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SUMMARY

Software maintenance is a task that is difficult to manage effectively. In part, this is because
software managers have very little knowledge about the types of maintenance work that are
likely to occur. If managers could forecast changes to software systems, they could more
effectively plan, allocate workforce and manage change requests. But, the ability to forecast
software modifications depends on whether there are predictable patterns in maintenance work.
We posit that there are patterns in maintenance work and that certain characteristics of
software modules are associated with these patterns.

We examine modification profiles for 621 software modules in five different business systems
of a commercial merchandiser. We find that only a small number of modules in these systems
is likely to be modified frequently, and that certain maintenance patterns emerge. Modules
frequently enhancedare in systems whose functionality is considered strategic. Modules fre-
quently repaired have high software complexity, are large in size, and are relatively older.
However, modules that have been code generated are less likely to be repaired. Older and
larger modules are restructured and upgradedmore frequently. Our results suggest that these
characteristics of software modules are associated with predictable maintenance profiles. Such
profile information can be used by software managers to predict and plan for maintenance
more effectively. In addition, our results suggest the use of code generators as a means of
reducing repair maintenance.  1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION
While it is well understood that software maintenance requires a significant amount of
organizational resources, there exists a relative shortage of quantitative empirical research
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devoted to improving the performance of those who must manage this activity (Kemerer,
1995). From an organizational perspective, managers find it difficult to plan for mainte-
nance work and to manage maintenance requests because, in part, software managers have
very little a priori knowledge about the demand for maintenance work and about the ease
with which the work can be done.

If managers could forecast the demand for changes to a system, they could more
effectively plan releases, allocate workforce and manage change requests. For example,
managers could batch changes to modules that are frequently changed to take advantage
of scale economies (Banker and Slaughter, 1998). However, signals in the form of past
patterns of maintenance are not normally made available to managers due to the effort
required to accumulate, report and analyse detailed change request data. Furthermore, the
ability to forecast software modifications depends on whether there are predictable patterns
in maintenance work.

In this study, we conduct an empirical investigation to determine whether there are
predictable maintenance patterns for the business systems of a commercial merchandiser.
Our objective is to identify the general factors that are associated with predictable change
profiles. This information can then be used by software managers to more effectively plan
for maintenance.

2. FACTORS ASSOCIATED WITH SOFTWARE MODIFICATION
PATTERNS

2.1. Direct factors

We adopt the IEEE standard definition of software maintenance:the modification of a
software product after delivery to correct faults, improve performance or other attributes,
or adapt the product to a modified environment(IEEE, 1993). Based on this definition,
we identify three major classes or profiles of software maintenance work.Enhancements
include adding, changing or deleting software functionality to adapt to changing business
requirements.Repairs include corrections to errors in the software code.Preventive
maintenanceincludes technical upgrades and restructuring of software code.

There are several patterns that characterize the maintenance of a software system. Over
the lifetime of a software system, enhancements to functionality are likely to continue to
be done on a fairly regular basis after system installation. Systems that are closest to
important areas of the business that change frequently will receive constant enhancement
to keep synchronized with the business. A relatively high volume of error correcting
activity is likely immediately after system installation as ‘bugs’ are detected when clients
use the system in the production environment. After installation, corrective work should
stabilize until the system has been in place a number of years (Gefen and Schneberger,
1996). However, as systems reach the end of their useful lives, corrective work may rise
due to system entropy (Belady and Lehman, 1976). When systems age, they decay or
become disordered due to constant modification that destroys the original structure of the
software. Organizations can counter this decay by reorganizing or restructuring their older
software (Davis and Olson, 1985, p. 283).
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237DETERMINANTS OF SOFTWARE MAINTENANCE PROFILES

At the softwaremodule level, which in the context of our study is the program level,
it is likely that all of the modules in a system will not be modified equally over their
lifetimes. Instead, change will be localized to certain modules in the system. This concept
of stress localizationexists because the system is liable to become pathological (or non-
operative) if global changes are made rather than limited changes. Rational software
designers will therefore design relatively independent modules to minimize the impact of
changes and enable the system to remain stable (Parnas, 1972; Warnier 1976, pp. 15–64;
Davis, 1987, p. 103). Thus, it is probable that some variant of the 80/20 rule will
operate—i.e., 80 per cent of the modifications will be made to 20 per cent of the software
modules in a system (Schaefer, 1985).

