layer performance is the direct reflec-
tion of the radio propagation behavior. For instance, a
fading channel can result in the loss of signal power
that leads to increased bit error rate, which will cause
the degradation of PLR and RTT. Second, the wireless
channel along the HSR lines varies rapidly, but PLR
and RTT are capable of characterizing it. By designing
accurate measuring program, we can record the PLR
and RTT every 5 s. Besides, since most of the user data in
wireless network are IP packets, modeling the IP layer
performance directly contributes to the design of novel
network architecture.
PLR and RTT are important metrics for wireless com-

munications. In wireless sensor networks (WSN), re-
searchers use PLR to investigate the characteristics of
link quality [22] or characterize the information quality
[23]. Also, PLR and RTT are proposed as routing metrics
for wireless ad hoc networks [24] and wireless mesh
networks (WMN) [25]. In the domain of vehicular com-
munication, some research have been conducted using
PLR or RTT to design new network architecture [26, 27].
Besides, PLR and RTT are considered as performance
indicator for testing commercial platform [28] or evalua-
ting novel communication mechanisms [29–31]. However,
no such work was carried out on characterizing the HSR
wireless networks link quality using PLR and RTT.
In this paper, we try to model the link quality for HSR

wireless networks with PLR and RTT. We firstly conduct
a series of field measurement campaigns for PLR and
RTT along realistic high-speed rails. The investigation of
measurement results reveals a cyclic phenomenon of
PLR and RTT. Then we utilize a hidden Markov chain
(HMC) reference model to describe the measured PLR
and RTT. Based on the model, an improved link quality
simulation algorithm is developed. The simulation results
prove that the developed algorithm can reproduce the
cyclical behavior of PLR and RTT with high accuracy.
The paper is structured as follows: the measurement

campaign is detailed in section 2. The investigation of

collected datasets is presented in section 3. In section 4,
we introduce the HMC reference model. In section 5,
an improved link quality simulation algorithm based
on proposed HMC model is introduced and evaluated.
Section 6 concludes the paper.

2 Measurement campaign
Our measurement campaign was conducted on Beijing–
Shanghai high-speed railway in China. In the measure-
ment, the EV-DO (evolution-data optimized) network
operated by China Telecom was utilized. The downlink
working frequency is 869 MHz–894 MHz, and the
uplink is 824 MHz–849 MHz.
During measurement, a dedicated and automated meas-

uring instrument called wireless link monitor (WLM)
was produced to measure and store the RTT, PLR, and
the corresponding position. The WLM can be considered
as a portable industrial computer which has wireless
modems connecting to the cellular network along the
HSR line. The central processing unit (CPU) of WLM
is Intel Core 2 Duo, and the RAM is 2 GB.
As illustrated in Fig. 1, during a period of 5 s, WLM

sends ten probe packets to echo server (ES) located on
the ground and records the sending time of ith packet
as ti. The size of each probe packet is 64 b, and the
interval between two packets is 500 ms. Upon receiving
a probe packet, ES sends an echo packet back to WLM
immediately. Let P denote the set of echo packets re-
ceived by WLM within the measurement period, while
the number of elements in P is nrecv. The receiving
time of jth packet is recorded as t;j where j is the

element of P. In a measurement period, PLR is calculated

as nrecv/10, and RTT is calculated by 1
nrecv

X
j∈P

t
0
j−tj .

Simultaneously, the longitude and latitude of HSR are
obtained using a GPS receiver. The measurement re-
sults are stored as a quintuple in the database, which
are PLR, RTT, longitude, latitude, and time. The measure-
ment was repeated four times (two round-trips), and four
groups of datasets were collected. Each grout consists of
more than 120000 entries.

