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Abstract

Proteomics is an expanding area of research into biological systems with significance for biomedical and therapeutic
applications ranging from understanding the molecular basis of diseases to testing new treatments, studying the
toxicity of drugs, or biotechnological improvements in agriculture. Progress in proteomic technologies and growing
interest has resulted in rapid accumulation of proteomic data, and consequently, a great number of tools have
become available. In this paper, we review the well-known and ready-to-use tools for classification, clustering and
validation, interpretation, and generation of biological information from experimental data. We suggest some rules of
thumb for the reader on choosing the best suitable learning method for a particular dataset and conclude with
pathway and functional analysis and then provide information about submitting final results to a repository.

Keywords: Proteomics, Machine learning, Random forests, PLS, PCA, SVM, Proteomics repository

Introduction
Proteomics, the assessment and quantitation of protein
expression changes in a given type of biological sample,
contributes heavily to current views in modern biology,
genetics, biochemistry, and environmental sciences. Ex-
pression proteomics studies investigate the presence or
absence patterns of proteins in disease compared to nor-
mal using a mass spectrometry approach often preceded
by gel separation methods. Proteomics is a science that
focuses on the study of proteins: their roles, their struc-
tures, their localization, their interactions, and other fac-
tors. Proteomics has emerged as a powerful tool in many
different fields and is a technique widely used across
biology, mainly applied in disease [1–3], agriculture, and
food microbiology. Proteomics is becoming increasingly
important for the study of many different aspects of
plant functions. For example, it is used to help identify
candidate proteins involved in the defensive response of
plants to herbivorous insects [4, 5]. In agriculture, a
proteomic approach was used to investigate population
growth and the effect of global climate changes on crop
production [6]. In food technology, proteomics is uti-
lized for characterization and standardization of raw

materials, process development, and detection of batch-
to-batch variations and quality control of the final prod-
uct, in particular to food safety in terms of microbial
content and the use of genetically modified foods [7].
The study of interactions between microbial pathogens
and their hosts is called “infectomics” and comprises a
growing area of interest in proteomics [8].
A protein may exist in multiple forms within a cell or

cell type. These protein isoforms derive from transcrip-
tional, post-transcriptional, translational, post-translational,
regulatory, and degrading and preserving processes that
affect protein structure, localization, function, and turn-
over. The field has thus evolved to include a variety of
methods for separation of complex protein samples
followed by identification using mass spectrometry. It is
inherently a systems science that considers not only pro-
tein abundances in a cell but also the interplay of proteins,
protein complexes, signaling pathways, and networks. To
address the relevant challenges, we categorize the analyt-
ical tools into three types: (1) basic traditional statistical
analysis, (2) machine learning approaches, and (3) assign-
ment of functional and biological information to describe
and understand protein interaction networks.
Traditional statistics is used as a critical first pass to

identify the “low-hanging fruit” in the dataset. Methods
such as t test and its nonparametric equivalent, the
Wilcoxon test, univariate, or analysis of variance (ANOVA)
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are applied to identify the significant proteins. Due to in-
herent variability, statistics alone is often insufficient to
discover most of the biologically relevant information in a
proteomic dataset but is an important first step of every
analysis. For the purposes of this review, we focus mainly
on approaches that are more specific to proteomic and
other “omic” data. But statistically significant results are
very useful as seed data or bait in the machine learning
approaches.
Machine learning classification complements trad-

itional statistics as it allows for consideration of many
variables at once and also removes much of the re-
searcher bias. Dataset complexity is reduced as correla-
tions, and trends are identified that may not withstand
statistical scrutiny or may be undetectable using trad-
itional statistics, e.g., clustering using iterative subsamp-
ling. Machine learning also bypasses researcher bias by
revealing patterns within the data that may not relate to
the original hypothesis or that relate in an unanticipated
manner. The researcher is then able to examine the clus-
tering or classification results for new biological features
that were not initially predicted. Thus, in addition to be-
ing potentially inconsistent with the hypotheses of any
particular researcher, machine learning and network
tools enable hypothesis generation as they uncover the
real biology of the system in question. Swan et al. [9]
discussed the benefit of machine learning methods for
application to proteomic data and show that machine
learning methods give an overall view of data and also
offer a large potential for identifying relevant informa-
tion within data.
Pathway analysis following statistical analysis and classi-

fication and clustering can help organize a long list of pro-
teins onto a short list of pathway knowledge maps, easing
interpretation of the molecular mechanisms underlying al-
tered proteins or their expressions [10].
Here we primarily review tools for machine learning