From a maintenance management perspective, this suggests that certain software modules
are much more likely to change over the life of a system. Therefore, identifying the
modules and the kinds of modification that they are likely to receive can help software
managers in their planning process by reducing uncertainty in the demand for mainte-
nance work.

With all this as a given, the issue then becomes one of how to identify these
modification-prone modules. We argue, based on data from the literature and from
empirical observations at field sites, that there are certain factors associated with both the
amount and type of maintenance work a software module is likely to receive. Three of
the factors are:

• functionality,
• development practice, and
• software complexity.

In addition, in our model wecontrol for two factors that, although not believed to be
direct causes of maintenance, have been suggested to be associated with maintenance
effort (Chapin, 1985):

• age, and
• size.

Inclusion of these factors ensures that any relationship discovered between maintenance
activity and the first three factors is not due to a simple correlation between the direct
factors and these latter two variables. In addition to possibly generating misleading results,
these two latter factors may not be under the manager’s control.

2.2. Functionality
The kind of functionality implemented in an application is an important driver of

change. Applications such as strategic systems that interact more with a volatile and
competitive external environment, are likely to be enhanced more frequently to keep
synchronization with that environment than are applications such as accounting systems,
which are largely internal, relatively stable and narrower in scope (Davis and Olson,
1985, pp. 6–7, 284–285). Thus, we posit:
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Software modules in strategic systems will beenhancedmore frequently than software
modules in non-strategic systems.

2.3. Development practice
Another important driver of software change is the particular practice that is employed

in the design and development of the software. One of the widely argued benefits of
Computer Aided Software Engineering (CASE) tools is that code generators (so-called
‘lower CASE’ tools) should result in software with higher quality and fewer errors on
average than software that has been created by hand. Code generators should thus have
a beneficial effect in software maintenance because they reduce the variability in the code
and minimize coding errors as the code is automatically created from the software design
(Necco, Tsai and Holgeson, 1989; Ehrlich, Lee and Molisani, 1990; Douglass, 1993).
Hence, we suggest that:

Software modules that have been code generated will berepaired less frequently than
software modules that have been coded manually.

2.4. Software complexity
A number of studies have linked software complexity with software maintenance

performance and software errors (Potieret al., 1982; Basili and Perricone, 1984; Banker,
Datar and Kemerer, 1991). Software complexity refers to the characteristics of software
that make it difficult to understand and to modify (Curtiset al., 1979; Basili, 1980).
There are multiple dimensions of software complexity (Banker, Datar and Zweig, 1989)—
in this study, we focus on one particular dimension of software complexity: cyclomatic
or decision density (Gill and Kemerer, 1991; Banker, Davis and Slaughter, 1998).

Decision density refers to the relative amount of decision or control paths in the
software per line of code, and has been suggested to be related to maintenance effort.
Frequent decision and control flow branching within a software module obscures the
relationship between inputs and outputs and increases the cognitive load of the maintenance
programmers because they must search among dispersed pieces of code to determine the
flow of logic (Ramanujan and Cooper, 1994). Thus, software modules with complex
decision branching are liable to contain more errors and will likely be corrected more
frequently. Gill and Kemerer (1991) for example, found that this variable is positively
associated with maintenance effort, although they cautioned that their results were estimated
on a relatively small data sample, and they recommended further empirical testing. Thus,
we posit that,

Software modules with high decision complexity will berepaired more frequently than
software modules with low decision complexity.

2.5. Control variable: age
We control for two factors that are associated with change. One of these factors is

age, which has been argued to approximate for ‘system entropy’ in software systems
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(Vessey and Weber, 1983; Jones, 1989; Gode, Barua and Mukhopadhyay, 1990). For a
number of reasons, older software modules will likely receive more enhancements and
more repairs. The longer the system is in place, the more the business will change,
requiring more enhancements to the system. In addition, as systems age, they tend to
become less stable with frequent modification and will thus require repair to remain
operational. Because older modules are written using older technologies and techniques,
they are prime candidates for restructuring and conversion to newer versions of technology.
Thus, we anticipate that:

Older software modules will beenhancedmore frequently than newer software modules.

