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Abstract
In this paper we prove the strong convergence of an iterative sequence for finding a
common element of the fixed points set of a strictly pseudocontractive mapping and
the solution set of the constrained convex minimization problem for a convex and
continuously Fréchet differentiable functional in a real Hilbert space. We apply our
result to solving the split feasibility problem and the convexly constrained linear
inverse problem involving the fixed point problem for a strictly pseudocontractive
mapping in a real Hilbert space.
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1 Introduction
Let H be a real Hilbert space and C a nonempty, closed, and convex subset of H . A mapping
T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C, (.)

and T : C → C is said to be k-strictly pseudocontractive (see []) if for  ≤ k < ,

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥
∥(I – T)x – (I – T)y

∥
∥

, ∀x, y ∈ C. (.)

It is well known that every nonexpansive mapping is strictly pseudocontractive. In a real
Hilbert space H , we can show that (.) is equivalent to

〈Tx – Ty, x – y〉 ≤ ‖x – y‖ –
 – k


∥
∥(I – T)x – (I – T)y

∥
∥

. (.)

A point x ∈ C is called a fixed point of T if Tx = x. The set of fixed points of T is de-
noted by F(T). The iterative approximation of fixed points for k-strictly pseudocontrac-
tive mappings has been studied extensively by many authors (see, for example, [–] and
the references contained therein).
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For any point u ∈ H , there exists a unique point PCu ∈ C such that

‖u – PCu‖ ≤ ‖u – y‖, ∀y ∈ C.

PC is called the metric projection of H onto C. We know that PC is a nonexpansive mapping
of H onto C. It is also well known that PC satisfies

〈x – y, PCx – PCy〉 ≥ ‖PCx – PCy‖, (.)

for all x, y ∈ H . Furthermore, PCx is characterized by the properties PCx ∈ C and

〈x – PCx, PCx – y〉 ≥ , (.)

for all y ∈ C.

Definition . A mapping T : H → H is said to be firmly nonexpansive if and only if T – I
is nonexpansive, or equivalently

〈x – y, Tx – Ty〉 ≥ ‖Tx – Ty‖, ∀x, y ∈ H .

Alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =



(I + S),

where S : H → H is nonexpansive. For example, the projections are firmly nonexpansive.

Definition . A mapping T : H → H is said to be an averaged mapping if and only if it
can be written as the average of the identity mapping I and a nonexpansive mapping; that
is,

T = ( – α)I + αS, (.)

where α ∈ (, ) and S : H → H is nonexpansive. More precisely, when (.) holds, we say
that T is α-averaged. Thus, firmly nonexpansive mappings (in particular, projections) are

 -averaged mappings.

Definition . A nonlinear operator T whose domain D(T) ⊂ H and range R(T) ⊂ H is
said to be:

(a) monotone if

〈x – y, Tx – Ty〉 ≥ , ∀x, y ∈ D(T),

(b) β-strongly monotone if there exists β >  such that

〈x – y, Tx – Ty〉 ≥ β‖x – y‖, ∀x, y ∈ D(T),
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(c) ν-inverse strongly monotone (for short, ν-ism) if there exists ν >  such that

〈x – y, Tx – Ty〉 ≥ ν‖Tx – Ty‖, ∀x, y ∈ D(T).

It can easily be seen that (i) if T is nonexpansive, then I – T is monotone; (ii) the projection
mapping PC is a -ism. The inverse strongly monotone (also referred to as co-coercive)
operators have been widely used to solve practical problems in various fields, for instance,
in traffic assignment problems (see, for example, [, ] and the references therein).

Consider the following constrained convex minimization problem:

minimize
{

f (x) : x ∈ C
}

, (.)

where f : C → R is a real-valued convex function. We say that the minimization problem
(.) is consistent if the minimization problem (.) has a solution. In the sequel, we shall
denote the set of solutions of problem (.) by �. If f is (Fréchet) differentiable, then the
gradient-projection method (for short, GPM) generates a sequence {xn} using the follow-
ing recursive formula:

xn+ = PC
(

xn – λ∇f (xn)
)

, ∀n ≥ , (.)

or more generally,

xn+ = PC
(

xn – λn∇f (xn)
)

, ∀n ≥ , (.)

where in both (.) and (.) the initial guess x is taken from C arbitrarily, and the param-
eters, λ or λn, are positive real numbers. The convergence of the algorithms (.) and (.)
depends on the behavior of the gradient ∇f . As a matter of fact, it is known that if ∇f is
α-strongly monotone and L-Lipschitzian with constants α, L > , then the operator

T := PC(I – λ∇f ) (.)

is a contraction; hence, the sequence {xn} defined by the algorithm (.) converges in norm
to the unique solution of the minimization problem (.). More generally, if the sequence
{λn} is chosen to satisfy the property

 < lim infλn ≤ lim supλn <
α

L , (.)

then the sequence {xn} defined by the algorithm (.) converges in norm to the unique
minimizer of (.). However, if the gradient ∇f fails to be strongly monotone, the op-
erator T defined by (.) would fail to be contractive; consequently, the sequence {xn}
generated by the algorithm (.) may fail to converge strongly (see [, Section ]). If ∇f
is Lipschitzian, then the algorithms (.) and (.) can still converge in the weak topology
under certain conditions.

