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Pions in the quark matter phase diagram
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Abstract. The relationship between mesonic correlations and quantum condensates in the
quark matter phase diagram is explored within a quantum field theoretical approach of the
Nambu and Jona-Lasinio (NJL) type. Mean-field values in the scalar meson and diquark
channels are order parameters signalling the occurrence of quark condensates, entailing
chiral symmetry breaking (χSB) and color superconductivity (2SC) in quark matter. We
investigate the spectral properties of scalar and pseudoscalar meson excitations in the phase
diagram in Gaussian approximation and show that outside the χSB region where the pion
is a zero-width bound state, there are two regions where it can be considered as a quasi-
bound state with a lifetime exceeding that of a typical heavy-ion collision fireball: (A)
the high-temperature χSB crossover region at low densities and (B) the high-density color
superconducting phase at temperatures below 100 MeV.
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1. INTRODUCTION

The study of the QCD phase diagram is a key issue in modern theoretical and
experimental physics of dense matter. Recent heavy-ion collision experiments at
RHIC Brookhaven [1] have led to the insight that the quark-gluon plasma (QGP)
at high temperatures behaves as a perfect fluid with a low viscosity to entropy ratio
η/s≈ 0.1−0.2 [2, 3, 5] which is very close to the KSS bound [6] for this number,
1/(4π). This strong deviation from the behavior of a gas of weakly interacting
quarks and gluons is attributed to the occurence of mesonic bound states [2, 3, 4]
or resonances [7, 8, 9] in the strongly coupled QGP (sQGP). It has been pointed
out [10] that this situation in hot and dense QCD matter bears similarities with
strongly coupled plasmas in other systems where bound state dissociation or
Mott-Anderson delocalization [11] occurs since the effective coupling strength is
modified by electronic screening and/or Pauli blocking effects. It is thus a very
general effect expected to occur in a wide variety of dense Fermi systems with
attractive interactions [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. When this Mott
transition from truly bound to resonantly paired states occurs under conditions
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of Bose condensation one speaks of a BEC-BCS crossover [22, 23, 24]. Recently,
this transition became accessible to laboratory experiments with ultracold gases
of fermionic atoms coupled via Feshbach resonances with a strength tunable by
applying external magnetic fields [24, 25, 26, 27, 28]. The BEC-BCS crossover
transition in quark matter is of particular theoretical interest due to the additional
relativistic regime it offers [9, 29, 30].
Theoretical concepts explaining the appearance of nonperturbative phenomena

like quantum condensates and bound states in dense Fermi systems with their
observable consequences shall apply here but must be formulated within a quantum
field theoretic approach. A systematic treatment of these effects is possible within
the path integral formulation for finite-temperature quantum field theories. This
approach is especially suited to take into account the effects of spontaneous
symmetry breaking. Here we will apply this approach on the example of a model
field theory of the NJL type to quark matter as a relativistic strongly interacting
Fermi system. It is our aim to delineate relationships between the regions of the
NJL model phase diagram where χSB and color superconductivity occur and the
possibility to observe quasi-bound pionic states in HIC experiments where hot,
dense QCD matter produced in the form of rather short-lived fireballs.

2. SCALAR-PSEUDOSCALAR MESONS IN A
SUPERCONDUCTING TWO-FLAVOR NJL MODEL

As a generic model system for the description of hot, dense Fermi-systems with
strong, short-range interactions we consider quark matter described by a model
Lagrangian with four-fermion coupling. The key quantity is the partition function
Z from which all thermodynamic quantities can be derived. In the imaginary time
formalism (t=−iτ ) it can be expressed as a path integral [31]

Z =
∫

D(iq†)D(q) e
∫ β

d4x (L−µq†q) , (1)

where the chemical potential µ is introduced as a Lagrange multiplier for assuring
conservation of baryon number. The notation

