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Abstract. Uncertainty in estimates of survival of dispersing animals is a vexing dif-
ficulty in conservation biology. The current notion is that this uncertainty decreases the
usefulness of spatially explicit population models in particular. We examined this problem
by comparing dispersal models of three levels of complexity: (1) an event-based binomial
model that considers only the occurrence of mortality or arrival, (2) a temporally explicit
exponential model that employs mortality and arrival rates, and (3) a spatially explicit grid-
walk model that simulates the movement of animals through an artificial landscape. Each
model was fitted to the same set of field data. A first objective of the paper is to illustrate
how the maximum-likelihood method can be used in all three cases to estimate the means
and confidence limits for the relevant model parameters, given a particular set of data on
dispersal survival. Using this framework we show that the structure of the uncertainty for
all three models is strikingly similar. In fact, the results of our unified approach imply that
spatially explicit dispersal models, which take advantage of information on landscape de-
tails, suffer less from uncertainly than do simpler models. Moreover, we show that the
proposed strategy of model development safeguards one from error propagation in these
more complex models. Finally, our approach shows that all models related to animal dis-
persal, ranging from simple to complex, can be related in a hierarchical fashion, so that
the various approaches to modeling such dispersal can be viewed from a unified perspective.

Key words: dispersal models, uncertainty; dispersal mortality; dispersal success; individual-
based modeling; landscape details; likelihood, maximum; managing endangered species; model com-
plexity; population models; random grid-walk models; spatially explicit modeling; suitable habitat.

INTRODUCTION

Spatially explicit population models are important
tools in conservation studies (Pulliam et al. 1992, Vos
et al. 2001). In such studies one wants to predict the
dynamics of endangered population(s) under a given
set of management scenarios (Turner et al. 1995). A
model that captures the essentials of the dynamics of
the population(s) under study seems a prerequisite for
making trustworthy predictions about future develop-
ments. One such essential component is the spatial het-
erogeneity of natural landscapes (Turner et al. 1993).
Spatially explicit, grid-based models can take advan-
tage of the details provided by GIS databases. Recent
studies have shown that such models can be parame-
terized and tested in a realistic conservation biological
context (Hanski 1999, McCarthy et al. 2000, Linden-
mayer et al. 1999).

At the same time, however, spatially explicit popu-
lation models have been heavily criticized for needing
an excessive amount of biological data. Estimation of
parameters regarding dispersal survival and success is
difficult, and, as dispersal success is an important pa-
rameter in many populations (e.g., spotted owls;
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McKelvey et al. 1993, Franklin et al. 2000), spatially
explicit models of these populations may be prone to
error propagation (Ruckelshaus et al. 1997). In the face
of proliferating individual-based spatially explicit
models, Bart (1995) stressed that the reliability of such
models needed to be better understood to be suitable
for application to management issues. Others have ar-
gued that simpler, more general models or indicators
of population viability on a landscape may give more
reliable results (Doak and Mills 1994); and examples
of these, such as the ecologically scaled landscape in-
dices (Vos et al. 2001), may be useful in making man-
agement decisions.

Recent progress in model development and theory
shows promise in allowing better parameter estimation
in spatially explicit population models. Mark–recapture
methods have been extended to determining dispersal
parameters (e.g., Hanski et al. 2000). Also, approaches
for extracting information from population patterns in
space, which can help refine parameter estimates, have
been developed (e.g., Grimm et al. 1996, T. Wiegand,
F. Knauer, P. Kaczensky, and J. Naves, unpublished
manscript). Further, Mooij and DeAngelis (1999) and
South (1999) showed that error propagation in spatially
explicit population models need not be as great as was
previously reported in Ruckelshaus et al. (1997). None-
theless, the suggestion that these models need an ex-
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TABLE 1. Mathematical equations for the binomial model.

Measure Equation

Log-likelihood, L L 5 A ln(r) 1 D ln(1 2 r) (1.1)

Change in log-likelihood as a function of
the binomial parameter, dL /dr

dL A D
5 2 5 0 (1.2)

dr r 1 2 r

Maximum-likelihood estimate of the bino-
mial parameter, rMLE

A
r 5 (1.3)MLE A 1 D

Corresponding maximum log-likelihood, LMAX L 5 A ln(A) 1 D ln(D) 2 (A 1 D)ln(A 1 D) (1.4)MAX

Change in log-likelihood relative to the
maximum log-likelihood, L 2 L ,MAX

which is also the implicit equation to cal-
culate the approximate 95% confidence
limits for the binomial parameter for a
given sample size

 r A 1 21 2r MLEr  L 2 L 5 A ln 1 D ln 1 1 5 21.92 (1.5a)MAX 1 2r DMLE  

r r
lim (L 2 L ) 5 A ln 1 1 2 5 21.92 (1.5b)MAX 1 2[ ]r rD→` MLE MLE

cessive amount of field data, especially when it comes
to estimating dispersal success, remains unchallenged.

The aim of this paper is to address the issue of un-
certainty in spatially explicit animal-dispersal models
due to data limitations such as those mentioned by
Ruckelshaus et al. (1999). We agree with Ruckelshaus
et al. that, in light of habitat fragmentation, dispersal
is a highly relevant process for which good data may
be hard to obtain. We know of no pertinent analysis,
however, examining whether a spatially explicit model
for dispersing animals, incorporating relevant land-
scape detail, is necessarily less reliable than a simple
dispersal model, based on the same data on the animals,
but omitting spatial detail. We carry out such an anal-
ysis, using a published set of data on the survival of
dispersing animals. In particular we used a field study
on 24 radio-tagged Mexican Spotted Owls (Ganey et
al. 1998). Ruckelshaus et al. (1999) use this paper as
an example of what amount of data is typically avail-
able. We discuss our findings to draw conclusions about
parameter uncertainty in spatially explicit models in
general.

We applied three models of animal dispersal to Ga-
ney et al.’s (1998) Mexican Spotted Owl data that vary
widely in their level of complexity, to see if they differ
in the efficiency by which they can extract information
from the available data. The first, and simplest model
merely uses the data on final numbers of animals in
the categories of known arrivals and deaths out of the
original numbers of radio-tagged animals. A binomial
model is used in this case. The second model also ex-
ploits the temporal structure of the data, in which case
the two parameters of interest are the probabilities of
mortality and of successful arrival in a patch. An ex-
ponential model is used in this case. The third level of
complexity supposes that information on the spatial
configuration of habitat patches is available. Then the
two parameters that need to be estimated from the field

data are the probability of mortality and the rate at
which the landscape is explored by the organism. For
this last case a random grid-walk model is used. Thus
the models increase in complexity from an ‘‘event-
based’’ description to a ‘‘temporally explicit’’ descrip-
tion, and finally to a ‘‘spatially and temporally explicit’’
description of the dispersal process. This approach of
starting with a model with the minimum of resolution,
and proceeding to more complex articulations of the
system, is similar to the ‘‘scaling-down’’ strategy in
modeling advocated by Thulke et al. (1999).