The gradient-projection method for finding the approximate solutions of the con-
strained convex minimization problem is well known; see, for example, [] and the ref-
erences therein. The convergence of the sequence generated by this method depends on



Cai and Shehu Fixed Point Theory and Applications  (2015) 2015:7 Page 4 of 17

the behavior of the gradient of the objective function. If the gradient fails to be strongly
monotone, then the strong convergence of the sequence generated by gradient-projection
method may fail. Recently, Xu [] gave an alternative operator-oriented approach to al-
gorithm (.); namely, an averaged mapping approach. He gave his averaged mapping ap-
proach to the gradient-projection algorithm (.) and the relaxed gradient-projection al-
gorithm. Moreover, he constructed a counterexample which shows that algorithm (.)
does not converge in norm in an infinite-dimensional space, and he also presented two
modifications of gradient-projection algorithms which are shown to have strong con-
vergence. Further, he regularized the minimization problem (.) to devise an iterative
scheme that generates a sequence converging in norm to the minimum-norm solution of
(.) in the consistent case.

Very recently, motivated by the work of Xu [], Ceng et al. [] proposed the following
implicit iterative scheme:

xλ = PC
(

sγ Vxλ + (I – sμF)Tλxλ

)

and the following explicit iterative scheme:

xn+ = PC
(

snγ Vxn + (I – sμF)Tnxn
)

for finding the approximate minimizer of a constrained convex minimization problem and
prove that the sequences generated by their schemes converge strongly to a solution of the
constrained convex minimization problem (see [] for more details). Such a solution is
also a solution of a variational inequality defined over the set of fixed points of a nonex-
pansive mapping.

Motivated by the aforementioned results, we introduce an iterative algorithm for find-
ing a fixed point of a strictly pseudocontractive mapping which is also a solution to a con-
strained convex minimization problem for a convex and continuously Fréchet differen-
tiable functional in a real Hilbert space and prove strong convergence of the sequences
generated by our scheme in a real Hilbert space. We apply our result to the split feasibil-
ity problem and the convexly constrained linear inverse problem involving the fixed point
problem for a strictly pseudocontractive mapping in a real Hilbert space.

We shall adopt the following notations in this paper:
• xn → x means that xn → x strongly;
• xn ⇀ x means that xn → x weakly;
• ww(xn) := {x : ∃xnj ⇀ x} is the weak w-limit set of the sequence {xn}∞n=.

2 Main results
We first state some known results which will be used in the sequel.

Lemma . Let H be a real Hilbert space. Then the following result holds:

‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉, ∀x, y ∈ H .

Lemma . ([]) Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let T : C → C be k-strictly pseudocontractive mapping. Then I – T is demiclosed at , i.e.,
if xn ⇀ x ∈ C and xn – Txn → , then x = Tx.
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Lemma . ([]) Assume {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + γnδn, n ≥ ,

where {γn} is a sequence in (, ) and {δn} is a sequence in R such that
(i)

∑∞
n= γn = ∞;

(ii) lim supn→∞ δn ≤  or
∑∞

n= |δnγn| < ∞.
Then limn→∞ an = .

Following the method of proof Li and Yao [] and Maingé [], we now prove the fol-
lowing theorem.

Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Suppose that the minimization problem (.) is consistent and let � denote its solution set.
Assume that the gradient ∇f is L-Lipschitzian with constant L > . Let T be a k-strictly
pseudocontractive mapping of C into itself such that F(T) ∩� �= ∅. Let {tn} be a sequence in
(, ), {αn} a sequence in (, ( – k)( – tn)) ⊂ (, ), and {λn} a sequence in (, 

L ) satisfying
the following conditions:

(i) limn→∞ tn = ;
(ii)

∑∞
n= tn = ∞;

(iii)  < lim infn→∞ αn ≤ lim supn→∞ αn <  – k;
(iv)  < lim infn→∞ λn ≤ lim supn→∞ λn < 

L .
Then the sequences {un} and {xn} generated for fixed u ∈ C by u, x ∈ C,

{

xn = PC(un – λn∇f (un)),
un+ = ( – αn)xn + αnTxn – tn(xn – u), n ≥ ,

(.)

converge strongly to x∗ ∈ F(T) ∩ �, where x∗ := PF(T)∩�u.

