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Abstract
This paper employs a computational iterative approach known as the spectral local
linearization method (SLLM) to analyze the Hall effect on MHD flow and heat transfer
over an unsteady stretching permeable surface in the presence of thermal radiation
and heat source/sink. To demonstrate the reliability of our proposed method, we
made comparison with the Matlab bvp4c routine technique, and an excellent
agreement was observed. The governing partial differential equations are
transformed into a system of ordinary differential equations by using suitable
similarity transformations. The results are obtained for velocity, temperature, skin
friction and the Nusselt number.
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1 Introduction
Theoretical studies of magnetohydrodynamic flow and heat transfer over stretching sur-
faces have received great attention by virtue of their numerous applications in the fields
of metallurgy and chemical engineering. Such applications include geothermal reservoirs,
wire and fiber coating, food stuff processing, reactor fluidization, enhanced oil recovery,
packed bed catalytic reactors and cooling of nuclear reactors. The primary aim in extru-
sion is to maintain the quality of the surface of the extricate. When the magnetic strength
is strong, Hall currents cannot be neglected. In an ionized gas where the density is low
and/or the magnetic field is very strong, the conductivity normal to the magnetic field is
reduced due to the free spiraling of electrons and ions about the magnetic lines of force
before suffering collisions, and a current is induced in a direction normal to both elec-
tric and magnetic fields. Due to Hall currents, the electrical conductivity of the fluid be-
comes anisotropic and this causes the secondary flow. The Hall effect is important when
the Hall parameter, which is the ratio between the electron-cyclotron frequency and the
electron-atom-collision frequency, is high. Hall currents are of great importance in many
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astrophysical problems,Hall accelerators, Hall sensors and flows of plasma inMHDpower
generators.
Examples of such studies include Sakiadis [, ] who did pioneering work on boundary

layer flow on a continuously moving surface. Shateyi and Motsa [] carried out a numeri-
cal analysis of the problem of magnetohydrodynamic boundary layer flow, heat and mass
transfer rates on steady two-dimensional flow of an electrically conducting fluid over a
stretching sheet embedded in a non-Darcy porous medium in the presence of thermal ra-
diation and viscous dissipation. Shateyi [] investigated thermal radiation and buoyancy
effects on heat and mass transfer over a semi-infinite stretching surface with suction and
blowing. Singh et al. [] investigated two-dimensional unsteady flow of a viscous incom-
pressible fluid about a stagnation point on a permeable stretching sheet. Shateyi andMotsa
[] numerically investigated the unsteady heat, mass and fluid transfer over a horizontal
stretching sheet. More recently, Shateyi and Marewo [] studied the magnetohydrody-
namic boundary layer flow with heat and mass transfer of an UCM fluid over a stretching
sheet in the presence of viscous dissipation and thermal radiation. Jhankal [] considered
the problem of unsteady boundary layer and heat transfer over a stretching surface in the
presence of a transverse magnetic field.
Pal andMondal [] presented amodel to study the effects of temperature-dependent vis-

cosity and variable conductivity onmixed convective diffusion of species over a stretching
sheet. When the conducting fluid is an ionized gas, and the strength of the applied mag-
netic field is large, the conductivity normal to the magnetic field is reduced due to the free
spiraling of electrons and ions about the magnetic lines of force before collisions occur
and a current is induced in a direction normal to both electric and magnetic fields. This
phenomenon is known as the Hall effect or Hall current. The conductivity of the fluid is
anisotropic and the effect of Hall current cannot be neglected when the medium is rar-
efied or if a strong magnetic field is present. The study of MHD viscous flows with Hall
current has important applications in problems of Hall accelerators and sensors as well
as flight magnetohydrodynamics. Pop and Watanabe [] presented the problem of free
convection flow of a conducting fluid which is permeated by a transverse magnetic field
and the Hall effect is taken into account. Abd El-Aziz [] investigated the effect of Hall
currents on the flow and heat transfer of an electrically conducting fluid over an unsteady
stretching surface in the presence of a strong magnetic field.
Shateyi and Motsa [] numerically analyzed variable viscosity on magnetohydrody-