Older software modules will berepaired more frequently than newer software modules.

Older software modules will receivemore preventive maintenancethan newer software
modules.

2.6. Control variable: size
Our other control factor is size. Larger modules will likely receive more enhancements

and more repairs than smaller modules,ceteris paribus, as larger modules embody greater
amounts of functionality subject to change.

Larger modules will likely receive more repairs as well. The larger the module, the
more difficult it is to test and validate the module’s functionality. This implies that larger
modules tend to incorporate more errors. In addition, as business requirements change
and new requirements emerge, modules tend to grow in size to incorporate the additional
functionality needed. Therefore, larger modules are also good candidates for restructuring
to reduce the complexity introduced by size. This leads us to expect that:

Larger software modules will beenhancedmore frequently than smaller software modules.

Larger software modules will berepaired more frequently than smaller software modules.

Larger software modules will receivemore preventive maintenancethan smaller
software modules.

By the above arguments, we do not necessarily imply that only very small modules
are optimal. This would contradict good design principles, such as, minimize coupling
and maximize cohesion. Rather, we suggest that, on average, larger modules will tend to
receive more maintenance work of all kinds.

Table 1 summarizes our hypotheses.

3. METHODOLOGY

3.1. Data source
To investigate our hypotheses, we conducted an empirical study of 621 software modules

in five different business systems of a commercial merchandiser. These modules were
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Table 1. Factors associated with maintenance profiles

Factor Measure Maintenance type Relationship

Functionality Strategic systems Enhancements +
Development practices Generated code Repairs −
Software complexity Cyclomatic/decision density Repairs +

Age (control variable) Months Enhancements, repairs, +
preventive maintenance +

+
Size (control variable) LOC Enhancements, repairs, +

preventive maintenance +
+

developed and maintained by the merchandiser’s central information systems (IS) depart-
ment. The IS department was divided into separate development and maintenance groups,
with the Development Group working exclusively on new systems and the Maintenance
Group supporting and enhancing existing systems. A system at the merchandiser includes
a number of software modules that together accomplish a major function, such as accounts
receivable processing, payroll or order management.

We collected historical data on the kinds of changes made to these modules from the
date they were installed to the date of data collection. The data were extracted from
change histories logged by maintenance programmers for each module in the software
systems. Programmers recorded the software module creation date and author, the function
of the software module, the person making the change, the date of the change, and a
description of the change.

3.2. Content coding of module change histories
To identify the number and patterns of changes to the systems, we content analysed

the change histories (Krippendorff, 1980). We selected the latent coding technique to
identify the underlying meaning in the text. Latent coding is appropriate for this study
because we are interested in deducing the kind of maintenance performed based upon the
descriptions written by a number of programmers. We developed a coding scheme that
classified the change descriptions into one of three maintenance categories (enhancements,
repairs and preventive maintenance). Two coders independently coded the change histories
after achieving sufficient intercoder reliability for the maintenance categories (agreement
between the coders was 100 per cent after several rounds of coding for a sample of
modules). After the maintenance categories were coded, the number of changes in each
category were summed for each module in a system.

3.3. Measurement
We measured the variables for each module included in our study in the following

manner. Enhancements (SumEnh) refer to the total number of adds, changes and deletes
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made to the functionality of the software module over its lifetime. Repairs (SumRep)
refer to the total number of corrections made to coding errors in the software module
over its lifetime. Preventive maintenance (SumPrev) refers to the total number of technical
conversions and restructurings made to the software module over its lifetime.

The Chief Information Officer and other managers at the merchandiser ranked the
systems in terms of their strategic importance from ‘1’ (low importance) to ‘5’ (high
importance). Using these rankings, we constructed a variable (Strg) for each software
module and set its value to the ranking for the system to which the module belonged.