Proof Inspired by the method of proof of [], it is well known that x∗ ∈ C solves the
minimization problem (.) if and only if x∗ solves the fixed point equation

x∗ = PC(I – λ∇f )x∗,

where λ >  is any fixed positive number. For the sake of simplicity, we may assume that
(due to condition (iv))

 < a ≤ λn ≤ b <

L

, n ≥ ,

where a and b are constants. Furthermore, it is also well known from the proof of [] that
the gradient ∇f is 

L -ism, (I – λn∇f ) is nonexpansive (see also []) and that PC(I – λ∇f ) is
+λL

 -averaged for  < λ < 
L . Hence we find that, for each n, PC(I –λn∇f ) is +λnL

 -averaged.
Therefore, we can write

PC(I – λn∇f ) =
 – λnL


I +

 + λnL


Sn = ( – γn)I + γnSn, (.)
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where Sn is nonexpansive and γn = +λnL
 ∈ [a, b] ⊂ (, ), where a = +aL

 and b = +bL
 <

. Then we can rewrite (.) as

{

xn = ( – γn)un + γnSnun,
un+ = ( – αn)xn + αnTxn – tn(xn – u), n ≥ .

(.)

For any x∗ ∈ F(T) ∩ �, noticing that Snx∗ = x∗, we have

∥
∥xn – x∗∥∥ =

∥
∥( – γn)

(

un – x∗) + γn
(

Snun – x∗)∥∥

≤ ∥
∥un – x∗∥∥ (.)

and

∥
∥un+ – x∗∥∥ =

∥
∥( – αn – tn)

(

xn – x∗) + αn
(

Txn – x∗) + tn
(

u – x∗)∥∥

≤ ∥
∥( – αn – tn)

(

xn – x∗) + αn
(

Txn – x∗)∥∥ + tn
∥
∥u – x∗∥∥. (.)

But from (.) and (.), we obtain

∥
∥( – αn – tn)

(

xn – x∗) + αn
(

Txn – x∗)∥∥

= ( – αn – tn)∥∥xn – x∗∥∥ + α
n
∥
∥Txn – x∗∥∥

+ ( – αn – tn)αn
〈

Txn – x∗, xn – x∗〉

≤ ( – αn – tn)∥∥xn – x∗∥∥ + α
n
[∥
∥xn – x∗∥∥ + k‖xn – Txn‖]

+ ( – αn – tn)αn

[
∥
∥xn – x∗∥∥ –

 – k


‖xn – Txn‖
]

= ( – tn)∥∥xn – x∗∥∥ +
[

kα
n – ( – k)( – αn – tn)αn

]‖xn – Txn‖

= ( – tn)∥∥xn – x∗∥∥ + αn
[

αn – ( – tn)( – k)
]‖xn – Txn‖

≤ ( – tn)∥∥xn – x∗∥∥, (.)

which implies

∥
∥( – αn – tn)

(

xn – x∗) + αn
(

Txn – x∗)∥∥ ≤ ( – tn)
∥
∥xn – x∗∥∥. (.)

Therefore, it follows from (.), (.), and (.) that

∥
∥un+ – x∗∥∥ ≤ ( – tn)

∥
∥xn – x∗∥∥ + tn

∥
∥u – x∗∥∥

≤ ( – tn)
∥
∥un – x∗∥∥ + tn

∥
∥u – x∗∥∥

≤ max
{∥
∥un – x∗∥∥,

∥
∥u – x∗∥∥}

. (.)

By induction, we have

∥
∥un – x∗∥∥ ≤ max

{∥
∥u – x∗∥∥,

∥
∥u – x∗∥∥}

.
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Hence, {un} is bounded and so is {xn}. Now, using (.), we have

∥
∥Tx – x∗∥∥ ≤ ∥

∥x – x∗∥∥ + k‖x – Tx‖

⇒ 〈

Tx – x∗, Tx – x∗〉 ≤ 〈

x – x∗, x – Tx
〉

+
〈

x – x∗, Tx – x∗〉 + k‖x – Tx‖

⇒ 〈

Tx – x∗, Tx – x
〉 ≤ 〈

x – x∗, x – Tx
〉

+ k‖x – Tx‖

⇒ 〈Tx – x, Tx – x〉 +
〈

x – x∗, Tx – x
〉 ≤ 〈

x – x∗, x – Tx
〉

+ k‖x – Tx‖

⇒ ( – k)‖x – Tx‖ ≤ 
〈

x – x∗, x – Tx
〉

. (.)

Therefore, by (.) and Lemma ., we obtain

∥
∥xn+ – x∗∥∥ ≤ ∥

∥un+ – x∗∥∥ =
∥
∥( – αn)xn + αnTxn – tn(xn – u) – x∗∥∥

=
∥
∥
(

xn – x∗) – αn(xn – Txn) – tn(xn – u)
∥
∥



≤ ∥
∥
(

xn – x∗) – αn(xn – Txn)
∥
∥

 – tn
〈

xn – u, un+ – x∗〉

=
∥
∥xn – x∗∥∥ – αn

〈

xn – Txn, xn – x∗〉 + α
n‖xn – Txn‖

– tn
〈

xn – u, un+ – x∗〉

≤ ∥
∥xn – x∗∥∥ – αn( – k)‖xn – Txn‖ + α

n‖xn – Txn‖

– tn
〈

xn – u, un+ – x∗〉

=
∥
∥xn – x∗∥∥ – αn

[

( – k) – αn
]‖xn – Txn‖

– tn
〈

xn – u, un+ – x∗〉

≤ ∥
∥un – x∗∥∥ – αn

[

( – k) – αn
]‖xn – Txn‖

– tn
〈

xn – u, un+ – x∗〉. (.)