For each model type, we asked three basic questions:
(1) How do we estimate the parameters of interest? (2)
What is the degree of confidence in these parameters?
(3) If the confidence limits are deemed to be too wide,
can we specify what the minimum size of a data set
should be, given a desired level of confidence? For all
three models we answered these questions with a max-
imum-likelihood analysis. Using this common frame-
work, we were able to show that there are no funda-
mental differences in the structure of uncertainty in
these models.

METHODS

Below we describe the methods that we applied to
analyze, in turn, the event-based model (for equations
see Table 1), the temporally explicit model (Table 2),
and the spatially and temporally explicit model (Table
3). Each of these models can be constructed from the
same set of empirical data. In order to make our de-
scription of these models as concrete as possible, we
will refer to a particular data set, that of Ganey et al.
(1998) on Mexican Spotted Owls. But our methods are
entirely general and should apply to any similar set of
data.

Ganey et al. (1998) radio-tagged 24 juvenile Mexi-
can Spotted Owls in their natal sites in northern Ari-
zona (USA). Of these 24 organisms, 19 initiated dis-
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TABLE 2. Mathematical equations for the exponential model.

Measure Equation

Log-likelihood, L N N

L 5 A ln(a) 2 a t 1 D ln(m) 2 m t (2.1)O Oi i
i51 i51

Change in log-likelihood as a function of the
arrival and mortality probability, ]L /]a and
]L /]m, respectively

Maximum-likelihood estimate of the arrival
and mortality probability, and ,a mMLE MLE

respectively

N N]L A ]L D
5 2 t 5 0 (2.2a) 5 2 t 5 0 (2.2b)O Oi i]a a ]m mi51 i51

A D
a 5 (2.3a) m 5 (2.3b)MLE MLEN N

t tO Oi i
i51 i51

Corresponding maximum log-likelihood LMAX

   A D         L 5 A ln 2 1 1 D ln 2 1 (2.4)MAX N N            t tO Oi i   i51 i51   

Change in log-likelihood relative to the maxi-
mum log-likelihood, L 2 which isL ,MAX

also the implicit equation to calculate the
approximate 95% confidence limits for the
arrival and mortality probability, respective-
ly, for a given sample size

a a
L 2 L 5 A ln 1 1 2 5 21.92 (2.5a)MAX 1 2[ ]a aMLE MLE

m m
L 2 L 5 D ln 1 1 2 5 21.92 (2.5b)MAX 1 2[ ]m mMLE MLE

TABLE 3. Mathematical equations for the random grid-walk model.

Measure Equation

Log-likelihood, L
A N

L 5 ln(ba ) 1 ln(s ) (3.1a)O Obt bti i
i51 i51

2 3L 5 a 1 b ln(b) 1 c ln (b) 1 d ln (b) (3.1b)

Change in log-likelihood as a function of the
logarithm of the grid-walk parameter,
dL /d ln(b)

dL
25 b 1 2c ln(b) 1 3d ln (b) 5 0 (3.2)

d ln(b)

Maximum-likelihood estimate of the number
of steps per unit of time, bMLE

222c 6 Ï4c 2 12bd
b 5 exp (3.3)MLE 1 26d

Corresponding maximum log-likelihood, LMAX
2 3L 5 a 1 b ln(b ) 1 c ln (b ) 1 d ln (b ) (3.4)MAX MLE MLE MLE

Change in log-likelihood relative to the maxi-
mum log-likelihood, L 2 which isL ,MAX

also the implicit equation to calculate the
approximate 95% confidence limits for the
grid-walk parameter for a given sample size

b b b
2 3L 2 L 5 b ln 1 c ln 1 d ln 5 21.92 (3.5)MAX 1 2 1 2 1 2b b bMLE MLE MLE

Notes: Only equations for parameter b, describing the number of steps an organism moves per unit of time, are presented
here. With respect to the mortality probability m, the grid-walk model is identical to the exponential model and the relevant
equations given in Table 2 can be applied.

persal. By the end of the study, there was 1 survivor,
8 birds were confirmed dead, and 10 had unknown
fates. The one survivor was observed breeding later on
and was thus confirmed to be a successful disperser.
The field data for these 19 birds, taken directly from
Ganey et al. are given in Table 4. The study of Ganey
is representative of the amount and type of data that
will usually confront a modeler of dispersing animals
(Ruckelshaus et al. 1999) and therefore serves as a
good example in our analysis of the inherent uncer-
tainty of spatially explicit population models.

Using these data we first calculated the parameters
of the three models using the maximum-likelihood ap-
proach and then determined confidence limits for these
parameters. Finally, we assessed what the confidence
limits would be if a larger sample were available, while
preserving the proportions of birds in each of Ganey
et al.’s (1998) categories. To estimate best-fitting pa-
rameters and their approximate confidence limits one
needs five equations for each model (Tables 1, 2, and
3). Each of these equations has a general interpretation
and this approach should apply to any data set and any
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TABLE 4. Dispersal dates and fates of 19 radio-tagged juvenile Mexican Spotted Owls in
Arizona (USA), 1994 and 1995 (modified after Ganey et al. [1998]).

Owl
number

Dispersal
date

Last date
known

dispersing

No. of days
dispersing,

ti Fate†

Mortality‡

Low High

628
659
469
918
508
676
748
728
809

09 Sep 1994
14 Sep 1994
14 Sep 1994
20 Sep 1994
20 Sep 1994
25 Sep 1994
26 Sep 1994
16 Oct 1994
18 Oct 1994

21 Oct 1994
03 Nov 1994
03 Jan 1995
20 Oct 1994
10 Nov 1994
13 Oct 1994
21 Oct 1994
28 Nov 1994
07 Nov 1994

42
50

111
30
51
18
25
43
20

P
S
RF
P
S
RF*
S
P
RF*

D
D
C
D
D
C
D
D
C

D
D
C
D
D
D
D
D
D

620
857
640
660
697
838
678
599
877
799

05 Sep 1995
12 Sep 1995
18 Sep 1995
20 Sep 1995
23 Sep 1995
28 Sep 1995
30 Sep 1995
06 Oct 1995
06 Oct 1995
09 Oct 1995

16 Jan 1996
26 Apr 1996
02 Oct 1995
10 Oct 1995
03 Oct 1995
05 Feb 1996
20 Nov 1995
10 Oct 1995
11 Oct 1995
16 Nov 1995

133
227

14
20
10

130
51

4
5

38

RF*
SL
SL
A
SL
P
SL
RF*
SL
P

C
C
C
A
C
D
C
C
C
D

D
C
C
A
C
D
C
D
C
D

† Codes of the fates according to the classification of Ganey et al. (1998): S 5 observed
death presumably due to starvation, P 5 observed death presumably due to predation, A 5
successful arrival in a new patch, SL 5 radio signal lost, and RF 5 radio failure. Radios that
were found in burrows, indicating a presumed death of this bird, are marked with an asterisk
(RF*).