The company’s software library system tracked whether a module was the product of
a code generator. A binary variable (CodeGen) was constructed for each software module
to indicate whether it was code generated (1) or written by hand (0).

Cyclomatic or decision density (DecDen) was measured using McCabe’s cyclomatic
complexity metric (McCabe, 1976). This measure determines the number of decision paths
in the software module. Each software module was subjected to a commercial software
code analysis tool that calculated this metric. To account for the effects of size, McCabe’s
metric was normalized by dividing it by the number of lines of code for each software
module (Gill and Kemerer, 1991; Banker, Davis and Slaughter, 1998).

The age (AgeMths) of each software module was calculated as the number of months
from the module’s initial installation date to the date of data collection.

The size (SLOC) of each software module was measured in terms of lines of code.
This measure was calculated by the code analysis tool. Each module included in our
study was in the COBOL programming language, and therefore many of the normal
caveats about using SLOC as a size measure in cross-sectional analyses do not apply
here (Banker, Datar and Kemerer, 1991).

3.4. Models

To test our hypotheses, we form three linear regression models:

(1) Enhancements model:

SumEnh= b01 + b11 (Strg) + b21 (CodeGen) + b31 (DecDen) + b41 (AgeMths) (1)
+ b51 (SLOC) + e1

(2) Repairs model:

SumRep= b02 + b12 (Strg) + b22 (CodeGen) + b32 (DecDen) + b42 (AgeMths) (2)
+ b52 (SLOC) + e2

(3) Preventive maintenance model:

SumPrev= b03 + b13 (Strg) + b23 (CodeGen) + b33 (DecDen) + b43 (AgeMths) (3)
+ b53 (SLOC) + e3

 1997 by John Wiley & Sons, Ltd. J. Softw. Maint.,9, 235–251 (1997)
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Table 2 summarizes the variables and coefficients included in these models. Note that
the b’s represent the parameters for the explanatory variables that are statistically estimated
in the regression models. The first digit of the subscript for theb parameters represents
the designation for the explanatory variable (ranging from 0 to 5). The second digit of
the subscript for theb parameters represents the number of the regression model (ranging
from 1 to 3). Also, note thatb01, b02, and b03 represent the intercept terms in each
model, ande1, e2 and e3 refer to the disturbance (or error) terms in each model.

We use a multivariate regression to determine the association between maintenance
profiles and the explanatory system and module variables for these models. Ordinary least
squares (OLS) is used to individually estimate each model. Because each model has
identical explanatory variables, OLS is as efficient as generalized least squares for
estimation purposes (Greene, 1993, p. 488). Note that these models require local data
collection and validation for organizations interested in replicating the results. The precise
statistical results reported in the following section apply to the organization examined in
this study.

Table 2. Summary of maintenance profile linear regression models

Variable Coefficient(s) Definition How measured

SumEnh None—dependent Sum of enhancements Total number of times a module has
variable been enhanced (functionality added,

changed or deleted) after installation
SumRep None—dependent Sum of repairs Total number of times a module has

variable been repaired after installation
SumPrev None—dependent Sum of preventive Total number of times a module has

variable maintenance been restructured or undergone
technical conversion after installation

Strg b11, b12, b13 Strategic importance of Subjective rating(1–5) of the
functionality strategic importance of the system to

which the module belongs
CodeGen b21, b22, b23 Code generated Binary variable(0–1) indicating

indicator whether module is written by hand
or code generated

DecDen b31, b32, b33 Cyclomatic or decision McCabe’s cyclomatic complexity
density measure for each module divided by

module total lines of code
AgeMths b41, b42, b43 Age in months Total number of months from

module’s installation date to date of
data collection

SLOC b51, b52, b53 Source lines of code Total number of source lines of code
in the module

J. Softw. Maint.,9, 235–251 (1997)  1997 by John Wiley & Sons, Ltd.
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Table 3. Descriptive statistics for the software modules (n = 621)

Variable Mean per Std Min Max Sum Percentage
module Dev

SumEnh 7·28 13·38 0·00 137·00 4518·00 83
SumRep 1·09 3·04 0·00 46·00 677·00 12
SumPrev 0·39 1·05 0·00 12·00 245·00 5
SumAll 8·84 16·22 0·00 183·00 5488·00 100

4. ANALYSIS AND RESULTS

4.1. Overall distribution of maintenance work
We began by examining descriptive statistics for all of the software modules. As Table

3 indicates, there were 5 488 total modifications made to the modules, of which 83 per
cent were enhancements, 12 per cent were repairs and 5 per cent were preventive
maintenance. One module was modified 183 times over a nine year period.

