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1 Introduction

Assum1ngthatp>1 l+l—1 Amsby =0, a ={anlo, € P, b ={b,}2, €19, ||all, =
(O )P >0, and ||b||q > 0, we have the following Hardy-Hilbert’s inequality with the
best poss1ble constant —2%— (n B (cf. [1], Theorem 315):
(o] [o¢]
amb, T
_— bll,. 1
DI B s s el la (1)

S aub, T
> <= lall,l1bll; (0 <a<1), )
Tip

where the constant factor is still the best possible.

sm(n/p)
Also we have the followmg Mulholland’s inequality similar to (1) with the same best

(cf. [3] or [1], Th. 343, replacing =, b" by a,,, b,):

SR
(Z n1q> : (3)
n=2

Inequalities (1)-(3) are important in analysis and its applications (cf. [1, 2, 4-18]).

possible constant factor —*—
sin Jr/p

S

o0 [o¢] [o¢] dfn
2; HX: Inmn s1n(71/p) (Z mll’)
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Suppose that u;,v;> 0 (i,j e N={1,2,...}),
m n
Uy = Zﬂii Vi = Z Uj (}’I’l,l’l € N)’ (4)
i=1 j=1

we have the following Hardy-Hilbert-type inequality (cf. [1], Theorem 321, replacing
ulag. and vl?b, by a,, and b,): If a,,,b, > 0,0 <Y o, % <00,0< >0 ”Z‘%l < 00,
then

1 1
oo 00 ﬂmbn P 0 ﬂl:n p 0 bz q
< - — . (5)
; ; U, +V, sin(r/p) (; an‘l) (HZI: Z‘1>
For u; = v; =1 (i,j € N), inequality (5) reduces to (1).
In 2015, Yang [19] gave an extension of (5) as follows: If 0 < A1, A5 <1, A1+ A3 = A, { i} ey

and {v,};°; are positive and decreasing, with U, = Vi, = 00, then we have the following
inequality with the best possible constant factor 7/ sm(’”\1 ):

1 1
00 0 T [ 00 u];q(lkl)ldfn}p { 00 vg(lkz)lbz} q (6)
8 . A : : -1 : : -1 ‘
Zl Zn + V A sin(B5h) | = — vl

In this paper, by using the way of weight coefficients, the technique of real analysis,
and Hermite-Hadamard’s inequality, a new Hardy-Mulholland-type inequality with a best
possible constant factor is given as follows: If u; = vy = 1, {u )5, and {v,}52, are positive
and decreasing, with Uy, = Vo, = 00, we have the following inequality:

< > = u, T v
Zzlnau V sinjz )[z_;( ) ﬂ’,’,,i| |:Z< ) bZi| , 7

3
m=2 n=2 P Mm+1 =2 Un+l

which is an extension of (3). Moreover, the more accurate inequality of (7) and its extension
with multi-parameters and the best possible constant factors are obtained. The equivalent

forms, the reverses, the operator expressions and some particular cases are considered.

2 Some lemmas and an example
In the following, we agree that p # 0,1, I% + % =1,-1<y <0,0<A Ay <1, A1 + Ay = A,
Wi, vj >0 (i,j € N), with u; = vy =1, U, and V,, are defined by (4),

<<
a<l,
]M—— ]U—

<p<1

Ay by = 0, ||allpe, = Oy @ 2 (m)d)? and 18]l gw, = (X ey Wi (m)bik )4, where

U, \'*
®; (m) :=< m) (Inall,, =1,

m+1

Ve \*!
\le(n)::( > (InBV,)1=%271 (m,n € N\{1}).

n+l
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Lemmal I[fne N\{l},ae (n— %,n),f(x) is continuous in (n — %,n + %), and f'(x) is strictly

increasing in the intervals (n — %, a), (a,n) and (n,n + %), respectively, satisfying
flla-0)<f(a+0), f(n-0)<f(n+0), ©)
then we have the following Hermite-Hadamard's inequality (cf. [20]).