3 Dataset analysis
A statistic analysis was made based on the collected
dataset. To reveal the variation behavior of HSR wireless
network link quality, a series value of PLR and RTT span-
ning about 120 min at certain locations are presented in
Fig. 2. The value of RTT and PLR are both graded into
six intervals, and a single label exhibits the grade of RTT
or PLR in a particular position along the railway.
In Fig. 2, it clearly shows that the variation of PLR and

RTT approximately present a cyclical phenomenon. In
areas B, D, F for PLR and areas H, J, L for RTT, a large
part of values of PLR and RTT are relatively low, which
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means that the link quality of HSR wireless networks is
in good condition. In contrast, the value of PLR and
RTT are rather high in areas A, C, E for PLR and areas
G, I, K for RTT, which indicate that the HSR wireless
network link quality is under poor condition. The period
of good and poor condition appears in turn. Based on

the above analysis, we can preliminarily get the first
conclusion: the link quality of HSR wireless networks
follows a cyclical variation that good condition and
poor condition occur alternately.
To further study the cyclical behavior of HSR wireless

networks link quality, how the PLR and RTT vary against

Fig. 1 Illustration of measurement campaign
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Fig. 2 The measured value of PLR (a) and RTT (b) at certain locations
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time is shown in Fig. 3. The values of measured RTT and
PLR are quantized into six states, ranging from 1 to 6.
The percentages of PLR are calibrated as follows: state
6 is given for 83% and above, 5 for 67% ~ 83%, 4 for
50% ~ 67%, 3 for 33% ~ 50%, 2 for 17% ~ 33%, and any
lower than 17% is state 1. The values of RTT are catego-
rized as below: state 6 for 5 s ~ 6 s, 5 for 4 s ~ 5 s, 4 for
3 s ~ 4 s, 3 for 2 s ~ 3 s, 2 for 1 s ~ 2 s, and 1 for 0 s ~ 1 s.
In accord with the result from spatial perspective, the
values of PLR and RTT also present approximate cyc-
lical variation in time domain. From beginning to 20th
minute, 36th minute to 50th minute, and 70th minute
to 82nd minute, most of the PLR and RTT states are
among 4, 5, and 6. These periods are the counterpart
of areas B, D, F for PLR and areas H, J, L for RTT in
Fig. 2. On the contrary, from 20th minute to 36th
minute, 60th minute to 70th minute, and 82nd minute
to 100th minute, PLR and RTT states of 1, 2, and 3
happen a lot. These periods are the counterpart of areas
A, C, E for PLR and areas G, I, K for RTT in Fig. 2. Hence,
we get the second conclusion: among the good condition
periods of HSR wireless networks link quality, the states
of 1, 2, and 3 happen more often. While among poor
condition periods, states of 4, 5, and 6 occur a lot.
According to the two conclusions mentioned above,

the states of HSR wireless network link quality is con-
trolled by another variable that cannot be observed. If
this invisible variable is in good condition, among the
observed states of HSR wireless link quality, 1, 2, and 3
occur more often. Otherwise, 4, 5, and 6 happen with
higher probabilities. We define the observed state of HSR
wireless link quality as micro-state, whose state space is
Q= {1, 2, 3, 4, 5, 6}. The invisible variable that controls the
variation of micro-state is defined as macro-state. Its state
space can be described by S = {G, P}. G is the abbreviation
for good macro-state, and P is for poor macro-state.

In Table 1, the measured PLR and RTT values are cat-
egorized into poor macro-states and good macro-states.
The criterion used to categorize the dataset is as follows:
in a group of PLR or RTT values, if the percentage of
micro-states 4, 5, and 6 exceeds 75%, then the macro-
state of this group is determined as poor; otherwise, the
macro-state is good. We elaborate this criterion according
to the careful investigation of results of measurement
campaign. The PLR No. or RTT No. represents serial
number of the measured value. Since the PLR or RTT is
recorded every 5 s, the PLR No. or RTT No. can be used
to derive the elapsed time since first recorded value.
The frequency of transitions among different macro-

states is rather low. As shown in Table 1, during the
period of about 1 h, the macro-states of PLR and RTT
changed only six times. For poor macro-state and good
macro-state, the minimum duration are, respectively,
540 s and 900 s. Considering that the average operating
speed of Beijing–Shanghai high-speed railway is 280 km/
h, the shortest distance of poor macro-state and good
macro-state can reach 42 km and 70 km.