‡ Codes for the low- and high-mortality scenario employed in this paper: D 5 death, A 5
arrived and, C 5 censored (fate unknown due to radio loss or failure).

model of this sort. This approach, therefore, allowed
us to generalize our conclusions beyond the current
data and the current models.

The first equation describes the log-likelihood of the
data, given the model and the parameters. From this
the (partial-)derivative of the log-likelihood for each
parameter is determined (second equation). To find the
parameters for which the likelihood of the data is max-
imized, given the data, these derivates are set to zero
and the equation is solved for each parameter (third
equation). Filling these optimized parameter values in
the general-likelihood equation results in an expression
for the maximum log-likelihood (fourth equation). Sub-
traction of the maximum log-likelihood equation from
the general log-likelihood equation results in an ex-
pression for the relative change in log-likelihood as a
function of the model parameters (fifth equation). By
setting the latter equation equal to 2 /2 5 21.922x0.05[1]

(Hilborn and Mangel 1997:164) an implicit equation
for the confidence limits of the model parameters is
obtained for the current data, or hypothetical larger data
sets. For the two simpler models these approximate
confidence limits, based on standard likelihood theory,
could be checked against exact analytical confidence
limits.

The event-based model

In the event-based model, we looked only at the final
fate of each of the 19 birds in the spotted owl data of
Ganey et al. (1998) that were observed to initiate dis-

persal. We discriminated among three fates: death (Ga-
ney et al. 1998, fates S and P), arrival (Ganey et al.
1998, fate A) and being censored due to radio loss or
failure (Ganey et al. 1998, fates RF and SL). For the
censored birds the biological fate (death or arrival) is,
of course, unknown and these birds, therefore, do not
contain biological information in terms of the event-
based model. To the numbers of birds with the two
fates, death (D) and arrival (A), a binomial model was
fitted. We modeled the probability of arrival with a
binomial probability r and thus the probability of death
as (1 2 r). The specifics of each of the five equations
for the event-based model are given Table 1. Exact
confidence limits for the binomial parameter r can be
calculated using the formulas given by Rosner (1995:
177).

The temporally explicit model

The simplest temporally explicit model of death and
arrival is an exponential model with a probability of
arriving, a, and a probability of dying, m, both of which
are constant over time. (This approach is closely related
to the widely used Kaplan-Meier test, but the Kaplan-
Meier test allows for the survival rate to change from
one time interval to the next; for details on the Kaplan-
Meier method see Pollock et al. [1989]). Obviously,
next to these independent competing risks of death and
arrival, the owls in the sample of Ganey et al. (1998)
face a third risk, g(t), representing the probability of a
bird being censored due to radio loss or failure at mo-



798 WOLF M. MOOIJ AND DONALD L. DEANGELIS Ecological Applications
Vol. 13, No. 3

ment t. It can be shown that the maximum-likelihood
estimation of a and m is independent of the shape of
function g(t). There is an intuitive explanation for this
independence. In a temporally explicit model each bird
contributes to the likelihood of the data, given the mod-
el, with two components. The first component accounts
for the probability of the specific event (dead, censored,
or arrived) that happened at time t and the second com-
ponent accounts for the probability that none of these
three events have happened until time t. To get the
overall log-likelihood of the data, the natural loga-
rithms of both probabilities per individual are summed
over all individuals. This results in a log-likelihood
equation that contains no cross-products between the
parameters describing the probability of dying, being
censored, or arriving, and the values of these param-
eters under which the likelihood is maximized are thus
independent.

The fact that the log-likelihood equation contains the
probabilities that nothing has happened until time t
implies that all 19 birds in the sample of Ganey et al.
(1998) contain useful information for parameterizing
the exponential model. For all N birds, including those
that were censored, we know that during the time in-
terval t between initiation of dispersal and the moment
they were lost due to death, arrival, radio loss, radio
failure, or signal loss, the birds did not arrive or die.
Next, we have A arrived birds and D dead birds. The
specifics of each of the five equations for the temporally
explicit model are given Table 2. Exact confidence lim-
its for the parameters a and m can be obtained by ap-
plying the formulas of Cox and Oakes (1984).

The spatially and temporally explicit model

We used a random grid-walk dispersal model with
patches of suitable habitat as a model that takes both
time and space into account. This type of model has
been used for many years to study arrival probabilities
of animals on a landscape (e.g., Kitching 1971). Ruck-
elshaus et al. (1997) used a model similar to Kitching’s
as a test case for the usefulness of spatially explicit
dispersal models. In the absence of information on the
actual landscape in which the field study took place we
used in this comparative study on uncertainty in dis-
persal models an artificial landscape of 120 3 120 grid
cells with randomly distributed 4 3 4 cell patches of
suitable habitat. We examined two levels of suitable
habitat, 1% and 2%. Patches were separated by at least
one cell of unsuitable habitat. In a conservation study
on the Mexican Spotted Owl, more realistic landscape
information would be a necessity, of course.

Organisms were started in a suitable patch and
moved randomly over the grid (in eight directions) until
they reached another patch of suitable habitat. During
this process they had a constant probability of dying,
as in the exponential model. As explained above (see
Temporally explicit model ), the maximum-likelihood
estimators of the parameters related to mortality are

independent of those related to the competing risk of
arrival. Therefore we could use the mortality param-
eters obtained for the exponential model directly for
the random grid-walk model.