∫ β d4x is shorthand for
∫ β
0 dτ

∫

d3x
where β is the inverse temperature. The quark matter is described by a Dirac
Lagrangian with internal degrees of freedom (Nf = 2 flavors , Nc = 3 colors), with
a current-current-type four-fermion interaction inspired by one-gluon exchange.
After Fierz transformation of the interaction, we select the scalar diquark channel
and the scalar-pseudoscalar meson channels so that our model Lagrangian assumes
the form

L= q̄(i/∂−m0)q+GD(q̄iγ5Cτ2λ2q̄
T )(qT iCγ5τ2λ2q)+GS[ (q̄q)

2+(q̄iγ5τq)
2 ] . (2)

Here γν are the Dirac matrices, λ2 is a color SU(3) Gell-Mann matrix, τi are SU(2)
flavor matrices and C = iγ2γ0 is the charge conjugation matrix. GS and GD are
coupling strengths corresponding to the different channels, see Ref. [32] for a recent
review. For the numerical analysis we adopt parameters from Ref. [33] and consider
GD as a free parameter.



After introduction of the Hubbard-Stratonovich [34] auxiliary fields ∆(τ,x),
∆∗(τ,x), π(τ,x), σ(τ,x) and the Nambu-Gorkov spinors Ψ= 1√

2
(qqc)T , Ψ̄ = 1√

2
(q̄q̄c)

with qc(x) ≡ Cq̄T (x), the partition function becomes a Gaussian path integral in
the bispinor fields which can be evaluated and yields the fermion determinant

Z =
∫

D∆∗D∆DσDπe
−
∫ β

d4xσ2+π2

4GS
+

|∆|2

4GD ·Det[S−1] , (3)

where the inverse bispinor propagator is a matrix in Nambu-Gorkov-, Dirac-, color-
and flavor space. After Fourier transformation it reads

S−1 =

(

(iωn+µ)γ0−m− iγ ·p− iγ5τ ·π i∆γ5τ2λ2

i∆∗γ5τ2λ2 (iωn−µ)γ0−m− iγ ·p+ iγ5τ
t ·π

)

, (4)

with m=m0+σ. So far we could derive with (3) a very compact, bosonized form
of the quark matter partition function (1) which is an exact transformation of (1),
now formulated in terms of collective, bosonic fields. As we will demonstrate in
the following, this form is suitable since it allows to obtain nonperturbative results
already in the lowest orders with respect to an expansion around the stationary
values of these fields. In performing this expansion, we may factorize the partition
function into mean field (MF), Gaussian fluctuation (Gauss) and residual (res)
contributions

Z(µ,T )≡ e−βΩ(µ,T ) = ZMF (µ,T )ZGauss(µ,T )Zres(µ,T ) .

In the following we will discuss the physical content of these approximations.
In thermodynamical equilibrium, the mean field values satisfy the stationarity
condition that the thermodynamical potential ΩMF ≡ − 1

βV
lnZMF be minimal,

i.e. ∂ΩMF

∂σMF
= ∂ΩMF

∂πMF
= ∂ΩMF

∂∆MF
= 0 . This is equivalent to the fulfillment of the gap

equations σMF = −4GSTr(SMF ) ≡ m−m0, πMF = −4iGSTr(γ5τSMF ) = 0 and
∆MF = 4GDTr(γ5τ2λ2SMF ) = ∆, together with the stability criterion that the
determinant of the curvature matrix formed by the second derivatives is positive.
After the evaluation of the traces and the sum over the Matsubara frequencies one
gets

ΩMF = − 1

βV
lnZMF =

(m−m0)
2

4GS

+
|∆|2
4GD

− 1

βV
Tr
(

lnβS−1
MF

)

=
(m−m0)

2

4GS

+
|∆|2
4GD

−4
∫ d3p

(2π)3

[

E+
p
+E−

p
+Ep+2T ln(1+ e−βE+

p )

+ 2T ln(1+ e−βE−
p )+T ln(1+ e−βξ+p )+T ln(1+ e−βξ−p )

]