Proof Inview of f'(n—0) <f'(n+0) = lim,_,,+ f'(x) is finite, we set the linear function g(x)

as follows:

¢ i=f (-0 -m) +f(w), xe [n L ﬂ

Since f’(x) is strictly increasing in [n — %,a) and (a, n), then for x € [n — %,a),
f'(x) < lim f'(x) =f"(a—0) <f'(a+0)<f'(n-0);
for x € (a,n), f'(x) < lim,_, ,- f'(x) = f'(n — 0). Hence,

(f@) —g®) =f'(x)-f(n-0)<0, xe (n - %a) U (a, n).

Since f(x) — g(x) is continuous in (1 — %, n] with f(n) — g(n) = 0, it follows that

flx)-gx)>0, =xe€ (n— %,n)

In the same way, since f'(x) is strictly increasing in (1,7 + %), then for x € (n,n + %),
f'(x) > f'(n+0)>f'(n-0). Hence,

(f(x)—g(x)) =f'(x)-f'(n-0)>0, x€ (n,n+%>.

Since f(x) — g(x) is continuous in [n, 1 + %) with f(n) — g(n) = 0, it follows that

F(x) —g®) >0, xe(n,n+%).

Therefore, we have f(x) —g(x) >0,x € (n — %, n+ %)\{n}. Then we find

/f () ds> f nfg(x) dx=f(n),

2

namely, (9) follows. The lemma is proved. d

Note With the assumptions of Lemma 1, if (i) a € (n,n + %), f'(x) is strictly increasing
in the intervals (7 — %,n), (n,a) and (a,n + %), respectively, or (ii) a = n, f'(x) is strictly
increasing in the intervals (n — %, n) and (n,n + %), respectively, then in the same way, we
still can obtain (9).
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Example1 {u,,}5 ; and {v,}:°; are decreasing, we set functions (u(¢) := p,,, t € (m—1,m]
(meN),v(t):=v,, t€ (n-1,n] (n eN), and

x y
U(x) :=/0 ut)ydt (x>0), V() :=./0 v()dt (y>0). (10)

Then it follows that U(m) = U,,,, V(n) = V,,, U(0) = Uss, V(00) = Vs and

U'(x) = (%) = wm, x€(m—1,m),
V') =v()=v, yem-1n) (x,yeN).
ForO0<A <1,-1<y <0, weset

1
X+ Y 4yt =y

k. (x,y) := (x,y>0). (11)
We find

0 <Ky ()= / k(L) dt = / ki (£, 1) dt
0 0

00 p-1 L pa-l g pho-l
o P+1l+yltr -1 o l+y+(1-y)t*
1 gag-1 , fhg-1
A A 1 1 1
5/ dt = —+ — ) <00, (12)
0 1+y 1+y\A1 Ay

namely, K, (1) € R,. In the following, we express K, (A1) in other forms.

(i) For y = 0, we obtain

[} tkl—l 1 o0 L, (A1/A)-1
@ugi/ m=—/ Y dv=—" (13)
0 0

#+1 A v+l T asin(T)

(ii) for -1 < ¥ <0, 0 < 2L < 1, by the Lebesgue term by term integration theorem (cf.

1-y
[21]), we find

1 1 t—)uz—l + t—)\l—l
K,(\M) = / T dt
I-y ot 41

et 1 1 [(1eyp)
=1 +y ATz_lJr 1+y

= v
Ml-y) Jiz v+1[\1-y 1-y

1

1 /14y %4/WV%ld 1 /14y 74/wv%ld
= v+ ——dv
AMl-y)\1-y o v+1 AMl-py)\1-y o v+1

1+y

Ly Moy 22
1 vy 1 1+y\* My 1+y\* S

- — Vi T4 vi T | dv

AMl-y)Jo v+1[\1-y 1-y

oy by
1 1+y\* T 1 1+y\* T
= s (TTA + s (A

AMl-y)\1-y sin(Z2)  A(l-y)\1-y sin(%21)

Ity o~

Lty M 22
- /I‘V Z(—l)klﬁ[<—l+y) ' VATZ_l + (1+y) ' VA'AI_I] dav
M=) Jo = 1-y 1-y
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Ity

Mg
1 /H Z(Vzk_vzk+1) I+y\* SR
rMl-y)Jo 1-y

k=0

M 53
1 |:<1+7/>A (l+y>k:| T
= +
1+y[\1-y 1-y Asin(”TM)
Ity 1 )‘TZ

1 /HZ(VZk—VZk“) I+y AVATL1+ L+y
AM1+y) Jo 1-y 1-y

k=0

>~

A
)6 T
= +
L+y[\1-¥ I-y Asin(%1)

[ee] k+1
1 1 1 1
- Y (2 + ; (14)
lL+y & 1-vy A+ Xy Ak + A

(iii) for A = Ay = %, -1<y <0, we find

1-y 1

A L g wZed 4 (1ey\2 PGP du
(22 [ Ay
2 o 1+y +(1-yp)tt AMl+y)\1-y 0 1+u?