namic fluid flow and heat transfer over an unsteady stretching surface with the Hall ef-
fect. Pal [] studied the influence of Hall current and thermal radiation on flow and heat
transfer characteristics in a viscous fluid over an unsteady stretching permeable surface.
Zaman [] considered the effects of Hall current on the flow of an incompressible, un-
steady, viscous, MHD fluid with slip conditions. Lastly, Ali et al. [] investigated heat and
mass transfer of a steady flow of an incompressible electrically conducting fluid due to
stretching plate under the influence of an applied uniform magnetic field and the effects
of Hall current.
Governing equationsmodelingMHDflow and heat transfer over stretching surfaces are

highly nonlinear, thereby exact solutions are impossible to obtain. Therefore, numerical
solutions have always been developed and modified as a bid of getting more accurate and
stable solutions. The current study seeks to investigate the Hall effect on MHD flow and
heat transfer over an unsteady stretching permeable surface in the presence of thermal ra-
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diation and heat source/sink. We propose to numerically solve the present problem using
a recently developed iterative method known as the spectral local linearization method
(SLLM), Motsa []. The SLLM approach is based on transforming a nonlinear ordinary
differential equation into an iterative scheme. The iterative scheme is then blended with
the Chebyshev spectral method []. A similar approach to our current proposed method
can be found in Motsa and Shateyi [, ] and Motsa et al. [].

2 Mathematical formulation
We consider an unsteady two-dimensional laminar MHD boundary layer flow and heat
transfer of an incompressible, viscous and electrically conducting fluid over a continuously
moving stretching permeable surface. We take the x-axis along the stretching surface in
the direction of the motion, and the y-axis is perpendicular to the sheet in the outward
direction and the z-axis is transverse to the xy-plane. The flow is subjected to a transverse
magnetic field of strength B and the Hall current is taken into account in this study. The
effects of the Hall current give rise to the Lorentz force in the z-direction, which induces a
cross flow in this direction. We assume that there is no variation of flow and heat transfer
quantities in the z-direction. The temperature at the sheet is maintained at a prescribed
constant Tw. The flow is generated due to a stretching sheet which is caused by simultane-
ously applying two equal but opposite forces. The velocity is assumed to be proportional
to the distance from the origin. Under these assumptions, together with the usual bound-
ary layer approximations, the dimensional governing equations of continuity, momentum
and energy in the presence of a strong magnetic field, heat source and thermal radiation
become as follows:

∂u
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The associated boundary conditions to the current problem are the following:

u =Uw(x, t), v = Vw, T = Tw(x, t) at y = ,

u → , w → , T → T∞ as y→ ∞,
()

where u, v andw are the velocity components along x, y and z directions, respectively, and t
is the time.T is the temperaturewithin the fluid, cp is the specific heat at constant pressure,
α is the thermal diffusivity, ν is the kinematic viscosity of the fluid density, Tw(x, t) is the
temperature on the stretching surface, T∞ is the ambient temperature with Tw > T∞. We
have Vw = –(νUw/x)/f () representing the mass transfer at the surface with Vw >  for
injection and Vw <  for suction. We also have Uw(x, t) = ax/( – ct), where a (stretching
rate) and c are positive constants, with ct < . It is noted that the stretching rate a/( –
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ct) increases with time since a > . The surface temperature of the sheet varies with the
distance x from the origin and time t and takes the form

Tw(x, t) = T∞ +
bx

ν( – ct)/
, ()

where b is a constant with b ≥ .
Wemust remark that the particular forms ofUw and Tw(x, t) have been specifically cho-

sen in order to come up with similarity transformations which then transform the govern-
ing partial differential equations into a set of nonlinear ordinary differential equations.
Following Ishak et al. [], we introduce the following dimensionless functions f and θ ,

and the similarity variable η,

η =
(

b
ν( – ct)

) 

y, ψ(x, y, t) =

(
νb

 – ct

) 

xf (η),

T(x, y, t) = T∞ +
bx

ν( – ct) 
θ (η), B =

B


( – ct)
.