and clustering of omic data. The machine learning sec-
tion of this review will introduce the concept of super-
vised and unsupervised classification for seven types of
machine learners: principal component analysis (PCA),
independent component analysis (ICA), K-means, hier-
archical clustering, partial least square (PLS), random
forests (RF), and support vector machines (SVM). These
methods are also summarized and compared in Table 1,
which provides an overview of different machine learn-
ing and clustering tools and how to select a method
most likely to be effective for a specific dataset. We in-
clude a brief discussion of experimental design and fea-
ture selection, i.e., the selection of significant attributes
for reduction of datasets, with the aim to increase the
accuracy of classification models that are applied to the
selected features. The machine learning and clustering
section is followed by a brief summary of tools for

analysis of longitudinal (time series) data. Next, we dis-
cuss tools that can achieve automated learning of path-
way modules and features and those that help perform
integrated network visual analytics. Finally, we provide
information for public repository of proteomics data.

Experimental design
Although the purpose of this review is to discuss tools that
are useful for data analysis after completion of a prote-
omic experiment, we want to recognize the essential na-
ture of thoughtful upfront experimental design. Sample
groups should be as large and reproducible as possible,
representing a consistent proteomic phenotype in the har-
vested sample for a particular sample group. Even when
the researcher is not establishing a study in a prospective
manner, samples and sample groups should be chosen to
reflect this insofar as is possible for the researcher. For ex-
ample, if the experimental purpose is to find changes in
the mouse hypothalamus with respect to circadian
rhythm, the surgeries should—ideally—be performed by
the same researcher at precise times of the day until a
minimum of five or six samples, preferably more, are col-
lected for every treatment group in question. The power
of the experiment increases with each additional sample.
Treatment groups should ideally be similar in size. Con-
sistent collection, storage, and sample handling during the
experiment will greatly increase chances of high-quality
omic data. Furthermore, reduction of a sample to fewer or
a specific cell type will increase the quality of proteomic
or RNA data. Gene expression is a cell-type-specific
phenomenon so that, in order to increase the signal-to-
noise ratio for a gene expression study, the experimental
design should consider tissue and sample complexity. A
protein extract from liver, for example, primarily com-
prises hepatocyte proteins, whereas the brain contains
cells that express hugely variable mRNA and protein sig-
natures. We encourage the researcher to plan carefully re-
garding experimental design, as this investment will yield
greatly improved resulting data. For review of experimen-
tal design, see [11, 12].

Guidelines for analyzing a large dataset
The following guidelines are listed as sequential steps,
but they are meant to be more of a frame for thought ra-
ther than rigid steps in a series. For example, steps one
and three may overlap and provide answers to the main
questions of the experiment. Step two may obviate the
need to perform extensive machine learning. Our hope
is to relieve the distress of inheriting or creating an
enormous mass of data that seems impenetrable.

Step one: Observe your data, quality control
Observe your data by creating plots and descriptive sta-
tistics to assess data distribution, overall variation, and
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Table 1 Summary and comparison of classification and clustering methods

Classification Clustering

PCA ICA RF PLS SVM K-means Hierarchical

What does it do? Separates features
into groups based
on commonality
and reports the
weight of each
component’s
contribution to
the separation

Separates features into
groups by eliminating
correlation and reports
the weight of each
component’s contribution
to the separation

Separates features
into groups based
on commonality;
identifies important
predictors

Separates features
into groups based
on maximal covariation
and reports the
contribution of each
variable

Uses a user-specified
kernel function to
quantify the similarity
between any pair of
instances and create
a classifier

Separates features into
clusters of similar
expression patterns

Clusters treatment
groups, features, or
samples into a
dendrogram

By what mechanism? Orthogonal
transformation;
transfers a set of
correlated variables
into a new set of
uncorrelated variables

Nonlinear, non-orthogonal
transformation; standardizes
each variable to a unit
variance and zero mean

Uses an ensemble
classifier that consists
of many decision trees

Multivariate regression Finds a decision
boundary maximizing
the distance to nearby
positive and negative
examples

Compares and groups
magnitudes of changes
in the means into
K clusters where K is
defined by the user

Compares all
samples using either
agglomerative or
divisive algorithms
with distance and
linkage functions

Strengths Unsupervised,
nonparametric,
useful for reducing
dimensions before
using supervision

Works well when other
approaches do not
because data are not
normally distributed

Robust to outliers
and noise; gives useful
internal estimates of
error; resistant to
overtraining

Diverse experiments
that have the same
features are made
comparable; variables
can outnumber features

Robust to outliers, gives
useful internal estimates
of error, can exploit
knowledge of the
domain if using
appropriate kernel
functions