, (5)

where we have defined the particle dispersion relation E±
p
=

√

(

ξ±
p

)2
+∆2 with

ξ±
p
=Ep±µ, Ep =

√
m2+p2. The ∆ 6=0 dispersion law E−

p
(E+

p
) is associated to the

red and green quarks (antiquarks), whereas the ungapped blue quarks (antiquarks)
have the dispersion ξ−

p
(ξ+

p
). With the aformentioned stationarity conditions applied
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FIGURE 1. Left panel: order parameters for χSB (full lines) and color superconductivity
(dashed lines) at T = 0 for different values of ηD. First order phase transitions turn to second
order or even crossover when ηD is increased. For details, see text. Right panel: phase diagram
of two-flavor quark matter with critical lines for chiral symmetry breaking (dashed) and color
superconductivity (solid) for three values of the diquark coupling strength: ηD = 0.75, 1.0 and
1.3. The dots indicate the critical endpoint for first order phase transitions.

to Eq. (5) we obtain the gap equations for the order parameters m and ∆, which
have to be solved self-consistently,

m−m0 = 8GSm
∫ d3p

(2π)3
1

Ep

{

[

1−2nF (E
−
p
)
] ξ−

p

E−
p

+
[

1−2nF (E
+
p
)
] ξ+

p

E+
p

+nF (−ξ+
p
)−nF (ξ

−
p
)
}

, (6)

∆ = 8GD

∫ d3p

(2π)3

[

1−2nF (E
−
p
)

E−
p

+
1−2nF (E

+
p
)

E+
p

]

. (7)

The Fermi distribution is nF (E) = (1+ eβE)−1. Solutions of the gap equations for
the dynamically generated quark mass m and for the diquark pairing gap ∆ at
T = 0 as a function of µ are shown in the left panel of Fig. 1. From the solutions
for the order parameters in dependence of the thermodynamical variables T and
µ we have constructed the phase diagram of the present quark matter model in
the T −µ plane, see right panel of Fig. 1. The two order parameters, that are
indicators of phase transitions, allow to distinguish 4 phases: ∆ = 0, m ∼ m0:
normal phase (NQM); ∆ 6=0,m∼m0: color superconductor (2SC); ∆= 0,m≫m0:
chiral symmetry broken phase (χSB); ∆ 6= 0, m≫m0: coexistence of χSB and 2SC
phases.
Increasing the diquark coupling ηD =GD/GS leads to an increase of the diquark

gap and therefore a rise in the critical temperature for the second order transition
to a normal quark matter phase. It shifts also the border between color supercon-
ductivity (2SC) and chiral symmetry broken phase (χSB) to lower values of the
chemical potential. For very strong coupling ηD ∼ 1, a coexistence region developes



where both order parameters are simultaneously nonvanishing. Since the phase
border is not of first order, no critical endpoint can be identified in this case. In
the χSB phase pion and diquark exist as zero width bound states. At the chiral
symmetry restoration transition, they merge the continuum of unbound states and
turn into (resonant) scattering states. When this Mott transition occurs within the
2SC phase we speak of a BEC-BCS crossover.
Now we discuss the interesting question of the quasiparticle excitations in these

phases. To this end, we will expand the action functional in the partition function
up to quadratic order in the mesonic fields and arrive at a tractable approximation
for the bosonized quark matter model.
Let us expand now the mesonic fields around their mean field values. In these

lectures, we will focus on fluctuations in the mesonic channels, where the pion
and the sigma meson will emerge as quasiparticle degrees of freedom. On the
example of the pion we will explain the physics of the Mott transition. The detailed
investigation of the quantized diquark fluctuations, which are also a prerequisite
of the formation of baryons, will be given elsewhere [30, 35, 36].
As mentioned above, the pion mean field vanishes, but the sigma field can be

separated into mean field and fluctuations as σ → σMF +σ. Hence it is possible to
decompose the inverse propagator S−1 into a mean field part and a fluctuation part
S−1 = S−1

MF +Σ, so that in the Gaussian approximation the fermion determinant
becomes

Det [S−1] |Gauss

Det
[

S−1
MF

] = exp

{

−1

2

∫

d4q

(2π)4
Tr[SMF (p)Σ(q)SMF (p+ q)Σ(q)]