4 HSR wireless network link quality modeling
The sequences of PLR and RTT values evolving with
time can be interpreted by a random process. To repre-
sent it, we introduce a reference model whose random
variable possesses two states: macro-state and micro-state,
just as PLR or RTT does. The state spaces of macro- and
micro-state are, respectively, S and Q.
In Fig. 4, we use a diagram of the introduced model

to illustrate the relationship between micro-states and
macro-states. How micro-states are generated is dependent
on the macro-state the wireless network link quality under-
goes. For example, if the random variable is under the
macro-state of good, its micro-state takes the values
of 1, 2, and 3 with higher probabilities. Otherwise,

Fig. 3 The measured state of PLR and RTT varying with time
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micro-states 4, 5, and 6 occur more often under
macro-state of poor. In this figure, solid lines with
white arrows indicate that the macro-state transitions
from one state to another. We define αij as the prob-
ability that the macro-state transitions from state i to
state j in a single step. That is,

αij ¼ P stþ1 ¼ jjst ¼ ið Þ; i; j∈S ð1Þ

Dotted lines with black arrows indicate the generation
of micro-state under different macro-state. βs(q) is de-
fined as the generation probability that the micro-state q
is generated under macro-state s. That is,

βs qð Þ ¼ P qt ¼ qjst ¼ sð Þ; s∈S; q∈Q ð2Þ

The average time interval between different micro-
states is much less than that of different macro-states. In
other words, the macro-state varies at a much slower
pace than micro-state does. According to the results of
measurement campaign, every 1053 s on average, the
macro-state of HSR wireless network link quality would
change. However, the micro-state varies every 5 s, since
RTT and PLR were calculated and recorded every 5 s.
For a better understanding of how the proposed model

evolves, we introduce an intuitive but simple dice-coin
experiment. The experiment is detailed as follows:

(1)A white-loaded dice whose weight is unevenly
distributed. When it is rolled, the probability
that one side faces upwards is piW where i∈
{1, 2, 3, 4, 5, 6}. Since the dice is loaded, we
define pmW > pnW for m < n.

(2)A black-loaded dice. The face-up probability
of one side is pjB where j∈ {1, 2, 3, 4, 5, 6}.
In contrast with the white dice, we define black
dice as pmB < pnB if m < n

(3)A white-loaded coin, the weight of heads and tails
are different. PH

W is the probability that the upper
side is heads after tossing it, while PT

W for tails,
and PH

W > PT
W .

(4)A black-loaded coin. The face-up probability of
heads is PH

B , and tails is PT
B , while P

H
B > PT

B .

Six sides of the loaded dice represent the six micro-
states of HSR wireless network link quality. Rolling
white-loaded dice stands for the generation of micro-
state under good macro-state, while rolling the black dice
stands for that under poor macro-state. Tossing the
loaded coins regulates the variation of macro-state. The
white coin represents the transition from good, while
the black coin represents that from poor.
To generate a series of output with the same cyclical

behavior possessed by the measured HSR wireless
network link quality, the experiment is conducted as
shown in Fig. 5:

(1)Randomly select one dice. Roll it, then the first
result is generated.

(2)Next, select the coin whose color is identical to the
dice rolled at last step. For example, if black dice
was just rolled, then the black coin will be flipped.

(3)If the result of coin flipping is heads, continue to roll
the dice just rolled before and record the result.
Otherwise, roll the other dice.

(4)Go to step (2), until expected number of dice rolling
results are recorded.

The rolled dice at every step regulates the generated
output sequence, which is similar as the behavior that
macro-state of HSR wireless link quality regulates the
generation of micro-state. White and black dices are the
analogs of the good and poor macro-state, respectively,
while the side of the dice facing upwards represents the
generation of micro-state. Hence, we have

piW ¼ βG ið Þ; i∈Q ð3Þ

pjB ¼ βP jð Þ; j∈Q ð4Þ

Switching between black and white dice, which is reg-
ulated by flipping black or white coins, is the analog of

Table 1 Macro-state categorization

Macro-state PLR No. RTT No.