Since {xn} and {un} are bounded, ∃M >  such that –〈xn – u, un+ – x∗〉 ≤ M for all n ≥ .
Therefore,

∥
∥xn+ – x∗∥∥ –

∥
∥xn – x∗∥∥ + αn

[

( – k) – αn
]‖xn – Txn‖ ≤ tnM. (.)

Now we divide the rest of the proof into two cases.
Case .
Assume that {‖xn – x∗‖} is monotonically decreasing sequence. Then {‖xn – x∗‖} is con-

vergent and obviously

∥
∥xn+ – x∗∥∥ –

∥
∥xn – x∗∥∥ → , n → ∞. (.)

This together with (.) and the condition that tn →  implies that

‖xn – Txn‖ → , n → ∞. (.)
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From (.) and (.), we obtain (noting that (I – λn∇f ) is nonexpansive)

∥
∥xn – x∗∥∥ =

∥
∥PC

(

un – λn∇f (un)
)

– PC
(

x∗ – λn∇f
(

x∗))∥∥

≤ 〈(

un – λn∇f (un)
)

–
(

x∗ – λn∇f
(

x∗)), xn – x∗〉

=


[∥
∥
(

un – λn∇f (un)
)

–
(

x∗ – λn∇f
(

x∗))∥∥ +
∥
∥xn – x∗∥∥

–
∥
∥
(

un – λn∇f (un)
)

–
(

x∗ – λn∇f
(

x∗)) –
(

xn – x∗)∥∥]

≤ 

[∥
∥un – x∗∥∥ +

∥
∥xn – x∗∥∥ –

∥
∥(un – xn) – λn

(∇f (un) – ∇f
(

x∗))∥∥]

=


[∥
∥un – x∗∥∥ +

∥
∥xn – x∗∥∥ – ‖un – xn‖ + λn

〈

un – xn,∇f (un) – ∇f
(

x∗)〉

– λ
n
∥
∥∇f (un) – ∇f

(

x∗)∥∥].

Therefore,

∥
∥xn – x∗∥∥ ≤ ∥

∥un – x∗∥∥ – ‖un – xn‖ + λn
〈

un – xn,∇f (un) – ∇f
(

x∗)〉

– λ
n
∥
∥∇f (un) – ∇f

(

x∗)∥∥. (.)

Also, from (.) and (.), we obtain

∥
∥xn – x∗∥∥ ≤ ∥

∥
(

un – λn∇f (un)
)

–
(

x∗ – λn∇f
(

x∗))∥∥

=
∥
∥un – x∗∥∥ – λn

〈

un – x∗,∇f (un) – ∇f
(

x∗)〉 + λ
n
∥
∥∇f (un) – ∇f

(

x∗)∥∥

≤ ∥
∥un – x∗∥∥ –

λn

L
∥
∥∇f (un) – ∇f

(

x∗)∥∥ + λ
n
∥
∥∇f (un) – ∇f

(

x∗)∥∥

=
∥
∥un – x∗∥∥ – λn

(

L

– λn

)
∥
∥∇f (un) – ∇f

(

x∗)∥∥

≤ (∥
∥xn– – x∗∥∥ + tn–

∥
∥u – x∗∥∥) – λn

(

L

– λn

)
∥
∥∇f (un) – ∇f

(

x∗)∥∥

=
∥
∥xn– – x∗∥∥ + tn–

(


∥
∥xn– – x∗∥∥∥

∥u – x∗∥∥ + tn–
∥
∥u – x∗∥∥)

– λn

(

L

– λn

)
∥
∥∇f (un) – ∇f

(

x∗)∥∥.

This implies that for some M∗ > , we have

a
(


L

– b
)

∥
∥∇f (un) – ∇f

(

x∗)∥∥ ≤ λn

(

L

– λn

)
∥
∥∇f (un) – ∇f

(

x∗)∥∥

≤ ∥
∥xn– – x∗∥∥ –

∥
∥xn – x∗∥∥ + tn–M∗

=
(∥
∥xn– – x∗∥∥ –

∥
∥xn – x∗∥∥)(∥

∥xn– – x∗∥∥ +
∥
∥xn – x∗∥∥)

+ tn–M∗. (.)

Using condition (i), condition (iv), and (.) in (.), we obtain

lim
n→∞

∥
∥∇f (un) – ∇f

(

x∗)∥∥ = . (.)