()

By using the Rosseland approximation, the radiative heat flux is given by

qr = –
σ ∗

K∗
∂T

∂y
, ()

where σ ∗ and K∗ are, respectively, the Stephan-Boltzman constant and the mean absorp-
tion coefficient. Assume that the temperature differences within the flow are small such
that T can be expressed as a linear function. Expanding T in a Taylor series about T∞
and neglecting higher order terms, we get

T ∼= T∞T – T
∞. ()

By using the above transformations, the governing partial differential equations are trans-
formed into a system of non-dimensional nonlinear and coupled ordinary differential
equations as follows:

f ′′′ + ff ′′ – f ′ –A
(
f ′ +



ηf ′′

)
–

M
 +m

(
f ′ +mg

)
= , ()

g ′′ + fg ′ – f ′g –A
(
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–

M
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(
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)
= , ()

(
 +



R
)

θ ′′ + Pr
(
f θ ′ – f ′θ

)
– Pr

A


(
θ + ηθ ′) + δθ = . ()

Here M = σB
/ρa is the magnetic parameter, A = c/a is a parameter that measures the

unsteadiness, Pr = ν/α is the Prandtl number, R = σ ∗T∞/kKs is the thermal radiation
parameter. The boundary conditions are as follows:

f () = fw, f ′() = , θ () = , g() = , ()

f ′ → , θ → , g →  as η → ∞, ()
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where f () = fw with fw <  or fw >  corresponding to injection or suction, respectively.
The physical engineering quantities of interest in this problem are the skin friction coef-
ficients in the x- and z-directions and the local Nusselt number, Nux which are defined as
follows:

Cfx = –
μ(∂u/∂y)y=

ρU
w

= –Re–/x f ′′(),

Cfz =
μ(∂w/∂y)y=

ρU
w

= Re–/x g ′(), ()

Nux =
xqw

κ(Tw – T∞)
,

where τw = μ( ∂u
∂y )y= is the wall shear stress, and qw = –κ( ∂T

∂y )y= is the surface heat flux,
where μ and κ are the dynamic viscosity and thermal conductivity, respectively.

3 Method of solution
3.1 Basic idea of the spectral local linearizationmethod (SLLM)
Consider the problem of finding Z = [Z(η),Z(η), . . . ,Zm(η)] that satisfies the system

Li +Ni =Hi, ()

of m differential equations, where i = , , . . . ,m, and each Hi is a function of η ∈ [a,b].
Also, Li and Ni are linear and nonlinear components, respectively.
Basically, the SLLM is an iterative method for solving differential equations such as ()

which begins with an initial approximation Z of Z. Successive application of the SLLM
generates approximations Z,Z, . . . , where Zr = [Z,r , . . . ,Zm,r] for each r = , , , . . . .
Upon linearizing nonlinear component Ni, differential equation () shall be solved nu-
merically using the Chebyshev spectral collocation method [].
First, let

Li|r+ +Ni|r+ =Hi ()

denote the ith differential equation () after the first r +  iterations of the SLLM. Let wr

be an n-tuple of Zi,r and its derivatives. If we assume that Ni is a function of wr only, then
linearization of Ni at wr is

Ni|r+ ≈Ni|r+ +∇Ni|r · (wr+ –wr), ()

which, upon inserting into equation () and re-arranging the result, gives

L|r+ +∇Ni|r ·wr+ =Hi +∇Ni|r ·wr –Ni|r . ()

Equation () shall be solved using the Chebyshev spectral collocation method. For the
sake of brevity, we leave out the details of this method. We urge the interested reader to
see, for example, [].
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3.2 Solving current problem using the SLLM
If we let f ′ = p, then equations ()-() become
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Equations ()-() together with the change of variable f ′ = pmay be written as
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where
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As an illustration we derive equation () when i = . In this case, equation () is
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which, upon substituting () and simplifying, becomes
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A similar approach for each i = , ,  yields

f ′
r+ = pr+, ()

g ′′
r+ –A

η


g ′
r+ –

(
A +

M
 +m

)
gr+ – prgr+ + frg ′

r+ +
Mm
 +m pr+ = , ()

http://www.boundaryvalueproblems.com/content/2014/1/170


Shateyi and Marewo Boundary Value Problems 2014, 2014:170 Page 7 of 17
http://www.boundaryvalueproblems.com/content/2014/1/170

(
 +



R
)

θ ′′
r+ – PrA
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θ ′
r+ +

(
δ –
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)
θr+ – Prprθr+ + Prfrθ ′
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Equations ()-() are subject to the boundary conditions

pr+() = , pr+(∞) = , ()

fr+() = fw, ()

gr+() = , gr+(∞) = , ()