A series of 1 000 000 repetitive simulations of dis-
persing organisms with the model resulted in a fre-
quency distribution, represented here as vector ns, of
the number of organisms that arrived after a given num-
ber of steps, s. From this distribution a vector repre-
senting the fraction of organisms that have initiated
dispersal but not yet arrived after a given number of
steps, vector ss, was obtained by setting s0 to 1 and
sequentially applying ss 5 ss21 2 ns /1 000 000. Entries
in ss represent the fraction of organisms that is still at
risk and are comparable to the quantity e2at in the ex-
ponential model. Finally, the probability of arriving,
given the number of steps an organism has moved so
far, vector as, was calculated as as 5 ln(ss21 / ss). Entries
in as are comparable with parameter a in the exponen-
tial model. But, whereas the probability of arrival in
the exponential model was a constant over time, the
probability of arrival in the random grid-walk model
varies with the number of steps already taken by the
animal, due to the specific spatial configuration of the
landscape. A description of ss and as would be sufficient
to calculate the likelihood of a given data set if we
knew the numbers of steps taken by the monitored dis-
persing organisms to reach patches. The field data,
however, are time based and not step based, so we need
a parameter, b, that describes the number of steps an
individual moves per unit of time. Moments in time
can be converted into numbers of steps with s 5 bt.

We are now in the position to calculate the log-like-
lihood of a given sample with A arrivals out of a total
of N tagged individuals. Details of the log-likelihood
equation and the other equations for the spatially and
temporally explicit model are given in Table 3. Note
the resemblance between Eqs. 2.1 and 3.1, keeping in
mind that abt and sbt in Eq. 3.1 represent quantities that
are comparable with a and e2at, respectively, in Eq.
2.1. The term abt in Eq. 3.1 needs to be multiplied by
b to convert it from per step to per unit of time. Since
sbt is dimensionless, no such conversion is necessary
here. Due to the fact that as and ss come from a sto-
chastic model and due to the rounding errors that are
introduced by using discrete step values instead of con-
tinuous time values, the change in log-likelihood as a
function of the number of steps per unit of time showed
a slightly noisy pattern, with multiple small local min-
ima around the best estimate of b. To eliminate this
noise, and to proceed from here with analytical tech-
niques, we fitted a third-order polynomial to the log-
likelihood profile as a function of ln(b). For the sake
of mathematical simplicity, the other four formulas
were expressed in terms of this approximation to the
log-likelihood profile of parameter b.
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TABLE 5. Maximum log-likelihoods, best-fitting parameters, and relative 95% confidence limits of the binomial, exponential,
and random grid-walk models.

Parameter†
Mortality
scenario

Maximum
log-

likelihood

Rel. 95% lower
confidence
limit (%) Best fit

Rel. 95% upper
confidence
limit (%)

Calculation
method

Success-related parameters
Binomial r
Binomial r
Binomial r
Binomial r

low
low
high
high

23.1391.4

23.1391.4

23.5251.4

23.5251.4

6.01.5a

2.5Ros

5.91.5a

2.5Ros

0.1111.3

0.1111.3

0.07691.3

0.07691.3

3651.5a

434Ros

3861.5a

468Ros

approx.
exact
approx.
exact

Arrival-related parameters
Exponential a
Exponential a
Grid-walk b (1%)
Grid-walk b (2%)

···
···
···
···

27.9302.4A

27.9302.4A

27.7323.4

27.7673.4

5.72.5a

2.6Cox

10.43.5

11.63.5

0.0009792.3a

0.0009792.3a

1.3173.3

0.6713.3

4402.5a

369Cox

5353.5

4603.5

approx.
exact
approx.
approx.

Mortality-related parameters
Exponential m
Exponential m
Exponential m
Exponential m

low
low
high
high

246.802.4D

246.802.4D

265.342.4D

265.342.4D

45.72.5b

43.2Cox

53.52.5b

51.7Cox

0.007832.3b

0.007832.3b

0.01172.3b

0.01172.3b

1862.5b

180Cox

1682.5b

164Cox

approx.
exact
approx.
exact

Notes: The superscripts on the data entries refer to the equations used to derive the quantity (see Tables 1–3 for the
equations); Ros 5 Rosner (1995), Cox 5 Cox and Oakes (1984). Note that the arrival (A)-related and the mortality (D)-
related parts of Eq. 2.4 are used separately.

† Parameters: r 5 probability of arrival; a 5 probability of arrival; b 5 parameter related to the number of steps an
individual moves per unit of time; m 5 probability of dying.

FIG. 1. Log-likelihood profiles for the parameters r (prob-
ability of arrival) (low mortality) of the binomial; a (prob-
ability of arrival) and m (probability of dying) (low mortality)
of the exponential; and b (2% suitable habitat) of the random
grid-walk model (Eqs. 1.5, 2.5a/b, 3.5, respectively). Log-
likelihoods are scaled by subtracting the maximum log-like-
lihood from the likelihood for a given parameter value. Pa-
rameters are expressed as percentages, relative to the best-
fitting parameter (5100%). All graphs therefore necessarily
have their maximum at the point (100%, 0). Approximate
confidence limits for the data of Ganey et al. (1998) for the
Mexican Spotted Owl were obtained by calculating the values
of the parameters for which the log-likelihood was 1.92 worse
than the maximum likelihood.

RESULTS

To compare our three models, we applied each model
to the same data set, following the same scenarios used
by Ganey et al. (1998): one low-mortality scenario (D
5 8) that censored all data from the 10 owls with un-
known fates and another high-mortality scenario (D 5

12) that assumed four of the birds with unknown fate
to be actually dead, because the radio transmitters were
found in burrows (Ganey et al. 1998:213). For details
see Table 4.

The event-based model

An overview of all the results for the relevant pa-
rameters for the three models is given in Table 5. To
make the confidence limits comparable among models,
they were expressed as a percentage of the best fitting
parameter and referred to as ‘‘relative confidence lim-
its.’’ Obviously, under the low-mortality scenario the
best fitting binomial parameter rMLE equals 0.111 and
under the high-mortality scenario rMLE 5 0.0769. Under
the low-mortality scenario the approximate relative
lower and upper 95% confidence limits are 6.0% and
365%, respectively (Fig. 1). Relative confidence limits
under the high-mortality scenario are very comparable,
5.9% and 386%, respectively. In Fig. 1 these values
correspond to the projections on the x-axis of the in-
tersections of the horizontal line at 21.92 and the log-
likelihood profile of the event-based model (marked
with r). In Table 5 also the exact relative confidence
limits that result from Rosner’s (1995) formula are giv-
en. These are somewhat wider than those derived by
the likelihood approximation. Under both methods, and
for both mortality scenarios, the relative lower limits,
being 20–40 times smaller than the best-fitting values,
are wide. Relative upper limits, being 3.7–4.7 times
larger than the best-fitting values, are also wide, but
much narrower than then the lower limits.