Easily visualized and
intuitive; greatly
reduces complexity;
performs well when
distance information
between data points
is important to
clustering

Unsupervised; easily
visualized and
intuitive

Weaknesses Number of features
must exceed number
of treatment groups

Features are assumed
to be independent
when they actually
may be dependent

Does not allow
missing data (requires
imputation to replace
missing values)

Fails to deal with data
containing outliers

Selection of an
inappropriate kernel
yields poor results

Sensitive to initial
conditions and
specified number of
clusters (K)

Does not provide
feature contributions;
not iterative, therefore,
sensitive to cluster
distance measures
and noise/outliers

More information Performance depends
on number of trees
and varies among
experiments

Supervised; requires
training and testing;
groups pre-defined

Supervised; requires
training and testing;
many good kernel
functions have been
described, e.g., based
on structural alignment

Tools are available to
determine the optimal
cluster count (K)

User does not define
the number of
clusters

Sample size/data
characteristics

Unlimited sample
size, data normally
distributed

Unlimited sample size;
data non-normally
distributed

Performs well on small
sample size and is
resistant to over-fitting

Unlimited sample size;
sensitive to outliers

Performs well on
small sample size and
resistant to over-fitting

Performs best with a
limited dataset, i.e., ~20
to 300 features

Performs best with
limited dataset, i.e.,
~20 to 300 features
or samples
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variability within each treatment group. Compare means
and variability from those means. Look for any anomal-
ies that could cause a problem in the analysis. Plotting
the data is effectively the first unsupervised clustering
step. How do the data cluster? Are the data normally
distributed? Most parametric statistical approaches as-
sume normality, so if data are not normally distributed,
they may need to be transformed or analyzed using non-
parametric methods. Curves, scatter plots, and boxplots
are useful for observing comparability of different
groups or whether two different datasets can be com-
bined. Is there a batch effect? If so, the data must be
normalized or corrected for this effect. If using unsuper-
vised approaches such as hierarchical clustering or prin-
cipal component analysis, do the subjects partition
according to predicted treatment groups? Correlation
plots can be used to compare treatment groups. Are the
correlations as expected?

Step two: Traditional statistics
Groups identified by the researcher either during experi-
mental design or during the data observation step can
be compared here using Student’s t test, analysis of vari-
ance (ANOVA), and their nonparametric equivalents
such as Kruskal-Wallis, in addition to regression model-
ing and other tests of traditional statistics. Many tests
done simultaneously should be corrected using a mul-
tiple test correction such as the Benjamini-Hochberg
correction algorithm [13]. If these tests yield an abun-
dance of significant data, the machine learning methods
of step three can be used to reduce dimensionality.
These lists of significant features can be used directly for
pathway analysis. Or alternately, these significant fea-
tures can be used as a seed or paradigm for training the
supervised machine learning methods in step three to
retrieve interesting data that were not found to be sig-
nificant by traditional statistical methods.
For example, suppose we identify 100 significant fea-

tures (proteins, transcripts, etc.) after multiple test correc-
tion. These 100 can be tested internally for correlation, for
pattern recurrence, and for pathway analysis (DAVID,
GO, Ingenuity, etc., Table 2). Suppose we used K-means to
look for ten patterns, and one of the ten patterns hap-
pens to contain five features whose expression profiles
appear to match what we know about their biology
based on previous experiments or established literature.
This is the step we might call “kicking the tires” of this
dataset. If gene expression for a few proteins or tran-
scripts follows known patterns, the entire dataset be-
comes more credible; other significant data can thus be
relied upon as informative for further analysis and for
interrogating the rest of the data.
From these lists, one can transition directly to pathway

analysis (step four), or these data can be used for

classification of the rest of the dataset using machine
learning methods.

Step three: Dimension reduction with machine learning
The “curse of dimensionality” is inherent to large data-
sets. At the beginning of any large dataset analysis, the
dimension count and the feature count are the same.
The purpose of machine learning is to reduce the di-
mensions such that multiple features (or data points) are
contained within a single dimension so that a dataset
with 5000 features may contain 500 groups of ten fea-
tures each where those ten features have something in
common as determined by the classifier such as PCA,
RF, and K-means. Thus, machine learning allows the
data to partition according to the biology of the experi-
ment, and it allows the researcher to better comprehend
the data and the potential biological processes that drive
the experimental question.
Many machine learning tools are available including

Weka [14], Scikit-learn (Machine Learning in Python)
[15], and SHOGUN [16]. R has an enormous number of
machine learning algorithms with advanced implementa-
tions as well that were written by the developers of the
algorithm [17].
If performed independently, machine learning and

traditional statistics ought to reveal the same results in
the data. They confirm each other. As stated in Table 1,
different tools for machine learning are appropriate for
different datasets. The observation of data in step one
will help the researcher to identify which statistics and
machine learning approaches might prove to be most ef-
fective in partitioning the data in question. For example,
if data are not normally distributed and transformation
of the data is not desirable, one should start by using
nonparametric statistical analyses and independent com-
ponent analysis.