1 1
4 1 2 1- 2
= Ty arctan Y . (15)
AMl+y)\1-y 1+y

For fixed m € N\{1}, we define the function f(y) as follows:

fO) =k (Inal,,InpV()), ye (n - %,n + %) (ne N\{1}).

Then f(y) is continuous in (n — %, n+ %) (n € N\{1}). There exists a unified number yy > %
satisfying V' (yo) = %Um.
(i) If yo € (n— 3,1 + 1), we find

1 1
fly) = | T el AW V) n=3<y<Jo
L <yY<n+ 1
(1-y) In* aly+1+y) In* BV ()’ Yo<y 2°
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For yy # n, we obtain for y # n that

—2(1-p)V' () In*~1 gV ()

£y = V)A+y) In* ally+(1-y) In* BV ()12’
M1+ V') It BV (y)

VO)[(A-y) In* ally+(1+y) In* BV ()2’

1
n—5<y<Yo,

Yo<y<nm+ %;
for yo # n, we obtain for y = n that

—A(1-y)v, In* 1 BV,

/ _ _ V,,[(Ier)ln)‘ozLIW,Jr(l—y)]nA ﬂ\/n]2’
f (}’Z 0) - —A(1+y)v, In*1 BV,
Vul(1=y) In* @l +(1+y) In* BV, ]2

1
n— 35 <y<Yo,

1
Yo<y<n+s,

“A(1=y)ye1 W1 BV, 1
n—s<y<

F(n+0) = ] Val@sn) i ally 0y 5V, 127 2 <Y<Yo

—A(1+Y) U1 In* 77 BV 1

Val0oy) It allpys(ap) I gV, 27 YO <Y <+ 3.

Since0 <A <1,-1<y <0,(1-y)u, > (1+y)vu1, in view of the above results, we find

f'(n—=0) <f'(n+0) (n+yo), and f'(y) (< 0) is strictly increasing in (n — %,yo), (¥0, 1) and
(n,m+ %) for yo <morin (n— %,n), (n,90) and (yo,n + %) for yo > n.

We obtain
Pl 0)= —A(1=y)V'(yo - 0)In*"! BV (y0)
’ Vo)l + ) In* al, + (1 - y) In* BV (y)]2
=M1 =y)V (3o - 0)In* " BV (yo)
- V(yo)2In* all,)? ’
/ A-1
f,(y0+0): A0+ y)V'(yo + 0)In*~ BV (y0)

V(o)1 - y)In* al, + (1+y)In* BV (y0)]2

~ =M1+ )V (yo + 0)In*! BV (o)
- V(yo)(2In* all,)? '

Since for yo = n, V'(y9 — 0) = v,,, V'(yo + 0) = v,y1 and for yo #n, V'(yo — 0) = V'(y0), then
we have A(1 - y)V'(y0 — 0) = L(1 + y)V' (30 + 0), namely, f'(yo — 0) <f"(yo + 0).

(ii) If yo ¢ (m — %,n + %), then it follows that f'(y) = ‘\/,/—((yy))diyk,\(lnaum,lnﬂ\/(y)) <0,y¢€
(n— %,n + %)\{n}. We still can find that

w d ,
;_nd_yk* (Inall,, n BV () . =f'(n-0)

Un+l

Vi

<f'n+0)= diykk(lnaum,lnﬁV(y)) ,

y=n

and f(y) (< 0) is strictly increasing in (n — %, n) and (n,n + %).