}

, (8)

where the matrix Σ and the propagator SMF are defined as

Σ≡
(

−σ− iγ5τ ·π 0
0 −σ− iγ5τ

t ·π

)

, SMF ≡
(

G+ F−

F+ G−

)

. (9)

The matrix elements of the Nambu-Gorkov propagator are

G±
p =

∑

sp

∑

tp

tp

2E
±sp
p

tpE
±sp
p −spξ

±sp
p

p0− tpE
±sp
p

Λ−sp
p

γ0Prg+
∑

sp

Λ
−sp
p γ0Pb

p0+ spξ
±sp
p

, (10)

F±
p = i

∑

sp

∑

tp

tp

2E
±sp
p

∆±

p0− tpE
±sp
p

Λsp
p
γ5τ2λ2 , (11)

where sp, tp = ±1, (∆+,∆−) = (∆∗,∆). For the subsequent evaluation of traces
in quark-loop diagrams, it is convenient to use this notation with projectors
in color space, Prg = diag(1,1,0), Pb = diag(0,0,1) and in Dirac space, Λ±

p
=

1
2

[

1±γ0
(

γ·p+m̂
Ep

)]

. The summation over Matsubara frequencies p0 = iωn is most

systematic using the above decomposition into simple poles in the p0 plane.
The poles of the normal propagators G± are given by the gapped dispersion

relations for the paired red-green quarks (antiquarks), E±
p
=
√

(ξ±
p
)2+∆2, and the

ungapped dispersions ξ±
p
=Ep±µ for the blue quarks (antiquarks). The anomalous



propagators F±
p
are only nonvanishing in the 2SC phase where the pair amplitude

is nonvanishing. Let us notice explicitly that this procedure has yielded an effective
action that includes the fluctuation terms responsible for the excitation of scalar
and pseudoscalar mesonic modes. The evaluation of the traces (8) can be performed
with the result

1

2
Tr(SMFΣSMFΣ) = (π,σ)

(

Πππ 0
0 Πσσ

)(

π

σ

)

, (12)

where we have introduced the polarization functions

Πσσ(q0,q) ≡ Tr[G+
p G

+
p+q+F−

p F
+
p+q+G−

p G
−
p+q+F+

p F
−
p+q] , (13)

Πππ(q0,q) ≡ −Tr[G+
p (γ5τ )G

+
p+q(γ5τ )+F−

p
(γ5τ

t)F+
p+q(γ5τ )

+F+
p (γ5τ )F

−
p+q(γ5τ

t)+G−
p (γ5τ

t)G−
p+q(γ5τ

t)] , (14)

as the key quantities for the investigation of mesonic bound and scattering states
in quark matter. Indeed by using Bethe Salpeter equation and by evaluating the
spectral functions one can obtain important information on the mesons properties.
In the following we perform the further evaluation and discussion for the pionic
modes, the σ mode is treated in an analogous way. We start with the evaluation
of traces and Matsubara summation and obtain

Πππ(q0,q) = 2
∫ d3p

(2π)3
∑

sp,sk

(

1+ spsk
p · (p+q)−m2

EpEp+q

)

{

nF (spξ
sp
p )−nF (skξ

sk
p+q)

q0−skξ
sk
p+q+ spξ

sp
p

+
nF (spξ

sp
p )−nF (skξ

sk
p+q)

q0+ skξ
sk
p+q−spξ

sp
p

+
∑

tp,tk

tptk
E

sp
p Esk

p+q

nF (tpE
sp
p )−nF (tkE

sk
p+q)

q0− tkE
sk
p+q+ tpE

sp
p

×
(

tptkE
sp
p
Esk

p+q
+ spskξ

sp
p
ξsk
p+q

−|∆|2
)

}

. (15)

For a pionic mode at rest in the medium (q= 0) this reduces to

Πππ(q0,0) = 8
∫ d3p

(2π)3

{

N(ξ+
p
, ξ−

p
)