Step four: Pathway analysis
Genes and features of interest are entered into pathway
analysis software and tools, which are rapidly increasing
in sophistication. Still, we have found that computational
tools for pathway analysis should always be supple-
mented with individual manual research into relevant lit-
erature and textbook information for real biological
insights. Only when the individual researcher or team is
able to absorb the biological implications of the new
data will the true understanding take place. The compu-
tational tools enable new connections to be established,
but the biological story still requires concept synthesis
on the part of the researcher.

Machine learning and clustering methods
It is reasonable to assume on biological grounds that the
proteins present in the proteomic profile are not fully
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independent of each other in vivo. For this reason, a
multivariate approach to analysis is preferred because it
can address the correlations among variables. Dimension
reduction methods project a large number of genes or
proteins onto a smaller and more manageable number
of features. The art of machine learning starts with the
design of appropriate data representations, and better
performance is often achieved using features derived
from the original input and experimental design of the
researcher. Building a feature representation is an oppor-
tunity to incorporate domain knowledge into the data
and can be very application-specific. Nonetheless, there
are a number of generic feature construction methods,
including the following: clustering, basic linear trans-
forms of the input variables (PCA/ICA/PLS), more so-
phisticated linear transforms like spectral transforms
(Fourier, Hadamard), convolutions and kernels, and ap-
plying simple functions to subsets of variables. Among
these techniques, some of the most important approaches

include (i) dimensionality reduction, (ii) feature selection,
and (iii) feature extraction.
There are many benefits regarding the dimensionality

reduction when the datasets have a large number of fea-
tures. Machine learning algorithms work best when the
dimensionality is lower (curse of dimensionality). Add-
itionally, the reduction of dimensionality can eliminate
irrelevant features, reduce noise, and produce more ro-
bust learning models due to the involvement of fewer
features. In general, the dimensionality reduction by
selecting new features which are a subset of the old ones
is known as feature selection. Three main approaches
exist for feature selection, namely the following: embed-
ded, filter, and wrapper approaches [18]. In the case of
feature extraction, a new set of features can be created
from the initial set that captures all the significant infor-
mation in a dataset. The creation of new sets of features
allows for gathering the described benefits of dimension-
ality reduction.

Table 2 Summary of functional and network tools

Name Description Link References Function

KEGG Kyoto Encyclopedia of Genes
and Genomes

http://www.genome.jp/kegg/ Kanehisa and
Goto (2000) [76]

Pathway

DAVID The Database for Annotation,
Visualization and Integrated
Discovery

http://david.abcc.ncifcrf.gov/ Dennis et al. (2003) [96] Pathway and functional annotation
using GO

PID Pathway Interaction Database http://pid.nci.nih.gov/ Schaefer et al. (2009) [97] Pathway interaction

IPA Ingenuity Pathway Analysis http://www.ingenuity.com/ Pathway and functional annotation

Cytoscape An open source platform for
complex network analysis
and visualization

http://www.cytoscape.org/ Shannon et al. (2003) [98] Network visualization

HAPPI Human Annotated and Predicted
Protein Interaction Database

http://bio.informatics.iupui.edu/HAPPI Chen et al. (2009) [99] Protein interaction

GSEA Gene Set Enrichment Analysis http://www.broadinstitute.org/gsea/ Subramanian
et al. (2005) [77]

Pathway analysis and functional
annotation

Reactome Curated database of pathways
and reactions (pathway steps)

http://www.reactome.org/ Matthews et al.
(2009) [100]

Pathway

BioCarta Pathway database http://www.biocarta.com/ Nishimura (2001) [101] Pathway

HPD Integrated Human Pathway
Database

http://discovery.informatics.iupui.edu/HPD/ Chowbina et al.
(2009) [102]

Pathway

PAGED Pathway and Gene
Enrichment Database

http://omictools.com/paged-s3492.html Huang et al. (2012) [103] Pathway, functional annotation

HPRDB Human Protein Reference
Database

http://www.hprd.org/ Keshava Prasad, T. S.
et al. (2009) [104]