In addition to this analysis we also examined the
development of the relative confidence limits for sam-
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FIG. 2. Relative confidence limits for the parameters rMLE

(low mortality) of the binomial model, aMLE and mMLE (low
mortality) of the exponential model, and bMLE (2% suitable
habitat) of the random grid-walk model as a function of sam-
ple size n. Parameters are expressed as percentages, relative
to the best-fitting parameter (5100%). Sample sizes, n, are
expressed relative to the size of the data set of Ganey et al.
(1998) for the Mexican Spotted Owl. The lines are based on
approximate confidence limits obtained by calculating the
parameter values for which the log-likelihood is 1.92/n worse
than the maximum log-likelihood.

FIG. 3. Probability of arriving after a given number of
steps, as, for the 1% and 2% suitable-habitat scenario in the
random grid-walk model. This quantity is comparable with
parameter a of the exponential model. These probabilities
were obtained for each scenario by simulating 1 000 000 dis-
persing individuals until they arrived in a patch.

ple sizes of up to 10 times the amount of data collected
by Ganey et al. (1998). For this purpose we defined a
variable n that we used as a multiplier to the numbers
of owls that were dead (D), censored (C ) or had arrived
(A) in the data of Ganey et al. Thus, for the original
data n 5 1, A 5 1, and D 5 8 (low mortality) or 12
(high mortality), while for a sample size of 10 times
the amount collected by Ganey et al. n 5 10, A 5 10,
and D 5 80 or 120.

The results (Fig. 2) show that there is a rapid gain
in confidence if a second successful owl (n 5 2) had
been observed: the lower limit increases from 2.5% to
12.4% of the best-fitting value, while the upper limit
decreases from 4.3 times larger to 3.1 times larger than
the best-fitting value. Sample sizes of three (n 5 3) to
four times (n 5 4) the data of Ganey et al. (1998) result
in a further narrowing of the confidence limits, but this
process rapidly slows down above these sample sizes
and, with respect to confidence limits, there seems little
use in sampling more than 60–80 owls, assuming that
this will result in 3–4 successful owls.

The temporally explicit model

Again, we fitted the two parameters, the arrival prob-
ability a and the mortality probability m, of the tem-
porally explicit model to the owl data of Ganey et al.
(1998) for the low- and the high-mortality scenarios.
In both scenarios the best-fitting value for aMLE 5
0.000979. The best fitting values for mMLE 5 0.00783
and 0.0117, respectively, for the low- and high-mor-
tality scenarios. The approximate relative lower and
upper 95% confidence limits of the arrival probability
aMLE are 5.7% and 364% of the best-fitting value, re-

spectively. Note that these relative confidence limits
are close to those that were obtained for the binomial
parameter rMLE. Exact confidence limits of parameters
calculated with the formulas of Cox and Oakes (1984)
are somewhat wider (Table 5). The approximate rela-
tive 95% confidence limits of the mortality probability
mMLE under the lower mortality scenario are 45.7% and
186% and under the high-mortality scenario 53.5% and
168%. These approximate limits are close to the exact
limits (Table 5). For both mortality scenarios the rel-
ative confidence around the mortality probability m are
much narrower than that around the arrival probability
aMLE. This makes sense, as the data of Ganey et al.
(1998) contain only one observation of a successful
arrival but 8–12 observations of death.

Analysis of the development of the relative confi-
dence limits of the temporally explicit model for larger
samples sizes (Fig. 2) shows that for the arrival prob-
ability, aMLE, the decrease of the confidence interval
closely follows the results obtained for the binomial
parameter rMLE. Thus, with the exponential model we
have to conclude that from the point of view of the
confidence limits again there seems little use in sam-
pling more than 60–80 owls, assuming that about 3–4
owls will be successful. The development of the rel-
ative confidence limits around the mortality probability
is of less interest because these limits are already in a
narrower range.

The spatially and temporally explicit model

The random grid-walk model resulted in a proba-
bility of arriving after a given number of steps, as, for
both the 1% and the 2% suitable habitat map (Fig. 3).
Using this distribution, we derived for each habitat sce-
nario the likelihood of Ganey et al.’s (1998) data (Fig. 4)
with respect to arrival-related parameter b of the random-
grid walk model. The fit of the third-order polynomial
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FIG. 4. Log-likelihood profile for the natural logarithm
of parameter b of the random grid-walk model for the 1%
and 2% suitable-habitat scenario (solid lines; Eq. 3.1a).
Third-order polynomial trend lines that were fitted to the
original log-likelihood profile are also shown (dashed
lines; Eq. 3.1b).

TABLE 6. Best-fitting parameters and relative 95% confidence limits of overall dispersal suc-
cess as calculated with the binomial, exponential, and random grid-walk models (with 1%
or 2% suitable habitat).

Model Parameter†

Rel. 95% lower
confidence
limit (%) Best fit

Rel. 95% upper
confidence
limit (%)

Low-mortality scenario
Binomial
Exponential
Grid-walk (1%)
Grid-walk (2%)

rBIN

rEXP

rGRID

rGRID

6.0
4.0
6.7
5.7

0.111
0.111
0.100
0.112

365
444
518
420

High-mortality scenario
Binomial
Exponential
Grid-walk (1%)
Grid-walk (2%)

rBIN

rEXP

rGRID

rGRID

5.9
4.1
6.1
5.0

0.0769
0.0769
0.0716
0.0785

386
477
525
448

† Dispersal success for each of the models is referred to as r with the appropriate subscript.

approximation to this log-likelihood profile was excellent,
with R2 5 99.5 (L 5 20.078ln3(b) 2 0.487ln2(b) 1
0.286ln(b) 2 7.771) for the 1% suitable habitat sce-
nario and R2 5 99.8 (L 5 20.112ln3(b) 2 0.790ln2(b)
2 0.577ln(b) 2 7.879) for the 2% suitable habitat sce-
nario (Fig. 4). Best-fitting values for the number of
steps per unit of time, bMLE, derived from the poly-
nomial approximation to the log-likelihood profile were
1.3165 and 0.6708 for the 1% and 2% suitable habitat,
respectively. As explained earlier, the mortality param-
eters of the spatially explicit dispersal model could be
taken directly from the analysis with the exponential
model: mMLE 5 0.00783 (low mortality) and mMLE 5
0.0117 (high mortality).