Poor 1–391 1–392

Good 392–724 393–674

Poor 725–1454 675–1225

Good 1455–1762 1226–1616

Poor 1763–2029 1617–1851

Good 2030–2356 1852–2208

Poor 2357–2466 2209–2317

1

Good PoorMacro
State

Micro
State

2
3

4
5

6

1
2

3

4
5

6

Micro
State

Fig. 4 Diagram of reference model for HSR wireless network
link quality
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transition between poor and good macro-state. The prob-
ability of heads equals the probability that the macro-
state remains unchanged. Similarly, the probability of
tails is the same as the probability that the macro-state
changes. That is

PH
W ¼ αGG;P

T
W ¼ αGP; P

H
B ¼ αPP; P

T
B ¼ αPG ð5Þ

Thus, by PH
W > PT

W PH
B > PT

B , the transitions from one
macro-state to another one occur less frequently than
that to the same one. In the long-term perspective, the
macro-state of HSR wireless network link quality may
remain unchanged for a certain time.
The dice-coin experiment can generate a series of

output results possessing the similar cyclical behavior
as the measured PLR or RTT shows. It proves that the
proposed reference model can well explain how the cyc-
lical pattern of HSR wireless network link quality evolves.
To further study the cyclical behavior of HSR wireless

network link quality, we utilize HMC to describe the
introduced reference model. HMC can be considered
as a mixture of two stochastic processes [32]. The output
of one stochastic process is observable, while the other is
not. The observable process is dependent on the unob-
served one. In our case, the generation of micro-state

and the variation of macro-state can be described by the
observable process and unobservable process, respectively.
However, adopting HMC in modeling HSR link quality

requires some preconditions. Markov chain concerns
with the transition from one state to another, and the
transition probability should be stable. In high-speed
railway scenario, the stable transition probability can be
guaranteed only if the following two preconditions are
satisfied: (i) the distance between two base stations is
constant; (ii) the speed of the train is constant.
In our measurement campaign, these two precondi-

tions can be fulfilled. Since the dataset used to derive A
and B are collected in plain terrain without passing any
train stations, the base stations along the corresponding
railway line follow an even distribution. Also, the speed
of the train is nearly stable during the measurement. But
we should note that modeling HSR link quality with
HMC is suitable for specific situations where these
two preconditions are satisfied. For scenarios such as
train stations where the train is speeding up (or slowing
down), the proposed model cannot accurately characterize
the link quality of HSR.
Normally, HMC can be described using a quintuple.

The five elements and their symmetries when utilizing
HMC to model HSR wireless network link quality are
described as follows:

� S is the state space of the unobserved stochastic
process, whose variable is referred to as state.
In this case, S equals {G, P} that is the state
space of macro-state.

� Q is the state space of the observable stochastic
process, whose element is referred to as symbol.
In this case, Q equals {1, 2, 3, 4, 5, 6} that is the
state space of micro-state.

� A is the state transition matrix. In this case, its
element is the transition probability of macro-state,
which is αij shown in Eq. 1.

� B is the symbol generation matrix. In this case, its
element is the generation probability of micro-state,
which is βs(q ) shown in Eq. 2.

� Π is the initial state matrix whose element is the
probability of a state with which the unobserved
process begins. In our case, it is determined as [0 1],
since the macro-states of PLR and RTT both begin
with poor.

A of PLR and RTT are noted as APLR and ARTT. In
this case, since there are two states, APLR or ARTT can
be defined as a two-by-two matrix. The elements in
APLR and ARTT are derived based on the collected
dataset shown in Table 1. Take the first element (αGG)
in APLR or ARTT as an example. αGG is the probability
that the state transits from good to good. Let N1 be the

Roll
White
Dice

Roll
Black
Dice

Flip
White
Coin

Flip
Black
Coin

Append
result
to

output
sequence

Append
result
to

output
sequence

TailHead

Tail Head

Observed result of dice
rolling present a cyclical
pattern:
1, 1, 1, 2, 2, 1, 3, 1, 6, 5,
5, 4, 6, 6, 2, 2, 3, 1, 1, 1,
...