Annotation

DrugBank Drug Bank http://www.drugbank.ca/ Combines drug data with
drug target

CPDB Consensus Path DB http://consensuspathdb.org/ Kamburov,
A. et al. (2013) [105]

Interaction networks
(protein-protein, genetic,
metabolic, signaling, gene
regulatory, and drug-target)

BINGO Biological Network Gene
Ontology Tool

http://www.psb.ugent.be/cbd/papers/
BiNGO/Home.html

Maere S, Heymans K, and
Kuiper M (2005) [106]

Biological network gene ontology

GATHER Gene Annotation Tool to
Help Explain Relationships

http://gather.genome.duke.edu Chang JT, and
Nevins JR. (2006) [84]

Gene annotation tool
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Sometimes classifications or clustering decisions are
susceptible to high bias (under-fitting) or high variance
and low bias (over-fitting). If there is under-fitting that
results in a high error rate in both training and test, it
might help to (1) add more features, (2) use a more so-
phisticated model, or (3) employ fewer samples. If the
dataset has a high variance and low bias (over-fitting)
that results in a low error rate in training but high error
rate in the test case, it might help to (1) use fewer fea-
tures or (2) use more training samples. Over-fitting is
usually a more common problem in classification than
under-fitting. Over-fitting the data causes the model to
fit the noise rather than the actual underlying behavior.
The application of different feature selection tech-

niques usually produces different predictive feature lists,
presumably because each method captures different fea-
tures from the data or the small number of samples.
Classification methods have been used extensively for

visualization and classification of high-throughput data.
These algorithms group objects based on a similarity
metric that is computed for features. There are several
issues that can affect the outcome of the methods, in-
cluding (1) a large number of features, (2) mean of the
groups, (3) variance and (4) correlation among groups,
(5) distribution of the data, and (6) outliers. Thus, exploit-
ing the hidden structure within a dataset is critical for im-
proving classification selection and accuracy and speed of
prediction systems. No free lunch (NFL) theorems previ-
ously showed that any two optimization algorithms are
equivalent when their performance is averaged across all
possible problems [19, 20]. Here we emphasize the im-
portance of the hidden structure of the data in order to
achieve superior performance of learning systems.
Supervised machine learning involves training a model

based on data samples that have known class labels asso-
ciated with them. This is in contrast with unsupervised
classification, or clustering, where no samples have asso-
ciated class labels, and instead, samples with similar at-
tribute profiles are grouped together.
Each of the supervised classification methods de-

scribed can make errors, either by incorrectly identifying
an instance as a member of a class (a “false positive”) or
by incorrectly failing to identify an instance as a member
of a class (a “false negative”). The rates of both types of
errors can be estimated; the proportion of false positive
results is reported using specificity and the proportion of
false negatives using sensitivity. There is often a trade-
off between these types of errors; increases in specificity
(fewer false positives) often lead to decreases in sensitiv-
ity (more false negatives) and vice versa. Some classifica-
tion methods always treat these types of errors as
equally important, but others allow the user to set an ex-
plicit trade-off ratio, e.g., telling the classifier that sensi-
tivity is twice as important as specificity or vice versa.

Methods that have adjustable sensitivity/specificity trade-
offs are noted in Table 1. There are no “one size fits all”
tests in classification or clustering methods, and different
datasets can make errors which are specific to that dataset
(i.e., the no free lunch theorem).

Unsupervised classification and clustering
Principal component
The principal component analysis (PCA) [21] is a math-
ematical procedure that transforms a number of possibly
correlated variables into a smaller number of uncorrelated
variables, which are then ordered by reducing variability.
These variables are called principal components. The first
principal component accounts for as much of the variabil-
ity in the data as possible, and each succeeding compo-
nent accounts for as much of the remaining variability as
possible. PCA is an unsupervised analysis tool since sam-
ples are classified without including disease status in the
training algorithm and best if the variables are standard-
ized, and in most of the implementation, this is done by
default. PCA is not only useful as a visualization tool [22].
It also helps to detect outliers and perform quality control.
PCA has been widely used in analysis of high-throughput
data including proteomic data, e.g., [23–25].