In terms of the percentage of modules modified, 27 per cent of the modules received
80 per cent of the total modifications made; 26 per cent received 80 per cent of the
enhancements made; 17 per cent received 80 per cent of the repairs made; and 14 per
cent received 80 per cent of the preventive maintenance. This provides strong support
for the supposition that a small percentage of software modules receive most of the
maintenance work.

We then examined maintenance profiles across each of the business systems. Tables 4
and 5 summarize statistics about each system. Interestingly, of all the possible simple

Table 4. Statistics describing the business systems

System Accounts Shipping Price Price Mail and
receivable control management phone sales

Year installed 1974 1983 1987 1984 1986
Strategic ranking 1 2 3 4 5
(1 = low, 5 = high)
Number of modules 245 48 49 187 92
Percentage of code 6·53% 56·25% 34·69% 28·88% 51·09%
generated
Average cyclomatic 0·05841 0·04320 0·04372 0·04395 0·05022
or decision density
(per SLOC)
Average module age 87·30 79·5 64·0 71·7 63·5
(in months)
Average SLOC per 1267·6 3874·0 2817·7 2672·3 2645·7
module
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Table 5. Statistics describing the maintenance history

System Accounts Shipping Price Price Mail and
receivable control management phone sales

Enhancements 1501 total 467 total 279 total 1664 total 607 total
6·12 per 9·73 per 5·69 per 8·90 per 6·60 per
module module module module module
6·58 per 3·89 per 3·88 per 15·40 per 7·23 per
month month month month month

Repairs 251 total 72 total 68 total 221 total 65 total
1·02 per 1·50 per 1·39 per 1·18 per 0·71 per
module module module module module
1·10 per 0·60 per 0·94 per 2·05 per 0·77 per
month month month month month

Preventive 138 total 19 total 8 total 24 total 56 total
maintenance 0·56 per 0·40 per 0·16 per 0·13 per 0·61 per

module module module module module
0·61 per 0·16 per 0·11 per 0·22 per 0·67 per
month month month month month

rank ordering of the various rows in both tables (e.g., the rank ordering of ‘year installed’
is 1, 2, 5, 3, 4 for the five systems) there is only one match, that of ‘average cylomatic
or decision density’ and ‘average SLOC per module’. Therefore, the relationships among
the variables are not likely to be casually observed without statistical analysis.

Table 6 shows the Pearson correlation matrix for the independent variables in our
models. All correlations are significant at the 5 per cent confidence level, with the sole
exception of (SLOC, DecDen). Note that the correlation betweenSLOC and McCabe’s
cyclomatic complexity metric is+0·8821 (significant at 5 per cent). In our models, we
use anormalizedmeasure (DecDen) which is McCabe’s metric divided by total lines of
code. We have chosen this normalized measure so that decision density measures decision
complexity, not size complexity. In addition, the measure reduces collinearity problems
when SLOC is included in the models (Gill and Kemerer, 1991).

Owing to the correlations between variables, tests for multicollinearity were run for the
multivariate regression models. For all models, two key indicators of multicollinearity

Table 6. Correlation matrix for independent variables

Variable Strg DecDen CodeGen AgeMths SLOC

Strg 1·0000 — — — —
DecDen −0·2081* 1·0000 — — —
CodeGen 0·3089* −0·1677* 1·0000 — —
AgeMths −0·1866* 0·2361* −0·2629* 1·0000 —
SLOC 0·2336* −0·0382 0·8222* −0·1442* 1·0000

*Indicates significance at 5% confidence level.
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(variance decomposition proportions and condition indices) are very low. The variance
decomposition proportions for each regression coefficient are lower than 0·5, and condition
indices for the coefficient matrices are less than nine. Note that Belsley, Kuh and Welsch
(1980, pp. 112, 153–159) suggest an upper limit of 0·5 for variance decomposition
proportions, and 30 for the condition index. Our figures are well below these limits,
indicating that multicollinearity is not a problem in our models.