Therefore, f(y) satisfies the conditions of Lemma 1 with Note. So does g(y) =

SO

VO A0 Hence, by (9), we have

dy (neN\{1}). (16)

k. (Inall,,In BV;,) / & (Inacl,,,, In BV (y))
V, %2 gV, wmy o Vo) I 2 V()
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Definition 1 Define the following weight coefficients:

Up+1 11’1)Ll O(Um

o0
(g, m) = Z/q(lnaum,lnﬁ\/n) Vo2 g,

n=2

m e N\{1},

(17)
Mm+1 ln)hz ,3 Vn

00
w(kl,n) = Z/q(lnaum,lnﬂ\/n)m

m=2

, neN\{1}

Lemma2 If{u,}5 ; and {v,}52, are decreasing and U, = Vi = 00, then for m,n € N\{1},
we have the following inequalities:

w(ha,m) <K, (M), (18)

@ (M, 1) < K, (A1), (19)
where K, (A1) is determined by (12).
Proof Forye (n- —,n + )\{n} Une1 < V' (9), by (16), we find

Uper I U,

w(hg, m) < Z/ lnaUm,lnﬁV(y))W dy

0o n+7 \%4 ln“ Olum
< Z/ ) I(A(]naum:]nﬂv(y))()))l——)»z Y
n=2 2 V(y) In ﬁV(y)
00 V'(y) In* all,

:‘/§ kk(lnozL[m,ln,BV(y))V(y)hll_—kzﬂv()/) Y

Setting ¢ = ln’w(y) in the above, since BV/(3) = (1 + 2) > 1 and V (y ; dy = (Inall,,)dt, we
find

o0
(Ao, m) < / k(L) de = K, (M).
0
Hence, we obtain (18). In the same way, we obtain (19). O

Note For example, p, = v, = n% (0 < o <1) satisfies the conditions of Lemma 2.

Lemma 3 With regard to the assumptions of Lemma 2, (i) for m,n € N\{1}, we have

K, (A) (1= 0(ha, m)) < w(ho, m), (20)
K, (M) (1=, n) <@ (A, 1), (21)
where

st < - (1, REC2)) 12 B (1 4 uy)
2’ -

A K, (A1) In*? & u,

_of L 1-p
= O(ln’\zaum> € (0,1) <9(m) € < B0 ,1)), (22)
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Ina(1 4
bt ) I (L + o)

MK, (M) In™ BV,

1 l-«a
=0 gy ) <00 (v () ) 29

(ii) for any ¢ > 0, we have

19()‘17 }’l) =

o]

Mm+1 1 1
_1 ow |, 24
% U, " all, c[lnca(um) +0( )] (24)
oo
Un+l 1 1 ~
- oW |. 25
22: V,In" BV, C[lncﬂ(1+vz) et )} 22

Proof In view of 8 <1 and 8 > 1+1}2/2 > ﬁ, it follows that 1 < % +1 < 2. Since, by

Examples 1, g() is strictly decreasing in [#, n + 1), then for m € N\ {1}, we find

Uper I @,

Vo) gv() Y

V() In™ all,
Vo) I pvG)

o0 / .
:/ k)\(lnal,[m,ln'gv(y)) V()’)ln al,,

. Vo) I gV

2 V'(y) In*t ald,,,
- /;ﬂu ks (Incll,, In BV (3)) Vo) I BV () y.

o n+l
oA, m)> Y / k. (Inall,, In BV (y))
n=2 "

= /oo k)h(lnaumrlnﬂv(y))
2

Setting t = 22Y0) ye have lnﬁV(% +1) =B+ %vg) =0 and

Inally, ’

> _ > V'(y) I all,,
a)(kz,m)>/(; k)\_(l,t)t}”Z ldt_/}lgl};+lkk(]naum,lnﬁv()/))m y
= Ky () (1= 0(h,m),
where
_InMal, [? V'(y)
9()\.2,}’71) = m %+1 kA(lnaUm,lnﬁV(y))W dy (S] (0, 1).