[

1

q0−2Ep

− 1

q0+2Ep

]

+

[

1− ξ+
p
ξ−
p
+∆2

E+
p
E−

p

]

M(E+
p
,E−

p
)

[

1

q0−E+
p
+E−

p

− 1

q0+E+
p
−E−

p

]

+

[

1+
ξ+
p
ξ−
p
+∆2

E+
p
E−

p

]

N(E+
p
,E−

p
)

[

1

q0−E+
p
−E−

p

− 1

q0+E+
p
+E−

p

]

}

, (16)

where we have introduced the phase space occupation factors N(x,y) = 1−nF (x)−
nF (y) (Pauli blocking) and M(x,y) = nF (x)−nF (y).
We make use of the Dirac identity limη→0

1
x+iη

= P 1
x
− iπδ(x) in order to de-

compose the polarization function into real and imaginary parts after analytical
continuation to the complex plane. The imaginary part is straightforwardly inte-
grated after transformation from momentum to energy ω. At the pole, the integra-

tion variables transform as pω =
√

ω4−4ω2(µ2+∆2)
4(ω2−4µ2)

−m2 , and the integration borders
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FIGURE 2. Left panel: Mass spectrum of mesons (π, σ) as a function of the temperature
for vanishing chemical potential µB = 0 and strong diquark coupling ηD = 1.0. The threshold
Eth = 2mq for Mott dissociation of pions and occurrence of a nonvanishing decay width Γπ =
Im Ππ/mπ is reached at TMott = 212.7 MeV (see inset). Right panel: Mass spectrum of mesons
(π, σ) as a function of the temperature for finite chemical potential µB = 320 MeV and strong
diquark coupling ηD = 1.0 in the 2SC phase. Below the threshold Eth = 2 mq for the onset of the
decay width Γ2m there is another process due to the lower threshold E+−E− switching on (see
inset).

shift p ∈ (0,∞) → ω ∈ (X±,∞), where the thresholds are given by 2m for ∆ = 0

and X± =
√

(m+µ)2+∆2±
√

(m−µ)2+∆2 otherwise. In this way one can decom-
pose the pion polarization function in the 2SC phase into a real and an imaginary
part. From the real part we can calculate the pion mass by solving the Bethe-
Salpeter equation 1−2GσReΠππ(mπ,0) = 0, while a nonvanishing imaginary part
corresponds to a finite pion width Γπ for decay into quark-antiquark pairs.
In Fig. 2, we show the temperature dependence of the masses and widths of

pions and sigma-mesons for strong diquark coupling ηD = 1.0 at vanishing chemical
potential (left panel) and at µB = 320 MeV (right panel). At µB = 0, the only
threshold for the imaginary parts of meson decays is 2m, since ∆ = 0. The σ mass
is always above the threshold and therefore this state is unstable in the present
model. The pion, however, is a bound state until the critical temperature for the
Mott transition TMott = 212.7 MeV is reached. As can be seen from the slow rise of
the decay width Γπ, the pion is still a well-identifyable, long-lived resonance. The
detailed analytic behavior of the pion at the Mott transition has been discussed in
the context of the NJL model by Hüfner et al. [37], see also the inset of the left panel
of Fig. 2. It shows strong similarities with the behavior of bound states of fermionic
atoms in traps when their coupling is tuned by exploiting Feshbach resonances in
an external magnetic field, see [38]. In the context of RHIC experiments, one has
discussed such quasi-bound states as an explanation for the perfect liquid behavior
of the sQGP [4].
Next we want to discuss the pionic excitations in the presence of a diquark

condensate in the 2SC phase, see the right panel of Fig. 2. We observe the
remarkable fact that the 2SC condensate stabilizes the pion at T = 0 as a true
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bound state, although the pion mass exceeds by far the threshold 2m. This effect
is due to a compensation of gapped and ungapped quark modes and has been
discussed before by Ebert et al. [35] for T = 0 only. Here we extend this study to
the finite temperature case, where the pion obtains a finite width but is still a very
good resonance.
Finally, an interesting insight can come looking at Fig. 3. In this figure we have