Independent component
Independent component analysis (ICA) [26] is a method
for finding underlying factors or components from
multidimensional data. ICA is also known as blind signal
separation (BSS). PCA and ICA have very different goals,
and naturally, they may give quite different results. PCA
finds directions of maximal variance (using second-order
statistics) while ICA finds directions that maximize inde-
pendence (using higher order statistics) [27]. ICA maxi-
mizes non-Gaussianity and makes the assumption of
combinatorial linearity of components, satisfied by re-
moving the correlated data. In contrast to PCA, ICA
analysis seeks not a set of orthogonal components but a
set of independent components. Two components are
independent if any knowledge about one implies nothing
about the other, such that independent components (IC)
represent different non-overlapping information. Since
the number of components can be very high, it is rela-
tively easy for the ICA estimation to over-fit the data.
Safavi et al. used ICA to separate groups of proteins that

may be differentially expressed across treatment groups
[28]. They also showed that the univariate ANOVA tech-
nique with false discovery rate (FDR) correction is very
sensitive to the FDR-derived p value, whereas ICA is able
to identify and separate differential expression into the
correct factors without any p value threshold. Other
studies have applied ICA to MS data and have shown
that ICA represents a powerful unsupervised tech-
nique [29, 30].
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K-means
K-means [31, 32] is a popular partitioning method due
to its ease of programming, allowing a good trade-off
between achieved performance and computational com-
plexity. It performs well when the distance information
between data points is important to the clustering. K-
means requires the analyst to specify the number of
clusters to extract, and there are tools available to deter-
mine the appropriate number of clusters [33]. Although
this is a widely used technique, it suffers from several
drawbacks: K-means does not scale well with high dimen-
sional datasets and is prone to local minima problems. It
is sensitive to initial conditions, does not remove undesir-
able features for clustering, and it is best but even then it
is prone to local maxima. In spite of the weaknesses, with
thoughtful application, the K-means algorithm is very
useful in analysis of proteomics data due to its simple
algorithmic assumptions and intuitively clear and in-
terpretable visualization [34, 35].

Hierarchical clustering
Hierarchical clustering outputs a dendrogram tree repre-
sentation of the data. Leaves are the input patterns and
non-leaf nodes represent a hierarchy of groupings. This
method comes in two flavors: agglomerative and divisive.
Agglomerative algorithms work from the bottom up,
with each pattern in a separate cluster. Clusters are then
iteratively merged according to some criterion. Con-
versely, divisive algorithms start from the whole dataset
in a single cluster and work top down by iteratively div-
iding each cluster into two components until all clusters
are singletons. Hierarchical clustering suffers from the
disadvantage of any merging/division decision being ir-
reversible and any errors being dragged through the rest
of the hierarchy (in another word, established mergers
cannot be undone). Thus, hierarchical clustering analysis
and principal component analysis can be used to identify
subgroups on the basis of similarities between the pro-
teins’ expression profile. Hierarchical clustering method-
ologies commonly used in transcriptomic studies have
also been performed on proteomic data [36, 37]. The dif-
ferent methods will shed light on different aspects of the
data [38, 39].

Supervised classification
Partial least squares
Partial least squares (PLS) [40] is a method of dimension-
ality reduction that maximizes the covariance between
groups. PLS constructs a set of orthogonal components
that maximize the sample covariance between the re-
sponse and the linear combination of the predictor vari-
ables. It generalizes and combines the features of PCA
and multilinear regression [41, 42]. Through maximizing
the covariance of dependent and independent variables,

PLS searches for the components that capture the major-
ity of the information contained in independent variables
as well as in the relations between dependent and inde-
pendent variables. PLS regression is particularly useful
when users have a very large set of predictors that are
highly collinear. In case of over-fitting, the PLS will
(1) reduce the predictors to a smaller set of uncorre-
lated components—these components are mapped in
a new space—and (2) perform least squares regression
on the new set of components. Although PLS regres-
sion was not originally designed for classification and
discrimination problems, it has often been used for
this purpose [23, 25, 43–49].

Random forests
Random forests (RF) [50] are another classifier method
that consists of many decision trees and can be either
supervised or unsupervised. It is a popular method that
has gained recognition for its ability to construct robust
classifiers and select discriminant variables in proteo-
mics [34, 35, 51–54].
RF is an extension to bagging and uses de-correlated

trees; it is capable of minimizing the number of selected
features. For a given decision tree, a subset of samples is
selected to build the tree; the remaining samples are pre-
dicted from this tree. Bagging (bootstrap aggregating)
can be used as an ensemble method [55]. To see which
variables contribute the most to the separation, “import-
ance” measures are computed, e.g., the “mean decrease
accuracy” and the Gini index [50].
Principal component analyses are used for dimension

reduction, but the reduction is valid only when the num-
ber of components (i.e., subjects in a study) is less than
the number of features (i.e., measured entities in the ex-
periment). In contrast, random forests can be used when
the number of features (metabolites, genes, or proteins)
is smaller than the number of subjects. A random forest
tends to be resistant to over-fitting and also not very
sensitive to outliers. A random forest does not handle
missing data, and missing values either need to be elimi-
nated or imputation of missing data is needed.