In view of the integral mid-value theorem, for fixed m € N\{1}, there exists 0(m) €
(%, 1) such that

In™ al,, 2 V'(y)
71()/()»1) k. (Inaell,, In BV (1 + 6(m))) /ﬂﬂ —V(y) BV o) dy

Buy

9()\.2,1’1’1) =

_ In™ o,
MKy, (A1)

~ 1 (1 InBVA +0@m))\ In*2 B(1 + vy)
T K, 00) 7 Inall, n*2 all,

ki (Inally, In BV (1 +6(m))) In*2 B(1 + vy)
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Hence, we find

1 In*2 B(1 + vy)

0<0(Ay,m) < )
(A, m) Ky (A1) (1+ y)In*2 ally,

1
In*2 ally,

namely, 8 (Aa, m) = O(
(21) and (23).

For ¢ > 0, we find

)- Then we obtain (20) and (22). In the same way, we obtain

o]

[ee}

Hms1 Hm Ha Z Hm

E < E = +

U, ally, ~ g Uy all, U ally 5= U, all,
7% > f "o U(x)dx

—_— +

l+c
3 Y m-1 leln OlUm

1) i/”‘ U'(x)dx
<t _—
U, In"* all, = JIm1 Ux) In**ali(x)
o /'°° U'(x)dx

=—> 4 _

Uy all, J, U@ al(x)
_ M2 N 1

Uy In"*all, cln®a(l+ us)

1|: 1 M2 ]
= - +C »
clina(l+uy) U In"*all,

S - S m+1 U (x) dx S m+1 U'(x) dx
Z M1+cl = Z/ (1+)c > 2/ (1+)c
— U, In"*all, —~Jw  U,In"al, —~ Jn  Ux)In"al(x)
m=2 m=2 m=
_ / & U'(x)dx ~ 1
L u@malx)  clnCal+py)’
Hence, we obtain (20). In the same way, we obtain (21). O

Lemma 4 If-1<y <0,0< A,y <1, Ay + Ay <1, K, (A1) is determined by (12), then for
0 <8 <min{Ay, Ay}, we have

K,(\ £8) =K, (A1) +0(1) (5 —0%). (26)

Proof We find, for 0 < § < min{Ay, A2},

17 |
th+1+yp|th -1

1 -1 _ g8 00 M-l _

:/ #dt+/ Ldt

o L+y+(1-y)t 1 1=y +1+y)t

1 1 0o ph-l(p8 _q

< /t*l‘l(l—t‘s)dmf 2D g,
L+ylJo 1 t*

1 1 1 1 1 N
= —— + -—)—=>0 (5—>0%).
1+)/ )\.1 )\.1+(S )\.2—8 )\.2

|K, (0 +8) = K, ()| < /
0
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In the same way, we find

1 1 [} t)\l—l 1-— t—5
6,6 = 8) = K, ()| < - [ f (e~ 1) dt + / —(tx )dt]
0 1

1 11 1 1 .
= -——+t—- -0 (8—)0),
1+]/ )\.1—8 )\.1 )\.2 )\.2+(S

and then we have (26).

3 Main results

In the following, we also set

- u, \*1!
d>k(m)::a)()»2,m)( m) (lnotLIm)"’(l_“)_1 (meN\{l}),

m+1

- v, \I!
U, (1) := @ (Ay, n)(v ) (InBV,)1=*21 (e N\{1}).

n+l

Theorem 1

(i) Forp>1, we have the following equivalent inequalities:

I:=Y " " k(nal,InV,)aub, < lal,,s, 15],4,

n=2 m=2

P

e 1 »
{Z sz;ll n))P- 1V (Zkk(]naum’]“ﬂv) ) } <llall,s,;

(ii) for 0 <p <1 (orp<0), we have the equivalent reverse of (28) and (29).

Proof (i) By Holder’s inequality with weight (cf. [20]) and (17), we have

[e'e) p
(Z ky(Inall,,,InB Vy,)am)

m=2

o U}r{q 1 Um (-r1)/q, 1P
- ka(lnaum,lnﬁ\/n)< (nally,) 1/“"+1am)
2 (InBV,,)A-*)lpy 1,

(npv,) 02yt T
X ul/q —A)/ 1/p
i (In L, ) -0 ’Ivm1
00 p-1 (1-M)plq
<Y ki ks (Inald,, In g,y L0 Un) Ol g
(In BV 2415,

m
m=2

-1
(In BV,)U-*2)a- 1>um+1T

o0
X ky(Inal,,,InBV,)
[Z ’ Up(Inally) -1 u0 )

m=2

(@ (A, m)PV, U U (I L, ) -0 0D

=——— - 7 1 ' 1n BV,
= npv,pty, 2 ka( nall,,IngV,) (lnﬁVn)lf’xzﬂfn_jl

§&'E

Page 10 of 19

(28)