4.2. Results from the multivariate models

4.2.1. Results: enhancements model

Tables 7 to 9 display the results from our statistical estimation of the three multivariate
regression models. We start with the enhancements model, summarized in Table 7.

For the enhancements model all hypotheses are supported, with signs in the predicted
directions. Our results indicate that, as anticipated, certain maintenance patterns emerge.
Modules in systems whose functionality is considered strategic are significantly more
likely to be enhanced. The estimated coefficient for theStrg variable in the enhancements
model indicates that a one point increase in the strategic rating of the system, holding
other explanatory variables constant, leads to a 0·9126 increase in the expected number
of enhancements for a software module. In addition, a strong relationship between
enhancement activity and bothDecDenandCodeGen, although not explicitly hypothesized,
is also supported by the data. A potentialex post factoexplanation for the positive
relationship betweenDecDen and enhancements is that when modules are enhanced
frequently, there is more opportunity to introduce complexity. Or, parts of the system that
are ‘decision rich’ may be subject to greater numbers of external changes. The adjusted
R2 for the model is 0·38, and can be interpreted that the model explains about 38 per
cent of the variance in the enhancement activity at this site.

Table 7. Regression results: enhancements model.SumEnh= b01 + b11 (Strg) + b21 (CodeGen) +
b31 (DecDen) + b41 (AgeMths) + b51 (SLOC) + e1

Variables Coefficient Predicted Estimate t-value p-value
sign (one-tailed)

Intercept b01 −9·8531 −6·349 0·0001
Strg b11 + 0·9126 3·174 0·0008
DecDen b21 56·0795 2·798 0·0026
CodeGen b31 −18·7022 −10·348 0·0001
AgeMths b41 + 0·0794 8·381 0·0001
SLOC b51 + 0·0048 15·235 0·0001

R2 0·3852
Adjusted R2 0·3802
F-test (model) 77·0706 0·0001

(F-value)
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246 C. F. KEMERER AND S. A. SLAUGHTER

4.2.2. Results: repairs model

For the repairs model all hypotheses are supported, with signs in the predicted directions.
The overall model has a similar strength of fit as the enhancements model. We find that
modules frequently repaired have high software complexity, are large in size, and are
relatively older. The estimated coefficient for theDecDen variable in the repairs model
indicates that an increase of one decision statement per line of code leads to an increase
of 11·7581 in the expected number of repairs for a software module, holding other
explanatory variables constant.

However, modules that have been code generated are significantly less likely to be
repaired. The estimated coefficient for theCodeGenvariable in the repairs model indicates
that the expected number of repairs is 4.3961 lower for code generated modules. One
possible interpretation of this result is that programmers prefer not to update generated
code, so they take another approach or live with the problem. Another potential interpret-
ation of this result is that the code generator is effective for development but provides
poor mechanisms for maintenance activities, and therefore, programmers minimize mainte-
nance of code generated modules. However, at our particular field research site, the
Maintenance Group was obligated to meet service level requirements for each system.
Each year at this organization, end users for a particular system set service level (uptime)
requirements in excess of 99 per cent. This means that the Maintenance Group is
responsible for making whatever corrections are necessary to the system in order that it
meets these service level guidelines. Thus, programmers could not refuse or avoid
maintenance to code generated modules or there would be a negative impact on service lev-
els.