For the 1% suitable habitat map, the approximate
relative 95% confidence limits of parameter bMLE were
10.4% and 535% of the best-fitting values. For the 2%
suitable habitat map these values were 11.6% and
460%. The relative upper limits were thus of the same
order as those that were obtained for the binomial prob-

ability rMLE of the event-based model and the constant
probability of arrival aMLE of the temporally explicit
model. The lower limits of the spatially and temporally
explicit model were narrower than those obtained for
the two simpler models, however. The reason for this
difference can be found in the shape of the curves
describing the probability of arriving in a given step
(Fig. 3). For the earliest steps these probabilities are
low, thus making small values of b unlikely. Thus, the
structure of the spatially explicit model has a positive
effect on the certainty with which we can estimate its
parameters.

The development of the approximate relative con-
fidence limits of bMLE with increasing sample size fol-
lows the same decrease as was observed for the bi-
nomial probability rMLE of the event-based model and
the probability of arrival aMLE of the temporally explicit
model (Fig. 2). For the lower limit, the initial confi-
dence limit at n 5 1 was narrower than those obtained
for rMLE and aMLE and this difference remained intact
for larger values of n. Also for bMLE we concluded that
the level of confidence decreases only slowly for values
of n greater than n 5 4 or 5.

Comparing overall dispersal success

So far we reported on the best-fitting values and
confidence limits of each of the model parameters (r,
a, m, b) separately. The aim of all models, however,
is to predict dispersal success, and one would therefore
like to compare the models with respect to the uncer-
tainty in this ecologically relevant parameter. To dis-
tinguish among the models in this comparison we will
refer to dispersal success resulting from the binomial,
exponential, and random-grid walk model as rBIN, rEXP

and rGRID, respectively (Table 6). Best-fitting values and
confidence limits rBIN have already been reported for
both mortality scenarios. The best-fitting values of dis-
persal success for the exponential model necessarily
match those of the event-based model since rEXP,MLE 5
aMLE/(aMLE 1 mMLE) 5 A/(A 1 D) 5 rBIN,MLE. A first
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approximation to the upper confidence limits of rEXP,MLE

was obtained by combining the upper limit of the ar-
rival probability with the lower limit of the mortality
probability, rEXP,upp 5 aupp/(aupp 1 mlow), and vice versa
for the lower limit, rEXP,low 5 alow/(alow 1 mupp). The
relative log-likelihood (Eq. 2.5a/b) associated with
these values of rEXP,upp and rEXP,low, however, would of
course be 2 3 21.92 5 23.84. This violates the prin-
ciple that the drop in likelihood due to two parameters
should not exceed 2 /2 5 23.00 (Hilborn and2x0.05[2]

Mangel 1997:173). The intuitive argument here is that
it is unlikely that both parameters are at the edge of
their uncertainty range at the same time. We therefore
have an extra constraint on the uncertainty in rEXP, in
addition to the independent (see Methods, above, for
the temporally explicit model) single-parameter con-
straints on the uncertainty in a and m. We checked for
the minimum and maximum value rEXP could take with-
in these constraints (Table 6). This analysis shows that
the approximate relative 95% confidence limits of pa-
rameter rEXP,MLE are slightly wider than those of rBIN,MLE.
Also, for the random grid-walk model we checked for
the minimum and maximum value rGRID within these
constraints discussed above. Approximate relative up-
per 95% confidence limits were again slightly larger
than those obtained for the binomial model. Lower 95%
confidence limits were close to or even smaller than
those obtained for the binomial model. These results
show that there mostly is a slight increase in uncertainty
in dispersal success when moving from a one-param-
eter to a two-parameter model, but that this need not
always be the case.

DISCUSSION

We set out in this study to disentangle the effects of
model type on the confidence we should have in dis-
persal parameters estimated from data on dispersing
animals. We did so by fitting three models: an event-
based binomial model, a temporally explicit exponen-
tial model, and a spatially and temporally explicit ran-
dom grid-walk model. To link the spatial dynamics with
the temporal dynamics we introduced a parameter b
representing the number of spatial units an organism
moves per unit of time. We used two mortality sce-
narios (low and high) and, in the case of the spatially
explicit model, two landscape descriptions (1% and 2%
suitable habitat). By using the common statistical ap-
proach of maximizing the likelihood of the data given
the model (sensu Hilborn and Mangel 1997), we cal-
culated best-fitting values for each of these parameters
(Table 5). Using the same approach, we derived ap-
proximate confidence limits around these best-fitting
values (Table 5). Finally, the likelihood approach al-
lowed for a simple extrapolation of these approximate
confidence limits, if larger sample sizes were available
(Fig. 2).

As a concrete example, we used the Mexican spotted
owl data of Ganey et al. (1998) on 19 radio-tagged

dispersing birds. We found a large discrepancy between
the Mexican spotted owl parameters and their confi-
dence limits, derived here, and those that were origi-
nally derived by Ganey et al. (1998). Ganey et al.’s
survival rates were always higher, going up to 55%, as
opposed to a highest value of 11% successful dispersers
found in our present study. Confidence limits given by
Ganey et al. were always wider than the ones that are
given here. These contradictions are only superficial,
however. To check this for ourselves, we repeated the
Kaplan-Meyer analysis that Ganey et al. performed on
their data and were able to reproduce their results. This
exercise clarified what the underlying differences are
between the two analyses. The survival rates that Ga-
ney et al. reported relate to the survival during the
dispersal process, but not to the probability that a dis-
perser successfully makes it to a new patch. In the
Kaplan-Meyer survival analysis, this one successful
bird was simply treated as a bird that did not die, not
as a bird that did arrive. In fact, arrival probability was
not dealt with at all in the analysis of Ganey et al. With
respect to the uncertainty in survival, the wider limits
that resulted from the Kaplan-Meyer analysis can be
understood if one realizes that in fact the Kaplan-Meyer
procedure is a relatively parameter-rich model, because
it estimates for each time interval an independent sur-
vival rate. This results in a very flexible model with
respect to the pattern of survival, but at the cost of a
higher uncertainty in the overall survival. In the anal-
ysis presented here we chose to estimate only one con-
stant mortality rate for the whole period of two years.
This procedure resulted in a higher accuracy of our
estimate of long-term survival at the cost of a lack of
information on small-scale temporal variation in sur-
vival.