(29)

(30)
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Then, by (16), we find

00 00 -1 (1-A1)(p-1) p

u, (Inal, 1

1< |3 klnats,, inpy,y 2t (0e ) o,
n=2 m=2 (ln,BV )1 Azﬂm 1

1
0 oo p-1 1-21)(p-1) p
e L (Inaeld,,) 4
D S
(ln ﬂ Vn)li)L2 :u“m+1

1

o0 U pfl P
= Zw()%m)< ’”) (na )"0l |
"

m+1

and then (29) follows.
By Hélder’s inequality (cf. [20]), we have

1
[ BV ey h & (@ (G, )1V,
1:2[ - 1722’9 Inoll,,InBV,)ay || ——2—22 1 T
e | (@ (A, m)VV, (InBV,)"* Pu f
=<Jlbl,g,-

Then, by (29), we have (28).
On the other hand, assuming that (28) is valid, we set
. Unn InP*2 lﬁv <

p-1
o LY. > k(inall,,npV,)a ) , neN\{1).

=2

Page 11 of 19

(31

b|

(33)

Then we find J? = ||b||Z®_ .If J =0, then (29) is trivially valid; if J = oo, then by (31), (29)

takes the form of equality. Suppose that 0 < J < co. By (28), it follows that

161,35,

q
161 5 =) =1 < llal,,

q-1 _ N
16175, =7 < lall, 3,

and then (29) follows, which is equivalent to (28).

(34)

(35)

(ii) For 0 < p <1 (or p < 0), by the reverse Holder’s inequality with weight (cf. [20]) and
(13), we obtain the reverse of (30) (or (30)), then we have the reverse of (31), and then the
reverse of (29) follows. By Holder’s inequality (cf. [20]), we have the reverse of (32), and

then by the reverse of (29), the reverse of (28) follows.

On the other hand, assuming that the reverse of (28) is valid, we set b, as (33). Then
we find J? = ||b||q .If ] = 0o, then the reverse of (29) is trivially valid; if ] = 0, then by the
reverse of (31), (29) takes the form of equality (= 0). Suppose that 0 < J < co. By the reverse
of (28), it follows that the reverses of (34) and (35) are valid, and then the reverse of (29)

follows, which is equivalent to the reverse of (28).

O

Theorem 2 Ifp > 1, (i}, and {v,}52, are decreasing, Uy = Voo = 00, ||allp0, € R, and

”b”;‘h € R,, then we have the following equivalent inequalities:

o0 o0
DY k(nally, In V) auby < Ky (M)lallye, 16w,

n=2 m=2

(36)



Yang and Chen Journal of Inequalities and Applications (2017) 2017:163 Page 12 of 19

) [ p 1%
Uns —
/1:={ > —Vlln“”ﬂvn(E jkx(lnaum,lnﬁvn)am)} <K,(M)lallye,,  (37)

n=2 n m=2

where the constant factor K, (A1) is the best possible.

Proof Using (18) and (19) in (28) and (29), we obtain the equivalent inequalities (36) and
(37).
For ¢ € (0, min{pA;, p(1 - 13)}), we set A; = A — £ 5 (€(0,1)), ho=ho+ 5 (€(0,1)), and

Ay 1= ——— Kot In* al, = = K1 In '\1_15_’_1011,1,,,,
m U,
En — Un+11 )»2 P 1/3‘/ Un+1 Az———l ﬁ\/ (38)
Vi n

Then, by (24), (25) and (21), we have

7 i Mm+1 %’ i Untl
lallp,0; 101l g0, = TR 1
= U, I al, V,In'* BV,

e B oa i oa ‘
‘E[lnaa(nm)” ()} [1n8ﬁ(1+v2)+8 ()] ’

ii ky(Inal,,,In BV, )by
n=2 m=2
a3t

In*1t BV,

Mg

In*2 BV,
(Inal,,In BV, )M}@

U, In* ™ o,

n

> Un+1w()‘-lr l’l) = 1 Un+l
22: V,Inf BV, = = (M);(l_o<1nil ﬂV,)) V,In** BV,
~ > Upl > 1 Un+l
:1<y()\1) |:n22: v, IHHI,BVH - nz;o<lnxl+%+l ﬂvn> V, i|
= le (il)[; +&(0Q) - 0(1))}.
e In® B(1 + vy)