There is another interesting characteristic of the code generator used at this field
research site. The code generator is a back-end CASE tool that generates COBOL code.
It has the ability to incorporate ‘custom’ hand-written code in the generated code. For
example, in a three day benchmarking test of CASE tools, the code generator was found
to require heavy custom COBOL coding outside of the tool to implement the functional

Table 8. Regression results: repairs model.SumRep= b02 + b12 (Strg) + b22 (CodeGen) + b32

(DecDen) + b42 (AgeMths) + b52 (SLOC) + e2

Variables Coefficient Predicted Estimate t-value p-value
sign (one-tailed)

Intercept b02 −1·5047 −4·041 0·0001
Strg b12 0·0289 0·419 0·3376
DecDen b22 + 11·7581 2·446 0·0074
CodeGen b32 − −4·3961 −10·140 0·0001
AgeMths b42 + 0·0077 3·392 0·0003
SLOC b52 + 0·0011 14·838 0·0001

R2 0·3138
Adjusted R2 0·3082
F-test (model) 56·2439 0·0001

(F-value)
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requirements posed (Computerworld, 1991). However, the rigid format of the tool was
found to assist in code readability. At our research site, a significant amount of custom
coding was needed to meet the requirements of the end users. The custom code was
implemented in the generated code using called subroutines. Managers and programmers
indicated that most of the maintenance was to this custom code, and was made to the
called subroutines which were outside of the tool and resided in common libraries. The
tool provides little support for updates to custom code.

While user service level agreements dictated changes to systems, these changes impacted
primarily the custom code which was outside of the code generating tool. Programmers
changed the custom code in a non-CASE environment, and then checked it against the
generated code to ensure compatibility. Because of the difficulties inherent with modifi-
cations in a CASE environment, programmers tended to make enhancements in batches
which had the effect of reducing the counts of enhancements to code-generated modules.
This is consistent with the negative coefficient for CodeGen in our Enhancements Model.
However, for repair work, programmers were required to make whatever repairs were
necessary to ensure compliance with uptime agreements. Thus, they could not batch
repairs in groups but had to correct errors as they occurred. This provides support for
our result that code-generated modules have fewer errors on average than non-code-
generated modules,ceteris paribus.

4.2.3. Results: preventive maintenance model

All of the hypothesized relationships among the variables in the preventive maintenance
model are found to be significant. We find that older and larger modules tend to be
restructured and upgraded more frequently on average. However, the overall fit of this
model is not as strong as the enhancement model or repair model, with an adjustedR2

of only 0·18. In addition to the hypothesized relationships, a somewhat weaker relationship
betweenStrg and preventive maintenance activity is also supported by the data.

Table 9. Regression results: preventive maintenance model.SumPrev = b03 + b13 (Strg) + b23

(CodeGen) + b33 (DecDen) + b43 (AgeMths) + b53 (SLOC) + e3

Variables Coefficient Predicted Estimate t-value p-value
sign (n = 621) (one-tailed)

Intercept b03 −0·3514 −2·508 0·0001
Strg b13 −0·5435 −2·094 0·0184
DecDen b23 −0·0848 −0·047 0·4813
CodeGen b33 0·1818 1·114 0·1328
AgeMths b43 + 0·0088 10·351 0·0001
SLOC b53 + 0·0001 2·746 0·0031

R2 0·1915
Adjusted R2 0·1850
F-test (model) 29·1375 0·0001

(F-value)
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Thus, the results from all three models demonstrate that certain characteristics of
software modules can be associated with predictable maintenance patterns.

4.3. ‘80/20’ results
In examining the raw data, we find that there is rough support for the widely cited

‘80/20’ rule that about 80 per cent of all work is caused by only about 20 per cent of
all modules (Schaefer, 1985). For the five systems in this data set, 80 percent of the
modifications were made to between 20 and 30 per cent of the modules. To test this
relationship further, we classified the software modules into two groups: high/low com-
plexity and high/low maintenance. To identify the high complexity group, we ordered the
modules from high to low on theDecDen measure, and then assigned a ‘1’ to the top
20 per cent of modules and a ‘0’ to the remaining 80 per cent of the modules. To
identify the high maintenance group, we ordered the modules from high to low based on
SumAll (the sum of enhancements, repairs and preventive maintenance). We assigned a
‘1’ to the top 20 per cent of modules and a ‘0’ to the remaining 80 per cent of the modules.

We then cross-tabulated the modules using the high complexity and high maintenance
groups and computed a chi-square to test whether there is a significant relationship
between high complexity and high maintenance. Table 10 shows the results from the
cross-tabulation.