θr+() = , θr+(∞) = , ()

respectively. Chebyshev differentiation [] replaces equations () through () with the
discrete form
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subject to the boundary conditions

fr+(τN ) = fw,

pr+(τN ) = , pr+(τ) = ,
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θr+(τN ) = , θr+(τ) = ,
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and O,  are zero matrices of order (N + )× (N + ), (N + )× , respectively. Before we
solve linear system (), we need to apply boundary conditions. This is easier to illustrate
using the equivalent form, equations ()-(), as follows:

⎛
⎜⎝

D

  · · · 
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B



⎞
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We choose initial approximations

f(η) = fw +  – e–η,

p(η) = θ(η) = e–η,

g(η) = ηe–η

that satisfy boundary conditions ()-() so that the SLLMgenerates subsequent approx-
imations fr , pr , gr , θr for each r = , , . . . .

4 Results and discussion
The numerical results iteratively generated by the SLLM for themain parameters that have
significant effects on the flow properties are presented in this section. All the SLLM results
presented in this work were obtained using N =  collocation points, and we are glad to
highlight that convergence was achieved in as few as six iterations. We take the infinity
value η∞ to be . The magnetic field is taken quite strong by assigning large values ofM
to ensure the generation ofHall currents. In order to validate our numericalmethod, it was
compared to MATLAB routine bvpc which is an adaptive Lobatto quadrature iterative
scheme.
In Table  we present a comparison between the SLLM approximate results and the

bvpc results for selected default values of the stretching parameter A. It can be clearly
seen from this table that there is an excellent agreement between the results from the two
methods. Also Table  shows that an increase in the unsteadiness parameter leads to an
increase in the skin-friction coefficients in both directions. Also the heat transfer gradient
increases as the values of the unsteadiness parameter increase. The negative values of f ′′()
mean that the solid surface exerts a drag force on the fluid. This is due to the development
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Table 1 Comparison of the SLLM results of –f ′′(0), g′(0), –θ ′(0) with those obtained by bvp4c
for different values of the unsteadiness parameter

A –f ′′(0) g′(0) –θ ′(0)
bvp4c SLLM bvp4c SLLM bvp4c SLLM

1 2.06334096 2.06334096 0.17551632 0.17551632 0.95973533 0.95973533
2 2.27277685 2.27277685 0.15185421 0.15185421 1.30758931 1.30758931
3 2.46649701 2.46649701 0.13459762 0.13459762 1.54422525 1.54422525

Table 2 Comparison of the SLLM results of –f ′′(0), g′(0), –θ ′(0) with those obtained by bvp4c
for different values of the magnetic parameter

M –f ′′(0) g′(0) –θ ′(0)
bvp4c SLLM bvp4c SLLM bvp4c SLLM

1 2.06334096 2.06334096 0.17551632 0.17551632 0.51730365 0.51730365
3 2.40059801 2.40059801 0.41757839 0.41757839 0.46087659 0.46087659
5 2.69187810 2.69187810 0.59380491 0.59380491 0.43117279 0.43117279

Table 3 Comparison of the SLLM results of –f ′′(0), g′(0), –θ ′(0) with those obtained by bvp4c
for different values of the Hall parameter

m –f ′′(0) g′(0) –θ ′(0)
bvp4c SLLM bvp4c SLLM bvp4c SLLM

0.1 2.20591638 2.20591638 0.03127850 0.03127850 0.49780303 0.49780303
0.5 2.15366831 2.15366831 0.13112526 0.13112526 0.50406091 0.50406091
1.0 2.06334096 2.06334096 0.17551632 0.17551632 0.51730365 0.51730365

of the velocity boundary layer which in the current study is caused solely by the stretching
sheet.
InTable wedisplay the effect of themagnetic parameter on the skin friction coefficients

and the Nusselt number. The magnetic parameter M represents the significance of the
magnetic field on the flow properties. As the magnetic strength increases, the dragging
effect is clearly seen by the significant increments in the skin friction. We also observe
that increasing the values of the Hartman number leads to the lowering of the values of
the Nusselt number. Application of a strong magnetic field reduces the velocity, which
in turn increases heat diffusion within the fluid flow. This physically explains why heat
transfer at the wall is reduced asM is increased.
Table  displays the influence of the Hall current on the skin friction coefficients as well

as the Nusselt number. The skin friction coefficient is reduced as the values of the Hall
current parameter increase. This explains why the skin friction coefficient in the axial
direction decreases. However, in the transverse direction the skin friction increases as the
Hall current increases. There is a small effect of the Hall current on heat transfer rate on
the stretching surface.
The effect of the unsteadiness parameter A on the axial velocity f ′(η) is presented in