The most striking result of our analysis is the sim-
ilarity in uncertainty of parameters rMLE (the maximum-
likelihood estimate of the binomial-model probability
of success), aMLE (the exponential-model probability of
arrival), and bMLE (the number of steps per unit of time
in the random grid-walk model) (Fig. 1). This similarity
remains if larger sample sizes than those collected by
Ganey et al. (1998) had been available (Fig. 2). If we
take a close look, it is actually the most complex model
that has the narrowest confidence interval around its
parameters (Fig. 1). We believe that both phenomena
have a general meaning, beyond the specific data and
the specific series of models that are used in our anal-
ysis. To understand the similarity in uncertainty it is
important to realize that the three models are in fact a
series of nested models. The simplest of the three, the
binomial model is essentially equal to the exponential
model but describes the dispersal process in a more
lumped fashion with rMLE 5 aMLE / (aMLE 1 mMLE). The
exponential model is, in turn, a specific case of the
more complex random grid-walk model. To mimic the
exponential model with the random grid-walk model
we would have to perform a random grid-walk on a
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landscape with no patches and an equal probability of
arrival a per cell. So, in the transition from the binomial
to the exponential model we introduce the concept of
mortality and arrival being two separate processes un-
derlying successful dispersal. In the transition from the
exponential to the random grid-walk model we intro-
duce the concept of the landscape being patchy. Both
concepts are essential to our thinking of the actual sys-
tem under study and they can be seen as qualitative
sources of knowledge that were brought into the model,
next to the actual dispersal data.

The effect of introducing the concept of patchiness
was that fast arrivals were unlikely (Fig. 3). This in
turn led to narrower relative lower confidence limits
for the random grid-walk model, as opposed to the
other two models. Very low values of parameter bMLE,
representing the speed at which an organism moves
through the landscape, are unlikely because such slow
organisms would get stuck between patches and never
arrive, whereas the data show that some do arrive. This
makes perfect sense. Thus, the qualitative knowledge
of the system, in this case patchiness, which could be
accommodated by the more complex model, had a pos-
itive effect on the confidence interval for the critical
parameter, in this case b.

This improvement is also reflected in the somewhat
higher maximum likelihood for the arrival-related pa-
rameter of the random-grid walk model, when com-
pared to that component of the exponential model (Ta-
ble 5). From an information-theoretic point of view
(Akaike 1992), the random-walk model should thus be
preferred over the exponential model, given the fact
that the number of parameters that was estimated on
the basis of the field data was equal. But the difference
is only small and, given the simplicity of implementing
and analyzing the exponential model, we suggest using
both models concurrently. The performance of the bi-
nomial model cannot be compared with that of the other
two models by means of an information criterion since
it employs the data in a different way: the binomial
model only uses the number of arrived and dead birds,
whereas the exponential and the random grid-walk
model both also take into account the time at which
these events took place.

When looking at the overall dispersal success, as
predicted by the three models (Table 6), we saw that
there was some increase in uncertainty when we moved
from the single-parameter binomial model to the two-
parameter exponential model. For the lower confidence
limits of the two-parameter grid-walk model, however,
this increase in uncertainty was compensated by the
better fit of the grid-walk model to the data. This re-
sulted in lower confidence limits for overall dispersal
success resulting from the two-parameter grid-walk
model that were only slightly worse (2% suitable hab-
itat) or even better (1% suitable habitat) than those of
the single-parameter binomial model. Compared with
the two-parameter exponential model the more com-

plex two-parameter random grid-walk model did better
for all lower limits and for the upper limits of the 2%
suitable-habitat scenario.

We think that there is an important general lesson to
be learned here. The more basic biological detail we
introduce into the model a priori (thus not based on
the data that are going to be used in the process of
parameter estimation), the likelier the data will be, giv-
en the model, and thus the narrower the confidence
intervals will be around the model parameters, as long
as the number of parameters that is estimated by max-
imizing the likelihood of the data, given the model, does
not increase (or increases only slightly) with model
complexity. The fact that the number of calibrated pa-
rameters does not necessarily increase with model com-
plexity seems counterintuitive. Mostly people would
associate complex models with models that have many
free parameters. If this were necessarily true, the
amount of available data would indeed set a limit to
model complexity, because it is a basic statistical rule
that the number of estimated parameters should be (far)
less than the number of data points. However, if certain
concepts can be brought in a priori, (such as levels of
patchiness of a landscape or body-size relationships in
the biology of an organism), the number of free pa-
rameters in these more complex models that are to be
estimated from the actual data by means of statistical
techniques can still be limited to a few rate or scaling
parameters. The random grid-walk model exemplifies
this. For this relatively complex model only two rate
parameters were estimated from the field data, one re-
lated to exploration of the habitat and one related to
mortality.

The strategy proposed here of structuring the model
on the basis of the available basic biological infor-
mation on the organisms and the landscape in which
these organisms live, and using the available field data
only to estimate a few rate or scale parameters, has
another main advantage, beyond being a way to effi-
ciently extract information from these potentially
scarce data. This strategy also reduces the potential for
error propagation to occur. That errors in the underlying
parameters are not magnified by spatially explicit mod-
els has already been shown (Mooij and DeAngelis
1999). But even without such a magnification, error
propagation could still be a serious problem. In the
ideal situation one would have perfect knowledge of
every component of the system—in which case a model
composed of such components would necessarily pro-
duce accurate predictions. However, unlike some phys-
ical systems for which this is possible, this is an un-
reachable goal in ecology. In ecological models we
have reasonable to good knowledge for some compo-
nents but for others we have poor to very poor knowl-
edge. The errors in each of these components may prop-
agate in a model that is built of such components and
the predictions made with such a model would there-
fore necessarily become unreliable.
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In the case of Ganey et al.’s (1998) owl data we had
no knowledge of the actual landscape these owls lived
in, except that it was patchy (of course we could have
contacted Ganey et al. to obtain such data, but pro-
ducing a realistic owl model is not the purpose of this
paper). Based on this limited knowledge we created
two patchy-landscape maps, one with 1% and one with
2% suitable habitat. Now assume that the 1% map
comes closer to the real owl landscape than the 2%
map. In that case, the estimate of bMLE 5 1.317 that
was obtained for the 1% map comes closer to the real
value than the bMLE 5 0.671 that was obtained for the
2% map. In a study that aims at estimating a specific
process rate, in this case bMLE, a good description of
the landscape is essential to get an unbiased estimate
of bMLE. But in a study that aims to predict the overall
number of successful dispersing owls, the bias in one
component would do less harm, as long as it is coun-
teracted by a bias in another component. The combi-
nation of 2% suitable habitat with bMLE 5 1.317 or 1%
suitable habitat with bMLE 5 0.671 both result in the
same average dispersal success (Table 6). The same
reasoning would apply if, in addition to the different
landscape maps, we had checked for different move-
ment strategies (Turchin 1998), in addition to the ran-
dom-grid walk. This process of counterbalancing the
inevitable biases in some components (e.g., landscape
maps, movement rules) with deliberate biases in other
components is guaranteed by directly estimating a few
rate or scale parameters from data at the level of in-
terest, in this case the number of successful dispersers.
The need for counterbalancing biases by means of es-
timating some rate or scale parameters from data at the
level of interest will hold for both the simpler models,
which are necessarily biased because they average out
detail in landscape structure or movement patterns, and
for the more detailed models, which could be biased
due to a wrong classification of the landscape elements
in the model or to wrong movement rules.