The chi-square value of 34·056 is significant atp = 0·00001 and indicates that there is
a significant relationship between the high maintenance and high complexity categories.
The number of modules classified as both high maintenance and high complexity is almost
twice that expected.

We conducted the 80/20 analysis for our other explanatory variables, including high
age versus high maintenance, high code generation versus high maintenance, high size
versus high maintenance and high strategic importance versus high maintenance. We found
a significant and positive relationship between high age and high maintenance (chi-square
value of 61·537,p = 0·00001). The number of modules classified as both high maintenance
and high age is more than twice that expected. There is a significant negative relationship
between high code generation and high maintenance (chi-square value of 7·743,p =

Table 10. ‘80–20’ cross-tabulation of modules

Modules grouped by amount of Modules grouped by complexity
maintenance

Low actual High actual Total number
(expected) (expected) (%)

Low actual 421 76 497
(expected) (398) (99) (80%)

High actual 76 48 124
(expected) (99) (25) (20%)

Total number 497 124 621
(%) (80%) (20%) (100%)

J. Softw. Maint.,9, 235–251 (1997)  1997 by John Wiley & Sons, Ltd.
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0·00539). The number of modules classified as both high maintenance and high code
generation is only about half that expected. For high size versus high maintenance, we
found a non-significant relationship (chi-square value of 1·429,p = 0·23197). Interestingly,
this implies that there is no relationship between size and maintenance volume for the
top 20 per cent of modules in both groups. Finally, we also found no significant
relationship between high maintenance and high strategic importance (chi-square value of
0·480,p = 0·448826) for the top 20 per cent of modules in both groups.

5. CONCLUSIONS

The results of the statistical analysis suggest that maintenance activity does follow
predictable patterns and therefore can be the subject of more rigorous managerial planning
than may be widely believed. The three variables,Strg, DecDenand CodeGenare all
factors that can be measureda priori, and therefore serve as useful planning tools. In
addition, it should be noted that the hypotheses regarding these variables were supported
by the models after having controlled for both size and age, two commonly believed
factors in maintenance activity. Therefore, the results found here cannot be seen as an
artefact due to possible correlation with these other factors.

Going further, these results suggest possible strategies for not simplyplanning for
software maintenance activity, but actively attempting toreduce it. The DecDen and
CodeGenvariables are the result of activity that takes place during software development.
Our models indicate that, on average, modules with high levels of decision density are
significantly associated with both frequent enhancement and frequent repair. This suggests
that organizations may wish to implement guidelines for upper bounds ofDecDenduring
development and could recommend that software not exceed these guidelines before it is
placed into production. Similarly, during maintenance releases the code can be re-examined
to ensure that the maintenance work has not inadvertently increased this measure of
static complexity.

Organizations could also use these results to argue for the beneficial effects on software
quality of so-called lower CASE tools. Our analysis supports the result that, at our
research site, code-generated modules were repaired significantly less on average than non-
code-generated modules. This result cannot be explained by the notion that maintenance
programmers avoided repairing these modules, because the programmers were bound to
fix errors as they occurred in order to meet user service level requirements.

Our results from the 80/20 analysis suggest that organizations do not need to invest
significant amounts of resources in implementing sophisticated techniques to identify
maintenance-prone modules. A simple ordering of modules from high to low using the
DecDenor AgeMthsmeasures of complexity and age, respectively, can be used to classify
the modules into the group (20 per cent) which is likely to receive the majority of
maintenance work. For our data set, this group includes 124 of the 621 modules. These
modules can then be selected for special treatment, which might include assignment to a
more senior maintainer, or even to rewriting. The costs of such a procedure would need
to be traded-off against the potential benefits to determine whether either restructuring or
reassignment is more cost effective. We emphasize that local data collection and validation
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is needed to calibrate the maintenance profile models for organizations that wish to
replicate our results.

Overall, the measure of any such study such as this one is to argue for a more rigorous
and quantitative approach to software maintenance management, an activity of considerable
economic significance to modern organizations.
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