Fig. 5 Illustration of the dice-coin experiment
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number of state transitions begin with good. Let N2 be the
number of state transitions begin with good and end with
also good. Then αGG can be calculated as N2/N1. Note
that N1 and N2 can be easily counted from the collected
dataset. The rest of the elements of APLR and ARTT

are derived in the same way as αGG.
B of PLR and RTT are noted as BPLR and BRTT. Both

of them are defined as two-by-six matrices, since there
are six symbols and two states in this case. The elements
in BPLR and BRTT are also calculated according to the
collected dataset. Take the first element in BPLR or BRTT,
which is βG(1), for instance. βG(1) represents the prob-
ability that the symbol is observed as 1 when the state is
good. Let M1 be the number of observations that the
state is good. Let M2 be the number of observations that
the symbol is 1 while the state is good. Thus, βG(1) is
calculated M2/M1. M1 and M2 can also be counted
from the measurement results. The rest of the elements
of BPLR and BRTT are derived similarly.
Thus, four matrices of A and B are derived as follows:

APLR ¼ 0:998 0:002
0:003 0:997

� �
ð6Þ

ARTT ¼ 0:997 0:003
0:004 0:996

� �
ð7Þ

BPLR ¼ 0:079 0:015 0:016 0:013 0:021 0:856
0:607 0:076 0:055 0:038 0:026 0:196

� �

ð8Þ

BRTT ¼ 0:044 0:035 0:027 0:029 0:034 0:831
0:528 0:092 0:046 0:029 0:030 0:275

� �

ð9Þ

5 Simulation evaluations

To evaluate the accuracy of introduced HMC reference
model, we use it to simulate the HSR wireless network
link quality and compare the results to the original
measurement result. Normally, a forward induction algo-
rithm can be used to for simulation.

(a)Determine the macro-state of PLR or RTT to
be generated by the algorithm at very first
step. From the measurement results, we can
determine that the initial state of RTT and
PLR macro-states are both poor, therefore, s1 is P
at first step.

(b)Determine the macro-state of current step based
on the macro-state of last step. The probability
that the macro-state is j at current step (n),
providing that it was i at last step (n-1), can be
shown that

(a) (b)

(c) (d)
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Fig. 6 Simulation results of normal forward induction algorithm. a and b are the measured macro-states and micro-states of PLR and RTT.
c and d are the simulated macro-states and micro states of PLR and RTT
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p sn ¼ jð Þ ¼ αij; i; j∈S ð10Þ
Then, select an element from set S randomly
according to the probabilities calculated in
Eq. 10. This element is the macro-state of
current step.

(c)Determine the micro-state based on the macro-state
of current step. Presuming at step n the macro-state
is j, thus the probability that the micro-state is k at
step n is

p qn ¼ kð Þ ¼ βj kð Þ; k∈Q ð11Þ
Then, select an element from set Q randomly
according the probability calculated in Eq. 11. This
element is the micro-state of current step.

(d)Replace n with n + 1. Repeat from (b) to (d), until
expected total number of steps, which is N, has

been executed. N is set as 2466 for simulating PLR,
and 2317 for simulating RTT.

A series of cyclical sequence can be simulated by using
the normal forward induction algorithm mentioned
above. Figure 6 shows a series of simulation results of
RTT and PLR, in comparison with the prior measure-
ment results. In this figure, vertical stem lines indicate
simulated micro-states. Horizontal dotted lines represent
simulated macro-state. Figure 6b and a depict the prior
measurement results of RTT and PLR, respectively,
while the simulation results of proposed algorithm are
shown in Fig. 6c and d. It clearly shows that simulation
results possess a cyclical pattern, which is similar to the
originally measured value of PLR and RTT. However,
the simulation results did not accurately fit the prior
measurement results of RTT and PLR, which means that