reported the essential phase diagram of the two-flavor quark matter in the case of
coupling ηD = 1.00. The dashed line represents the chiral crossover line and the
solid line refers to the phase transition towards 2SC phase. The dot-dashed line
shows the border above which the pion turns out to be a quasi bound state in the
quark plasma. The dotted line indicates the region border (A) below which the
quasi-stable pionic states have a lifetime greater than 1 fm/c, which is a typical
lifetime of fireballs 2. Thus they would be measured as bound states and could be
significant in the framework of HIC experiments. Region (B) confirms our claim
about the absence of stable pions in a two-flavor superconductor. However this
claim needs a comment. First of all, it can be easily understood how the presence
of a finite diquark gap (2SC phase) at T=0 stabilizes the pion. Indeed as soon as
the quark mass drops due to chiral symmetry restoration, the diquark gap tends to
be finite and thus takes over the role of the quark mass in the dispersion relations.
Roughly speaking the quark start to be dressed by his interactions. Thus the pion

2 Note that the physical width Γπ =
(

∂ReΠππ

∂m2
π

)−1
ImΠππ

mπ

= τ−1



does not “feel” the drop of the quark mass. But as ∆ melts with increasing T , the
pion width Γπ raises, first slowly and then rapidly, reflecting the behaviour of ∆ as a
function of T. This leads inevitably to a destabilization of the the pion states in the
vicinity of the 2SC phase border. The discussion of the mesonic modes in the 2SC
phase points to a very rich spectrum of excitations which eventually leads to specific
new observable signals of this hypothetical phase. The CBM experiment planned
at FAIR Darmstadt and the NICA project at JINR Dubna could be capable of
creating thermodynamical conditions for the observation of these excitations in
the experiment. One promising signal could be the scalar resonance in the pion-
pion scattering at the two-pion threshold which is in principle observable, e.g., in
the two-photon decay channel [39, 40]. However, the description of this state goes
beyond the Gaussian approximation to which we restrict ourselves in this work.

3. CONCLUSIONS

In this work we have derived and evaluated the gap equations and the scalar-
pseudoscalar meson spectra within a path integral approach to the two-flavor NJL
type model of superconducting quark matter.
After fixing the parameters of the model to the light meson spectrum in the

vacuum, the diquark coupling remains as a free parameter which has been used to
extend the model beyond the traditional range of applications into the region of
BEC-BCS crossover.
We have presented the phase diagram of quark matter at strong and very strong

coupling. The origin of the BEC-BCS crossover in superconducting quark matter
is the Mott transition for diquark bound states. We explain the physics of the Mott
transition on the example of mesonic correlations. We have investigated the meson
spectra (bound and scattering states) outside (T > Tc) and for the first time also
inside (T < Tc) the color superconductivity region. We find the thresholds for the
dissociation of pionic bound states into unbound, but resonant scattering states in
the quark-antiquark continuum and we have shown that outside the χSB region
where the pion is a zero-width bound state, there are two regions where it can
be considered as a quasi-bound state with a lifetime exceeding that of a typical
heavy-ion collision fireball: (A) the high-temperature χSB crossover region at low
densities and (B) the high-density color superconducting phase at temperatures
below 100 MeV.
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37. J. Hüfner, S. P. Klevansky, P. Rehberg, Nucl. Phys. A, 606, 260 (1996)
38. V. Gurarie, L. Radzihovsky, Ann. Phys., 322, 2 (2007)
39. M. K. Volkov, E. A. Kuraev, D. Blaschke, G. Ropke and S. M. Schmidt, Phys. Lett. B, 424,

235 (1998)
40. D. Blaschke, Yu. L. Kalinovsky, A. E. Radzhabov and M. K. Volkov, Phys. Part. Nucl. Lett.,

3, 327 (2006)

http://arxiv.org/abs/nucl-th/0311021

	Introduction
	Scalar-pseudoscalar mesons in a superconducting two-flavor NJL model
	Conclusions