Cai and Shehu Fixed Point Theory and Applications  (2015) 2015:7 Page 9 of 17

Using (.) in (.), we have

‖un – xn‖ ≤ ∥
∥un – x∗∥∥ –

∥
∥xn – x∗∥∥ + λn

〈

un – xn,∇f (un) – ∇f
(

x∗)〉

–λ
n
∥
∥∇f (un) – ∇f

(

x∗)∥∥

≤ (∥
∥xn– – x∗∥∥ + tn–

∥
∥u – x∗∥∥) –

∥
∥xn – x∗∥∥

+ λn
〈

un – xn,∇f (un) – ∇f
(

x∗)〉 – λ
n
∥
∥∇f (un) – ∇f

(

x∗)∥∥

=
∥
∥xn– – x∗∥∥ –

∥
∥xn – x∗∥∥ + tn–

∥
∥u – x∗∥∥∥

∥xn– – x∗∥∥ + t
n–

∥
∥u – x∗∥∥

+ λn
〈

un – xn,∇f (un) – ∇f
(

x∗)〉 – λ
n
∥
∥∇f (un) – ∇f

(

x∗)∥∥

≤ ∥
∥xn– – x∗∥∥ –

∥
∥xn – x∗∥∥ + tn–

∥
∥u – x∗∥∥∥

∥xn– – x∗∥∥ + t
n–

∥
∥u – x∗∥∥

+ λn
〈

un – xn,∇f (un) – ∇f
(

x∗)〉. (.)

By using (.) in (.), we see that

lim
n→∞

∥
∥PC

(

un – λn∇f (un)
)

– un
∥
∥ = lim

n→∞‖xn – un‖ = .

Suppose that p ∈ ww(un) and {unj} is a subsequence of {un} such that unj ⇀ p. Observe
that since limn→∞ ‖xn – un‖ = , we also have xnj ⇀ p. Using Lemma . and (.), we
have p ∈ F(T).

We next prove that p ∈ �. We may assume that λnj → λ; then we have  < λ < 
L . Set

S := PC(I – λ∇f ); then S is nonexpansive. Then we get

∥
∥PC(I – λ∇f )unj – unj

∥
∥

≤ ∥
∥PC(I – λ∇f )unj – PC(I – λnj∇f )unj

∥
∥ +

∥
∥PC(I – λnj∇f )unj – unj

∥
∥

≤ ∥
∥(I – λ∇f )unj – (I – λnj∇f )unj

∥
∥ +

∥
∥PC(I – λnj∇f )unj – unj

∥
∥

= |λnj – λ|∥∥∇f (unj )
∥
∥ +

∥
∥PC(I – λnj∇f )unj – unj

∥
∥ → .

It then follows from Lemma . that p ∈ F(S). But F(S) = �, therefore, we have p ∈ �.
Hence, p ∈ F(T) ∩ �.

Setting yn = ( – αn)xn + αnTxn, n ≥ , then from (.) we have

un+ = yn – tn(xn – u).

It then follows that

un+ = ( – tn)yn – tn(xn – yn – u)

= ( – tn)yn – tnαn(xn – Txn) + tnu. (.)

Also,

∥
∥yn – x∗∥∥ =

∥
∥xn – x∗ – αn(xn – Txn)

∥
∥



=
∥
∥xn – x∗∥∥ – αn

〈

xn – Txn, xn – x∗〉 + α
n‖xn – Txn‖
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≤ ∥
∥xn – x∗∥∥ – αn

[

( – k) – αn
]‖xn – Txn‖

≤ ∥
∥xn – x∗∥∥. (.)

By (.) and applying Lemma . to (.), we have

∥
∥xn+ – x∗∥∥ ≤ ∥

∥un+ – x∗∥∥ =
∥
∥( – tn)

(

yn – x∗) – tnαn(xn – Txn) – tn
(

x∗ – u
)∥
∥



≤ ( – tn)∥∥yn – x∗∥∥ – tn
〈

αn(xn – Txn) +
(

x∗ – u
)

, un+ – x∗〉

= ( – tn)∥∥yn – x∗∥∥ – tnαn
〈

xn – Txn, un+ – x∗〉 – tn
〈

x∗ – u, un+ – x∗〉

≤ ( – tn)∥∥xn – x∗∥∥ – tnαn
〈

xn – Txn, un+ – x∗〉 – tn
〈

x∗ – u, un+ – x∗〉

≤ ( – tn)
∥
∥xn – x∗∥∥ + tn

[

–αn
〈

xn – Txn, un+ – x∗〉 – 
〈

x∗ – u, un+ – x∗〉].

(.)

We observe that lim supn→∞{–〈x∗ – u, un+ – x∗〉} ≤ –〈x∗ – u, p – x∗〉 ≤  (since x∗ =
PF(T)∩�u) and αn〈xn – Txn, un+ – x∗〉 → . Therefore by Lemma ., ‖xn – x∗‖ →  and
consequently ‖un – x∗‖ → . That is, xn → x∗, n → ∞.

Case .
Assume that {‖xn – x∗‖} is not monotonically decreasing sequence. Set �n = ‖xn – x∗‖

and let τ : N →N be a mapping for all n ≥ n (for some n large enough) defined by

τ (n) := max{k ∈ N : k ≤ n,�k < �k+}.