Figure . It can be observed from this figure that the axial velocity profiles decrease as
A increases. Increasing the unsteadiness parameter A causes the velocity boundary layer
thickness to decrease. This in turnmay cause delays in transition from laminar to turbulent
flows.
The influence of the suction/injection parameter fw on the axial velocity is depicted

in Figure . The axial velocity is significantly influenced by this parameter. The velocity
boundary layer is greatly enhanced when fluid is injected (fw < ) into the flow system
thereby increasing the velocity profiles. However, removing fluid from the flow system

http://www.boundaryvalueproblems.com/content/2014/1/170
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Figure 1 Graph of the SLLM solutions for the horizontal velocity for different values of A, withM = 1,
Pr = 0.71, δ = 0.5, R = 1,m = 0.5, fw = 1.

Figure 2 Graph of the SLLM solutions for the horizontal velocity for different values of fw , withM = 1,
Pr = 0.71, δ = 0.5, R = 1,m = 0.5, A = 0.5.

through suction, as expected, drastically reduces the velocity profiles as can be clearly
seen in Figure .
The application of a magnetic field perpendicular to the flow produces a drag force

known as the Lorentz force. This force reduces the axial velocity as can be observed in Fig-
ure . Thus increasing the magnetic strength parameterM reduces the velocity boundary
layer and thereby reduces the velocity profiles.
The effect of the Hall current parameter m on the axial velocity is shown in Figure .

The velocity is enhanced as the values of m increase. However, the axial velocity profiles
approach their classical values when theHall current parameterm becomes large (m > .)

http://www.boundaryvalueproblems.com/content/2014/1/170
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Figure 3 Graph of the SLLM solutions for the horizontal velocity for different values of the magnetic
parameterM, with A = 0.5, Pr = 0.71, δ = 0.5, R = 1,m = 0.5, fw = 1.

Figure 4 Graph of the SLLM solutions for the horizontal velocity for different values of the Hall
parameterm, withM = 1, Pr = 0.71, δ = 0.5, R = 1, A = 0.5, fw = 1.

in our current study. Any further increase of the Hall current would make the magnetic
effect insignificant.
Figure  displays the effect of the unsteadiness parameter on the transverse velocity pro-

files. This parameter has very significant influence on the transverse velocity. It can clearly
be seen from this figure that the effect of increasing the unsteadiness parameter A is to
greatly reduce the transverse velocity g(η) near the plate. In Figure , we display the in-
fluence of the injection/suction parameter on the transverse velocity. Injecting/blowing
fluid into the flow system causes the transverse velocity profiles to significantly increase,
whereas suction, as expected, reduces the transverse velocity distribution.
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Figure 5 Graph of the SLLM solutions for the transverse velocity for different values of the
unsteadiness parameter A, withM = 1, Pr = 0.71, δ = 0.5, R = 1,m = 0.5, fw = 1.

Figure 6 Graph of the SLLM solutions for the transverse velocity for different values of fw , withM = 1,
Pr = 0.71, δ = 0.5, R = 1,m = 0.5, A = 0.5.

The influence of the magnetic parameter M on the transverse velocity is depicted in
Figure . One can clearly observe in this figure that the magnetic parameterM has a very
significant effect on the transverse velocity profiles. An increase in the values of M leads
to a huge increase in the values of the transverse velocity due to the Lorentz force which
acts in the direction hence tends to accelerate the fluid flow in the traverse direction.
The effect of the Hall current parameter on the transverse velocity is displayed in Fig-

ure . Increasing the values ofm causes the transverse velocity to rapidly increase. Figure 
shows the effect of the unsteadiness parameter A on the temperature profiles. Increasing
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Figure 7 Graph of the SLLM solutions for the transverse velocity for different values of the magnetic
parameterM, with A = 0.5, Pr = 0.71, δ = 0.5, R = 1,m = 0.5, fw = 1.