Support vector machine
Support vector machine (SVM) [56] is a supervised
learning method that constructs a hyperplane or set of
hyperplanes in a high-dimension or infinite dimensional
space. A good separation is achieved when the hyper-
plane has the largest distance to the nearest training data
point of any class (the so-called functional margin).
SVM can be applied to different data types by design-

ing the kernel function for such data; selection of a spe-
cific kernel and parameters is usually a trial and error
process. A kernel function is one that corresponds to an
inner product in some expanded feature space. Kernel
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methods are a kernel class of algorithms for pattern ana-
lysis. Since SVM is using regularization, it is highly re-
sistant to over-fitting, even in cases where the number
of attributes is greater than the number of observations.
In practice, this depends on the careful choice of a C
and kernel parameter. A C parameter is an optimization
or regularization parameter which is chosen by the user
to allow the SVM to best classify the training set. For
larger C, the optimization will choose a smaller margin
hyperplane if that does a better job of getting all the
training points classified correctly. For a very small value
of C, this will cause the optimizer to look for a larger
margin-separating hyperplane even if that hyperplane
misclassifies more points. SVM has been used in various
fields to identify biomarkers including proteomics data-
sets [57–60].

Longitudinal or time-series data
Several software tools are available that specifically ad-
dress the problems associated with time-series data.
TimeClust is a stand-alone tool which is available for
different platforms and allows the clustering of gene ex-
pression data collected over time with distance-based,
model-based, and template-based methods [61]. There
are also several other packages available in R such as
maSigPro [62], timecourse [63], BAT [64], betr [65], fpca
[66], timeclip [67], rnits [68], and STEM [69].
Python probabilistic graphical query language (pGQL)

[70] allows its user to interactively define linear HMM
queries on time-course data using rectangular graphical
widgets called probabilistic time boxes. The analysis is
fully interactive, and the graphical display shows the
time courses along with the graphical query. In JAVA,
PESTS [71] and OPTricluster [72] both of which are
stand-alone with a GUI interface are useful for the clus-
tering of short time-series data in MATLAB. DynamiteC
is a dynamic modeling and clustering algorithm which
interleaves clustering time-course gene expression data
with estimation of dynamic models of their response by
biologically meaningful parameters [73].

Pathway analysis
After statistical and/or machine learning analysis, the
next challenge is how to extract functional and bio-
logical information from a long list of proteins identified
or discovered from high-throughput proteomic experi-
ments. In order to provide biological insights into the
underlying molecular mechanisms of different condi-
tions [10] or changes involved during the progression of
disease as well as identification of potential drug targets
[74–76], pathway and network analysis techniques can
help to address the challenges of interpretation. We
categorize these tools into three types: (1) tools with
basic functional information (e.g., GO category analysis),

(2) tools with rich functional information and topo-
logical features (e.g., GSEA [77], IPA [78]), and (3) tools
with topological features (e.g., Cytoscape [79]).
For pathway analysis, we refer to data analysis that

aims to identify activated pathways or pathway mod-
ules from functional proteomic data. For network
analysis, we refer to data analysis that builds, overlays,
visualizes, and infers protein interaction networks
from functional proteomics and other systems biology
data. It is at this stage that metabolomic and prote-
omic data intersect to reveal active biological pro-
cesses in a particular system.
Pathway Commons [80] is publicly available and has

pathway information for multiple organisms. Pathways in-
clude biochemical interactions, complex assembly, trans-
port and catalysis events, physical interactions involving
proteins, DNA, RNA, small molecules and complexes,
genetic interactions, and co-expression relationships.
HumanCyc plus Pathway Tools [81] provides another set
of options. HumanCyc contains well-curated content on
human metabolic pathways. The associated Pathway Tools
software will let you paint gene expression, proteomics, or
metabolomics data onto the HumanCyc pathway map,
and Pathway Tools will also perform enrichment analysis.
PathVisio [82] is a publicly available pathway editor and
visualization and analysis software. 3Omics [83] is a web-
based systems biology visualization tool for integrating hu-
man transcriptomic, proteomic, and metabolomic data. It
covers and connects cascades from transcripts, proteins,
and metabolites and provides five commonly used ana-
lyses including correlation network, co-expression, pheno-
type generation, KEGG/HumanCyc pathway enrichment,
and GO enrichment. For these tools, the user uploads
transcriptome and proteome expression data. The metab-
olome is inferred using KEGG Pathway. 3Omics derives
the relationship between the proteome and the metabo-
lome from the literature.
GSEA [77] enables molecular-signature-based statis-