Clearly, τ is a non-decreasing sequence such that τ (n) → ∞ as n → ∞ and

�τ (n)+ – �τ (n) ≥ , ∀n ≥ n.

After a similar conclusion from (.), it is easy to see that

‖xτ (n) – Txτ (n)‖ ≤ tτ (n)M
ατ (n)[( – k) – ατ (n)]

→ , n → ∞.

Thus,

‖xτ (n) – Txτ (n)‖ → , n → ∞.

By a similar argument as above in Case , we conclude immediately that

lim
n→∞

∥
∥PC

(

uτ (n) – λτ (n)∇f (uτ (n))
)

– uτ (n)
∥
∥ = lim

n→∞‖xτ (n) – uτ (n)‖ = .

Since {uτ (n)} is bounded, there exists a subsequence of {uτ (n)}, still denoted by {uτ (n)} which
converges weakly to p ∈ C. Observe that since limn→∞ ‖xτ (n) – uτ (n)‖ = , we also have
xτ (n) ⇀ p. Using Lemma . and the fact that ‖xτ (n) – Txτ (n)‖ → , n → ∞, we have p ∈
F(T). Similarly, we can show that p ∈ �. Therefore, p ∈ F(T) ∩ �. At the same time, we
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note from (.) that, for all n ≥ n (noting that  ≤ �τ (n)+ – �τ (n), ∀n ≥ n),

 ≤ ∥
∥xτ (n)+ – x∗∥∥ –

∥
∥xτ (n) – x∗∥∥

≤ tτ (n)
[

–
〈

ατ (n)(xτ (n) – Txτ (n)), uτ (n)+ – x∗〉 – 
〈

x∗ – u, uτ (n)+ – x∗〉 –
∥
∥xτ (n) – x∗∥∥],

∀n ≥ n,

which implies

∥
∥xτ (n) – x∗∥∥ ≤ –

〈

ατ (n)(xτ (n) – Txτ (n)), uτ (n)+ – x∗〉 – 
〈

x∗ – u, uτ (n)+ – x∗〉,

∀n ≥ n. (.)

Since {uτ (n)+} converges weakly to p as τ (n) → ∞ and ‖xτ (n) – Txτ (n)‖ →  as τ (n) → ∞,
we deduce from (.) (noting that x∗ = PF(T)∩�u) that

lim sup
n→∞

∥
∥xτ (n) – x∗∥∥ ≤ –

〈

x∗ – u, p – x∗〉 ≤ ,

which implies that

lim
n→∞

∥
∥xτ (n) – x∗∥∥ = .

Therefore,

lim
n→∞�τ (n) = lim

n→∞�τ (n)+ = .

Furthermore, if n ≥ n and n �= τ (n), it follows from the definition of τ (n) that τ (n) < n. It
is easy to see that �τ (n) ≤ �τ (n)+. On the other hand, since �j ≥ �j+ for τ (n) +  ≤ j ≤ n.
Therefore we obtain, for all n ≥ n,

 ≤ �n ≤ max{�τ (n),�τ (n)+} = �τ (n)+.

Hence lim�n = , that is, {xn} converges strongly to x∗. Furthermore, {un} converges
strongly to x∗. This completes the proof. �

Corollary . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Suppose that the minimization problem (.) is consistent and let � denote its solution set.
Assume that the gradient ∇f is L-Lipschitzian with constant L > . Let {tn} be a sequence
in (, ) and {λn} a sequence in (, 

L ) satisfy the following conditions:
(i) limn→∞ tn = ;

(ii)
∑∞

n= tn = ∞;
(iii)  < lim infλn ≤ lim supλn < 

L .
Then the sequence {xn} generated for fixed u ∈ C by x ∈ C,

xn+ = tnu + ( – tn)PC
(

xn – λn∇f (xn)
)

, n ≥ , (.)

converge strongly to x∗ ∈ �, where x∗ := P�u.
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Proof Taking T = I in Theorem ., we obtain the desired conclusion. �

Remark . Corollary . improves on Corollary . of Xu [] in the sense that the con-
ditions

∑∞
n= |tn+ – tn| < ∞ and

∑∞
n= |γn+ – γn| < ∞ assumed in Xu [] are dispensed

with in our Corollary ..

Corollary . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let T : C → C be a k- strictly pseudocontractive mapping such that F(T) �= ∅. Let {tn} be a
sequence in (, ) and {αn} a sequence in (, ( – k)( – tn)) ⊂ (, ) satisfying the following
conditions:

(i) limn→∞ tn = ;
(ii)

∑∞
n= tn = ∞;

(iii)  < lim infn→∞ αn ≤ lim supn→∞ αn <  – k.
Then the sequence {xn} generated for fixed u ∈ C by x ∈ C,

xn+ = tnu + ( – tn – αn)xn + αnTxn, n ≥ ,

strongly converges to a fixed point x∗ of T , where x∗ := PF(T)u.