If there exists a positive constant K < K, (;) such that (36) is valid when replacing
K, (1) by K, then, in particular, we have el < eKllallp,o, ||é||q,\p)h, namely,
1

€ 1 ~
(=5 [ +eo0-0m)]

1 ’ 1 ~ q

In view of (26), it follows that K, (1;) < K(¢ — 0%). Hence, K = K|, (A1) is the best possible
constant factor of (36).
Similarly to (32), we still can find the following inequality:

I</bllgw,. (39)
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Hence, we can prove that the constant factor K, (1;) in (37) is the best possible. Otherwise,
we would reach the contradiction by (39) that the constant factor in (36) is not the best
possible. d

Remark1 (i) For « = 8 =11in (36) and (37), setting

-1
= (2 )" gyt
Mm1
Ve \!
Vi (n) = (U d ) (In v,)10—72)-1 (m,n e N\{1}),
n+1

we have the following equivalent Mulholland-type inequalities:

ii b <Ky, )@l gy 1611, (40)
— 4= It Uy, + 10"V, + y | In* Uy, — 10t V| ’ ’

o0 v 00 4 p 117
n+l Ao—1 m
E In V, P*2 E
[ vn( Y <m=2 1n*um+1nkvn+y|1nkum—1nkvn|) }

X

n=2
<1<y()\1)||ﬂ”p,¢); (4'1)
(40) is an extension of (7) and the following inequality (for A =1, A; = é, Ay=4,y = 0):

1 1
9] 00 Py 00 p-1 P
Upil sl a, T u,,
E In V, "2 E _— E o I 42
|: Vn ( ! ) (m2 In Um Vn) i| ) Sll’l(%) |:m2 (Mm-*—l) ami| ( )

n=2

(ii) For A =1, A = %1 0= }7 in (36) and (37), we have the following equivalent inequali-

ties:

Amby,
—~ In(eBU,V,) +y|In “Um|

<f<w<;>[i_<;ﬂ>' ()]

m=2 n

00 v 00 a P
n+l m
{22 Vi LX; 1n(aﬁumvn)+y|1n°g(,:"|] }

N\ |/ u, \** ’
- m D
o (S0 ]

m=2

n=

S

where

1 -1 -1 1
1 tr +ta 1 1+y\¢ 1+y b
Ky —-):= dt = + | — -
q o l+y+(1—-y)t l+y | \1-y 1-y sin(Z)

1 & 1+y\*/ 1 1
- Z(—l)k< ”) ( _ 1). (45)
1+y & 1-y k+; k+ -

ST
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(iii) For y =0, (43) reduces to the following more accurate Hardy-Mulholland-type in-

equality (7):
o] a. b T o] u p-1 }a 0 V. q-1 %
mUn m P n b ' 16
;; In(aBU,, V) < sin(%) [%(M»«u) am] [;(vm) n} (46)

In particular, for u; = v; = 1 (i,j € N), (46) reduces to the following more accurate Mulhol-
land’s inequality (% <a,pB<1):

ST

o0 0 ﬂmbn - 00 ) 00 L %
20 In(afmn) sin(Z) (,,; m 1”’4:) (; n' b3> : (47)

m=2 n=2

Forp>1, \I’i_p(n) = ”‘”/—;‘(ln BV,)P*271, we define the following normed spaces:

bpa, = {a = A{amlps lalpe, <o},
lyw, = {b = {ba}y2a; Ibllgw, <00},

N o,
lp,q,;#? = {C = {cn} e ||C||p,\l,ifp < OO}

Assuming that a = {a,,}5;_, € |, 0, , setting
c=lealy  eni= Y ki(nally,InBV,)a,,n € N\{1},
m=2

we can rewrite (37) as follows:

llell, y1-» < Ky (W)l allp.0, < 00,

namely, c € lp'\yi_p.