tical significance testing, which integrates protein func-
tional category information effectively with statistical
testing of functional genomics or proteomics results.
GATHER [84] is a functional enrichment tool (for
KEGG pathways) along with several other categories
which provides information for a list of genes/proteins
in the context of genes, GO terms, predicted miRNAs,
pathways, or diseases. The Protein ANalysis THrough
Evolutionary Relationships (PANTHER) [85] classifica-
tion system is designed to classify proteins (and their
genes) to support high-throughput analysis. It combines
human curation with gene ontology and utilizes other
sources for high-level analysis of protein lists.
A number of visualization tools and plug-ins are avail-

able for Cytoscape [79] which can be used for biological
network construction.
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Ultimately, future tools must support elucidation of
complex molecular mechanisms suggested from multi-
scale network data and molecular signature data. How-
ever, there are still significant challenges in designing
next-generation network/pathway analysis tools. Net-
work analysis and pathway analysis have been exten-
sively applied to proteomic datasets, e.g., [75, 86, 87].
Some of the pathway and network analysis tools that
have become available in the last decade are listed in
Table 2. Although the content of most of these tools is
based on knowledge and is freely available, a user
might not be able to reproduce the same result using
a different selection of tools. These tools integrate in-
formation from different sources; they obtain pathway
information from the literature and by computational
prediction.

Proteomics data repositories
There has been great progress in the last few years in
making raw proteomic data publicly available, which
provides a considerable value to the community. Cur-
rently, several repositories compile proteomic data. The
PRoteomics IDEntifications (PRIDE) [88] database at the
EBI is a public repository that includes protein and pep-
tide identifications, post-translational modifications, and
supporting spectral evidence. The PeptideAtlas database
[89] from ISB’s Proteome Center accepts only the raw
output of mass spectrometers, and all raw data are proc-
essed through a uniform pipeline of search software plus
validation with the Trans-Proteomic Pipeline (TPP) [90].
The results of this processing are coalesced and made
available to the community through a series of builds for
different organisms or sample types.
The Mass spectrometry Interactive Virtual Environ-

ment (MassIVE) is a community resource developed by
the NIH-funded Center for Computational Mass Spec-
trometry to promote the global, free exchange of mass
spectrometry data [91]. The MassIVE can be run with
UCSD proteomics [92]. Chorus is a simple web applica-
tion for storing, sharing, visualizing, and analyzing spec-
trometry files [93]. A user can upload experiment files
along with the metadata, analyze them, and also make
them available to collaborators. The Global Proteome
Machine Database (GPMDB) collects spectra and identi-
fications that have been uploaded by researchers to a
GPM analysis engine and presents the summarized re-
sults back to the community [94].
To make the process of data submission easier for the

user, the ProteomeXchange consortium is set up to
provide a single point of submission to proteomics re-
positories [95]. Once the data are submitted to the
ProteomeXchange entry point, they can be automatically
distributed to all other repositories (PRIDE, MassIVE,
and PeptideAtlas).

Discussion and conclusion
Machine learning and clustering approaches have been
applied to proteomic and mass spectrometric data from
many different biological disciplines in order to identify
biomarkers for normal phenotypic characterization [38]
and for diagnosis, prognosis, and treatment of specific
disease [48, 57]. The bioinformatics tools that are cur-
rently available for omic data analysis span a large panel
of very diverse applications ranging from simple tools to
sophisticated software for large-scale analysis. Technical
advances and growing interest in the field have given rise
to a great number of specialized tools and software to
derive biologically meaningful information. These com-
putational approaches assist in generating hypotheses to
be tested in orthogonal experiments.
Machine learning and its methods have increasingly

gained attention in bioinformatics research. With the
availability of different types of classification methods, it
is common for researchers to apply these tools to clas-
sify and mine their data. But one should keep in mind
that no matter how sophisticated the bioinformatics
tools, the quality of the results they produce is directly
dependent on the quality of input data they are given. In
addition, new experimental methods are likely to require
newly adapted bioinformatics tools as mass spectrome-
ters become more powerful and as novel experimental
design results in more complex datasets. One area of
rapidly expanding complexity is at the integration of the
fronts of metabolomic and proteomic data. Each soft-
ware tool has some advantage and disadvantage, so it
benefits the user to employ a combination of tools to
examine one dataset rather than a single software tool.
Each dataset contains its own quirks, positive and nega-
tive, and it is up to the end users and analysts to decide
the most effective approach for assessing the biology
that is taking place within their experiment.
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