Proof Taking f ≡  in Theorem ., we obtain the desired conclusion. �

Remark . Corollary . complements Theorem . of Li and Yao [].

We next apply the result in Theorem . to approximate the common fixed point of a
finite family of strictly pseudocontractive mappings, which is also a solution to minimiza-
tion problem (.) in real Hilbert spaces.

Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Suppose that the minimization problem (.) is consistent and let � denote its solution set.
Assume that the gradient ∇f is L-Lipschitzian with constant L > . For each i = , , . . . , N ,
let Ti : C → C be a ki-strictly pseudocontractive mapping such that

⋂N
i= F(Ti) ∩ � �= ∅.

Assume that {δi}N
i= is a finite sequence of positive numbers such that

∑N
i= δi = . Let {tn} be

a sequence in (, ), {αn} a sequence in (, ( – k)( – tn)) ⊂ (, ), k := max{ki : i = , , . . . , N},
and {λn} a sequence in (, 

L ) satisfying the following conditions:
(i) limn→∞ tn = ;

(ii)
∑∞

n= tn = ∞;
(iii)  < lim infn→∞ αn ≤ lim supn→∞ αn <  – k;
(iv)  < lim infn→∞ λn ≤ lim supn→∞ λn < 

L .
Then the sequences {un} and {xn} generated for fixed u ∈ C by u ∈ C,

{

xn = PC(un – λn∇f (un)),
un+ = ( – αn)xn + αn

∑N
i= δiTixn – tn(xn – u), n ≥ ,

(.)

converge strongly to x∗ ∈ ⋂N
i= F(Ti) ∩ �, where x∗ := P⋂N

i= F(Ti)∩�
u.
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Proof Define A :=
∑N

i= δiTi. Then, by the results in [, ], A is a k-strictly pseudocontrac-
tive mapping and F(A) =

⋂N
i= F(Ti). We can rewrite the scheme (.) as

{

xn = PC(un – λn∇f (un)),
un+ = ( – αn)xn + αnAxn – tn(xn – u), n ≥ .

Now, Theorem . guarantees that {xn} and {un} converge strongly to a common fixed
point of the family {Ti}N

i=, which is also a solution to minimization problem (.). �

3 Applications
In this section, we give an application of Theorem . to the split feasibility problem and
the convexly constrained linear inverse problem.

3.1 Split feasibility problem
The split feasibility problem (SFP, for short) was introduced by Censor and Elfving [].
The SFP problem has gained much attention of several authors due to its applications to
image reconstruction, signal processing, and intensity-modulated radiation therapy (see
[–]).

This SFP can be mathematically formulated as the problem of finding a point x with the
property

x ∈ C and Bx ∈ Q, (.)

where C and Q are nonempty, closed, and convex subsets of Hilbert space H and H,
respectively, and B : H → H is a bounded linear operator.

Clearly, x∗ is a solution to the split feasibility problem (.) if and only if x∗ ∈ C and
Bx∗ – PQBx∗ = . The proximity function f is defined by

f (x) =


‖Bx – PQBx‖ (.)

and we consider the constrained convex minimization problem

min
x∈C

f (x) = min
x∈C



‖Bx – PQBx‖. (.)

Then x∗ solves the split feasibility problem (.) if and only if x∗ solves the minimization
problem (.). In [], the CQ algorithm was introduced to solve the SFP,

xn+ = PC
(

I – λB∗(I – PQ)B
)

xn, n ≥ , (.)

where  < λ < 
‖B‖ and B∗ is the adjoint of B. It was proved that the sequence generated

by (.) converges weakly to a solution of the SFP.
We propose the following algorithm to obtain a strong convergence iterative sequence

to solve the SFP and the fixed point problem for a k-strictly pseudocontractive mapping T .
For any given u ∈ C, let the sequences {xn} and {un} be generated iteratively by u ∈ C,

{

xn = PC(I – λn(B∗(I – PQ)B + I)un),
un+ = ( – αn)xn + αnTxn – tn(xn – u), n ≥ ,

(.)
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where {tn}, {αn} ⊂ (, ), {αn} a sequence in (, ( – k)( – tn)) ⊂ (, ), and {λn} a sequence
in (, 

‖B‖ ) satisfying the following conditions:
(i) limn→∞ tn = ;

(ii)
∑∞

n= tn = ∞;
(iii)  < lim infn→∞ αn ≤ lim supn→∞ αn <  – k;
(iv)  < lim infn→∞ λn ≤ lim supn→∞ λn < 

‖B‖ .
We obtain the following convergence result for solving split feasibility problem (.) and
the fixed point problem for a k-strictly pseudocontractive mapping by applying Theo-
rem ..