Figure 8 Graph of the SLLM solutions for the transverse velocity for different values of the Hall
parameterm, withM = 1, Pr = 0.71, δ = 0.5, R = 1, A = 0.5, fw = 1.

the values of A reduces the thermal boundary layer thickness thus reducing the fluid tem-
perature distribution.
In Figure  we have the effect of the heat source/sink parameter δ on the temperature

profiles. As expected, it is observed in this figure that the temperature in the boundary
layer increases with increasing values of δ. The heat absorption due to a uniform sink
(δ < ) leads to the reduction of the thermal boundary layer thickness, whereas this layer
increases significantly with increases in δ > .
Figure  shows the effect of injection/suction on the temperature profiles. Injecting

fluid into the flow system causes enhancement of the thermal boundary layer thickness.
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Figure 9 Graph of the SLLM solutions of the temperature profiles for different values of A, withM = 1,
Pr = 0.71, δ = 0.5, R = 1,m = 0.5, fw = 1.

Figure 10 Graph of the SLLM solutions of the temperature profiles for different values of the heat
source/sink parameter δ, withM = 1, Pr = 0.71, A = 0.5, R = 1,m = 0.5, fw = 1.

This in turn causes the temperature distribution in the flow system to greatly increase. On
the other hand, suction reduces the thermal boundary layer thickness.
Figure  shows that the thermal boundary layer becomes thicker when the values of

the magnetic parameter are increased. Application of the magnetic field gives rise to a
resistive-type force which slows down the motion of the fluid and in turn increases the
thermal boundary layer, hence increasing the temperature of the fluid.
Figure  is plotted to depict the influence of the thermal radiation parameter R on the

temperature profiles. We clearly observe that the temperature in the boundary layer in-
creases with increasing values of the thermal radiation parameter. This is due to the fact
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Figure 11 Graph of the SLLM solutions of the temperature profiles for different values of the
suction/injection parameter fw , withM = 1, Pr = 0.71, δ = 0.5, R = 1,m = 0.5, A = 0.5.

Figure 12 Graph of the SLLM solutions of the temperature profiles for different values of the
magnetic parameterM, with A = 0.5, Pr = 0.71, δ = 0.5, R = 1,m = 0.5, fw = 1.

that the divergence of the radiative heat flux increases as the Rosseland radiative absorp-
tion K∗ decreases, which in turn increases the rate of radiative heat transfer to the fluid.
Thus the presence of thermal radiation enhances thermal state of the fluid causing its
temperature to significantly increase.

5 Conclusion
The present work analyzed MHD unsteady flow and heat transfer of an electrically con-
ducting fluid over a stretching sheet in the presence of thermal radiation and the Hall ef-
fect. Much attention was given to trying to investigate how the velocity field, skin friction,
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Figure 13 Graph of the SLLM solutions of the temperature profiles for different values of the thermal
radiation parameter R, withM = 1, Pr = 0.71, δ = 0.5, A = 0.5,m = 0.5, fw = 1.

temperature distribution and heat transfer are influenced by the parameters of importance
in this study. The governing partial differential equations are transformed into a system of
nonlinear ordinary differential equations by using suitable similarity variables. The resul-
tant system of nonlinear ordinary differential equations is solved numerically by a recently
developed technique known as the spectral local linearization method. The accuracy of
the SLLM is validated against the MATLAB in-built bvpc routine for solving boundary
value problems. The following conclusions were drawn in our investigation.
• An excellent agreement was observed between our results and those obtained using
the bvpc routine technique giving confidence to our present results.

• The unsteadiness parameter A has significant effects on the velocity components and
temperature profiles. The maximum axial velocity, transverse velocity and
temperature profiles are attained when the flow is steady (A = ).

• Increasing the values of the magnetic field strength decreases the momentum
boundary layer thickness while increasing the thermal boundary layer thickness.

• The velocity components are enhanced as the Hall parameter increases.
• The fluid temperature increases with increasing values of thermal radiation as well as
a heat source.

• The heat transfer rate and the skin friction coefficient in the x-direction are increased
while the skin friction in the z-direction decreases as the unsteadiness parameter
increases.

• The skin friction coefficients are enhanced while the heat transfer rate is depressed by
increasing the values of magnetic strengths.
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