Fig. 7 Simulation results of improved forward induction algorithm. a and b are the measured macro-states and micro-states of PLR and
RTT. c and d are the simulated macro-states and micro states of PLR and RTT with three probes. e and f are that with six probes
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normal algorithm is unable to accurately simulate HSR
wireless network link quality.
The inefficiency of normal forward induction algorithm

to accurately simulate HSR link quality stems from the
effect of randomness. The accuracy of simulation results
is mainly determined by whether the simulated macro-
state is correct at step (b) during the forward induction
algorithm. If the macro-state fits the prior measurement
results, then the accuracy of generated micro-states at
step (c) will be greatly improved. However, the macro-
state is randomly determined according to the state

transition probability A. The randomness makes the
macro-state transition uncontrolled.
To tackle this problem, we develop an improved link

quality simulation algorithm. Several probes are intro-
duced to guide the transition between different macro-
states, which would rarely happen. For example, probe
n indicates the nth simulation step. At nth simulation,
the macro-state of link quality will be obliged to change,
regardless of state transition probability A.
P is the probe set, whose elements are probes selected

according to the measurement results. For RTT, P is

Fig. 8 The hit rates of simulated macro-state and micro-state with 0, 2, 4, 6 probes of PLR (a ~ d) and RTT (e ~ h)
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{393, 675, 1226, 1617, 1852, 2209}. For PLR, P is {392,
725, 1455, 1763, 2030, 2357}.
When applying probes to guide the transition of macro-

state, the determination of macro-state at step (b) in
the original algorithm is revised as

p sn ¼ jð Þ ¼

αij; n∉p and i; j∈S

1; n∈p; j≠i; and i; j∈S

0; n∈p; j ¼ i; and i; j∈S

8>>>><
>>>>:

ð12Þ

In Fig. 7, the results of improved simulation algorithm
are shown in comparison with the measured HSR wire-
less network link quality. Figure 7a depicts the prior
measurement results of PLR. Figure 7c is the simulation
result of PLR using improved forward induction algo-
rithm with three probes. When applying three probes,
the improved algorithm is able to accurately simulate
the top 50% of the prior measured PLR. If six probes are
all applied, the second half can also be well simulated, as
shown in Fig. 7e. Figure 7b shows the prior measure-
ment results of RTT, Fig. 7d and f show the simulation
results of RTT using improved forward induction algo-
rithm applying three probes and six probes. Similar to
PLR, more RTT probes applied in the improved algo-
rithm leads to higher accuracy.
To further illustrate how the utilization of probes can

make the simulation results better fit measured PLR and
RTT, the hit rate of simulated states compared to the
measured original states of PLR and RTT is evaluated.
In Fig. 8, each stem line represents a simulation step.
The hit rate of macro-state is indicated by the line
color and marker type while the y coordinate implies
the hit rate. Figure 8a ~ d and e ~ h depict the hit rate
of simulated PLR and RTT, respectively, using 0 probe, 2
probes, 4 probes, and 6 probes. With more probes used
in simulation, the probability that the simulated macro-
state hit the corresponding originally measured macro-
state becomes higher. Moreover, simulated micro-states
are more likely to hit the original ones if the current
macro-state is the same as the measured macro-state.
This explains why the simulation results match the prior
measured PLR and RTT better with more probes used in
the simulation.
Figure 9 shows the accuracy of improved link quality

simulation algorithm, which rises as the number of
probes that are applied increases. The improved algo-
rithm can simulate the micro-state of RTT and PLR
with accuracy of 63.5 and 71.2%, when six probes are
all applied. Meanwhile, the macro-states of PLR and
RTT can be simulated with the accuracy of 100%.
Evaluation results prove that the improved link quality
simulation algorithm can simulate the measured RTT and

PLR with high accuracy, which also proves that the intro-
duced reference model based on HMC is capable of
well-reflecting the HSR wireless network link quality.

6 Conclusions
In this paper, we firstly conduct a series of field meas-
urement campaigns for PLR and RTT along realistic
high-speed rails and gathered a dataset of more than
120000 entries. A cyclical behavior of HSR wireless net-
work link quality is revealed after the investigation of
the measurement results. Based on this, we introduce an
HMC reference model for describing this cyclical behav-
ior. Also, an improved link quality simulation algorithm
is developed. Finally, the assessment of the introduced
model and developed simulation algorithm is provided
based on simulation experiments. Evaluation results
prove that the developed algorithm can reproduce the
cyclical behaviors of PLR and RTT with high accuracy.
Hence, we conclude that the introduced HMC reference
model is valid for HSR wireless network link quality. In
the future work, we will further consider the link quality
prediction for HSR networks based on our proposed
model.
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