Theorem . Let C and Q be nonempty, closed, and convex subset of real Hilbert space
H and H, respectively, and B : H → H be a bounded linear operator. Let f (x) = 

‖Bx –
PQBx‖ and let � = arg minx∈C f (x). Let T be a k-strictly pseudocontractive mapping of C
into itself such that F(T) ∩ � �= ∅. Let the sequences {xn} and {un} be generated by (.),
where {tn}, {αn} ⊂ (, ), and {λn} in (, 

‖B‖ ) satisfying the conditions (i)-(iv) above. Then
the sequences {xn} and {un} converge strongly to a solution x∗ of the split feasibility problem
(.) which is also a fixed point of a k-strictly pseudocontractive mapping T where x∗ :=
PF(T)∩�u.

Proof Using the definition of the proximity function f , we have

∇f (x) = B∗(I – PQ)Bx, (.)

and ∇f is Lipschitz continuous, that is,

∥
∥∇f (x) – ∇f (y)

∥
∥ ≤ L‖x – y‖, (.)

where L = ‖B‖.
Then we obtain

∇f = B∗(I – PQ)Bx

and ∇f is Lipschitzian with Lipschitz constant L := ‖B‖. Then the iterative scheme (.)
is equivalent to

{

xn = PC(un – λn∇f (un)),
un+ = ( – αn)xn + αnTxn – tn(xn – u), n ≥ ,

(.)

where {tn}, {αn} ⊂ (, ), {αn} a sequence in (, ( – k)( – tn)) ⊂ (, ), and {λn} a sequence
in (, 

L ) satisfying the following conditions:
(i) limn→∞ tn = ;

(ii)
∑∞

n= tn = ∞;
(iii)  < lim infn→∞ αn ≤ lim supn→∞ αn <  – k;
(iv)  < lim infλn ≤ lim supλn < 

L .
The desired conclusion follows from Theorem .. �
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3.2 Convexly constrained linear inverse problem
Consider the convexly constrained linear inverse problem (cf. [])

{

Ax = b,
x ∈ C,

(.)

where H and H are real Hilbert spaces and A : H → H is a bounded linear mapping
and b ∈ H. To solve (.), we consider the following convexly constrained minimization
problem:

min
x∈C

f (x) := min
x∈C



‖Ax – b‖. (.)

In general, every solution to (.) is a solution to (.). However, a solution to (.) may
not necessarily satisfy (.). Moreover, if a solution of (.) is nonempty then it follows
from Lemma . of [] that

C ∩ (∇f )– �= ∅.

It is well known that the projected Landweber method (see []) given by

{

x ∈ C,
xn+ = PC[xn – λA∗(Axn – b)], n ≥ ,

where A∗ is the adjoint of A and  < λ < α with α = 
‖A‖ , converges weakly to a solution of

(.). In what follows, we present an algorithm with strong convergence for solving (.)
and the fixed point problem for strictly pseudocontractive mapping.

Corollary . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Suppose that the convexly constrained linear inverse problem (.) is consistent and let �

denote its solution set. Let T be a k-strictly pseudocontractive mapping of C into itself such
that F(T)∩� �= ∅. Let {tn} be a sequence in (, ), {αn} a sequence in (, (–k)(–tn)) ⊂ (, ),
and {λn} a sequence in (, 

‖A‖ ) satisfying the following conditions:
(i) limn→∞ tn = ;

(ii)
∑∞

n= tn = ∞;
(iii)  < lim infn→∞ αn ≤ lim supn→∞ αn <  – k;
(iv)  < lim infn→∞ λn ≤ lim supn→∞ λn < 

‖A‖ .
Then the sequences {un} and {xn} generated for fixed u ∈ C by u ∈ C,

{

xn = PC(un – λnA∗(Aun – b)),
un+ = ( – αn)xn + αnTxn – tn(xn – u), n ≥ ,

converge strongly to x∗ ∈ F(T) ∩ �, where x∗ := PF(T)∩�u.

Proof Let f be defined by (.). Then from [] we have ∇f (x) = A∗(Ax – b), x ∈ H which
is L-Lipschitzian with constant L = ‖A‖. Thus, by Theorem . we obtain the required
assertion. �
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Remark . The convergence rate of the projection gradient method is at best linear. The
linear convergence is attained with Polyak’s stepsize and for an objective function with a
sharp set of minima. The linear convergence rate is not the best known rate. There are
methods with a superlinear (quadratic) rate such as the Newton method and the inte-
rior point method, which uses Newton’s directions. These methods, however, require f
to be twice differentiable among other conditions. The potential drawback of the projec-
tion gradient method is that it can be very slow when the gradient directions are almost
perpendicular to the directions pointing toward the optimal set �, corresponding to

∇f (xn)T(

xn – x∗) ≈ .

In this case, the method may exhibit zig-zag behavior, depending on the initial iterate x.
To overcome a possibly slow convergence of the gradient-projection method, the gradient
is often scaled. In this case, the method takes the form

xn+ = PC
(

xn – λn�n∇f (xn)
)

,

where �n is a diagonal matrix with positive entries on its diagonal, i.e., [�n]ii >  for all
i = , . . . , m and all n. For more details, see [, pp.-].
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