Our results indicate that spatially explicit population
models that include relevant landscape details may, in
fact, be preferable over simpler models that ignore ba-
sic information on the system at hand, even in cases
where specific field data are scarce, as in the case of
the Mexican Spotted Owl. Judicious employment of
landscape details, movement strategies, and the avail-
able field data on dispersal enables spatially explicit
population models to serve as important and reliable
tools in conservation studies.

ACKNOWLEDGMENTS

We thank Margaret Hurley and Henriet Nienhuis for sta-
tistical advice and Michael McCarthy, Bart Nolet, Peter
Schippers, Matthijs Vos and an anonymous reviewer for valu-
able comments on earlier versions of this manuscript. This
study was supported by the co-operative effort of the United-
States Geological Survey, Biological Resources Division and
the Netherlands Institute of Ecology, Centre for Limnology.
DLD was supported in significant part by funding from the
Critical Ecosystems Studies Initiative of the U.S. Department

of Interior and in part by the USGS’s Florida Caribbean Sci-
ence Center. This is publication 3071 of the NIOO-KNAW
Netherlands Institute of Ecology, Centre for Limnology.

LITERATURE CITED

Akaike, H. 1992. Information theory and an extension of the
maximum likelihood principle. Pages 610–624 in S. Kotz
and N. Johnson, editors. Breakthroughs in statistics 1.
Springer Verlag, New York, New York, USA.

Bart, J. 1995. Acceptance criteria for using individual-based
models to make management decisions. Ecological Appli-
cations 5:411–420.

Cox, D. R., and D. Oakes. 1984. Analysis of survival data.
Chapman and Hall, New York, New York, USA.

Doak, D. F., and L. S. Mills. 1994. A useful role for theory
in conservation. Ecology 75:615–626.

Franklin, A. B., D. R. Anderson, R. J. Gutiérrez, and K. P.
Burnham. 2000. Climate, habitat quality, and fitness in
northern spotted owl populations in northwestern Califor-
nia. Ecological Monographs 70:539–590.

Ganey, J. L., W. M. Block, J. K. Dwyer, B. E. Strohmeyer,
and J. S. Jenness. 1998. Dispersal movements and survival
rates of juvenile Mexican spotted owls in Northern Arizona.
Wilson Bulletin 110:206–217.

Grimm, V., K. Frank, F. Jeltsch, R. Brandl, J. Uchmanski,
and C. Wissel. 1996. Pattern-oriented modelling in pop-
ulation ecology. Science of the Total Environment 183:
151–166.

Hanksi, I. 1999. Metapopulation ecology. Oxford University
Press, Oxford, UK.

Hanski, I., J. Alho, and A. Moilanen. 2000. Estimating the
parameters of survival and migration of individuals in
metapopulations. Ecology 81:239–251.

Hilborn, R., and M. Mangel. 1997. The ecological detective:
confronting models with data. Princeton University Press,
Princeton, New Jersey, USA.

Kitching, R. L. 1971. A simple simulation model of dispersal
of animals among units of habitats. Oecologia 7:95–116.

Lindenmayer, D. B., M. A. McCarthy, and M. L. Pope. 1999.
Arboreal marsupial incidence in eucalypt patches in south-
eastern Australia: a test of Hanski’s incidence function
metapopulation model for patch occupancy. Oikos 84:99–
109.

McCarthy, M. A., D. B. Lindenmayer, and H. P. Possingham.
2000. Testing spatial PVA models of Australian treecree-
pers (Aves: Climacteridae) in fragmented forest. Ecological
Applications 10:1722–1731.

McKelvey, K., B. R. Noon, and R. H. Lamberson. 1993.
Conservation planning for species occupying fragemented
landscapes. The case of the Northern Spotted Owl. Pages
424–450 in P. M. Kareiva, J. G. Kingsolver, and R. B. Huey,
editors. Biotic interactions and global change. Sinauer As-
sociates, Sunderland, Massachusetts, USA.

Mooij, W. M., and D. L. DeAngelis. 1999. Error propagation
in spattially explicit population models: a reassessment.
Conservation Biology 13:903–933.

Pollock, K. H., S. R. Winterstein, C. M. Bunck, and P. D.
Curtis. 1989. Survival analysis in telemetry studies: the
staggered entry design. Journal of Wildlife Management
53:7–15.

Pulliam, H. R., J. Dunning, and J. Liu. 1992. Population
dynamics in complex landscapes: a case study. Ecological
Applications 2:165–177.

Rosner, B. 1995. Fundamentals of biostatistics. Fourth edi-
tion. Daxbury Press, Belmont, Massachusetts, USA.

Ruckelshaus, M., C. Hartway, and P. Kareiva. 1997. As-
sessing the data requirements of spattially explicit dispersal
models. Conservation Biology 11:1298–1306.

Ruckelshaus, M., C. Hartway, and P. Kareiva. 1999. Dispersal
and landscape errors in spattially explicit population mod-
els: a reply. Conservation Biology 13:1223–1224.



June 2003 805UNCERTAINTY IN ANIMAL DISPERSAL MODELS

South, A. 1999. Dispersal in spatially explicit models. Con-
servation Biology 13:1039–1046.

Thulke, H.-H., V. Grimm, M. S. Müller, C. Staubach, L. Tis-
chendorf, C. Wissel, and F. Jeltsch. 1999. From pattern to
practice: a scaling-down strategy for spatially explicit mod-
elling illustrated by the spread and control of rabies. Eco-
logical Modelling 117:179–202.

Turchin, P. 1998. Quantitative analysis of movement. Mea-
suring and modeling population redistribution in animals
and plants. Sinauer Associates, Sunderland, Massachusetts,
USA.

Turner, M. G., G. J. Arthaud, R. T. Engstrom, S. J. Hejl, J.
Liu, S. Loeb, and K. McKelvey. 1995. Usefulness of spa-
tially explicit population models in land management. Eco-
logical Applications 5:12–16.

Turner, M. G., Y. G. Wu, W. H. Romme, and L. L. Wallace.
1993. A landscape simulation model of winter foraging by
large ungulates. Ecological Modelling 69:163–184.

Vos, C. C., J. Verboom, P. F. M. Opdam, and C. J. F. Ter
Braak. 2001. Toward ecologically scaled landscape indi-
ces. American Naturalist 183:24–41.