Definition 2 Define a Hardy-Mulholland-type operator T': [, ¢, — lp yl» as follows: For

any a = {au};,. € lpe,, there exists a unique representation Ta = ¢ € lp‘ Wl Define the

formal inner product of Tz and b = {b,} 52, € [y, as follows:

(Ta,b) =) (Z k. (Inacly, In ﬁVn)um) by. (48)

n=2 \m=2

Then we can rewrite (36) and (37) as follows:
(Ta, b) < Ky (M) llallp,0, 1514w, » (49)
I1Tall - < Ky (A)lallpe, - (50)
171\1")L
Define the norm of operator T as follows:

1 Zall 10

IT|:= sup
a0)elye, alp;
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Then, by (50), we find || T'|| < K, (1;). Since the constant factor in (50) is the best possible,
we have

M-l pho-l

1
ITI =K, (M) = /0 m dt. (51)

4 Somereverses
In the following, we also set

~ U p-1
Q;.(m):= (1- 90»2#71))( - ) (Inal,,)P- -1,

m
+1 (52)
- v, \!
Yi(n):= (1- ﬂ(kl,n))( ) (In V)12 (m,n € N\{1}).
n+l
For 0 < p <1or p <0, we still use the formal symbols ||all 5, , [|16]l4v, , lall,q, and ”b”q,:ﬁ

et al.

Theorem 3 If0<p <1, {(m})oe, and {v,}52, are decreasing, Uy = Voo = 00, |la|lpe, € R,
and ||b||Z,\I,A € R, then we have the following equivalent inequalities with the best possible
constant factor K, (A1):

oo o0
0N knally,In BV,)amb, > K, (M)lall, g, 5], (53)
n=2 m=2
~ oo PYp
n+l1 Ao —1
{;THINW ,BV,,(%kA(lnaUm,lnﬂVn)am) } > Ky (M)lall,g, - (54)

Proof Using (20) and (19) in the reverses of (28) and (29), since

S
ST

(w(ho,m))? > (K, (Al))zl’ (1-6(hy,m)? (0<p<l),
(@) > (K, () (q<0),
and
1 1

K00 @ompt <P

we obtain equivalent inequalities (53) and (54).
For ¢ € (0, min{pA1, p(1 — A2)}), we set A1, Az, &, and b, as (38). Then, by (24), (25) and
(19), we find

lall, g, 15w,

1 1
_ i (=002, m)pma " i Up+1 !
Uy, 0™ all,, =V, In'** BV,

m=2

00 00 ’ 0 7
p q
Mm+1 Hm+1 Un+1
= Yo Yo
(Z U, In'* all, ( U, In"* %2+ g, >) (n_z V,In'* g V,,)

m=2
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1
q
)

1 1 g 1 -
- [m re(0a)- Ol‘”} [W ' 80‘”]

s le )
=3 ku(nally,In BV,)amb,

U, I all, | Va

| me1 | b2 Vi n+
- Z[Zkk(lnaum,lnﬂvy,)%} Dl el gy,

n=2 Lm=2
= U,,+IW(5\1,VI) by = Un+l
I e
e+l Y o+l
— Vuln™" BV, = Vuln™" BV,
1 ~ 1 ~
=-K,(M)| —————+e0(Q1)|.
€ 2 1)|:1n‘,3(1+v2) +e0( ):|

If there exists a positive constant K > K, (1;) such that (53) is valid when replacing

K, (A1) by K, then, in particular, we have el > eK||allp,e, ||l~9||q,\pk, namely,

K-S —1 L om
V(l‘i)[hfﬂa+vg+8 ]

! ’ 1 )
e row -0 [z 200

q

It follows that K, (A1) > K (¢ — 0%). Hence, K = K, (1) is the best possible constant factor
of (53).

The constant factor K, (1;) in (54) is still the best possible. Otherwise, we would reach
the contradiction by the reverse of (39) that the constant factor in (53) is not the best

possible. O
Remark 2 Foro =8 =1, set
- ki.(1, —m(llez[e(m))) In*2(1 + vy) 1
0(ra, m) = - =0 €(0,1) (6(m) €(0,1)),
(A2, m) oK, () n2U, <ln/\2 um> ©.1) (66m € (0,1))
- . u, \7*!
0= (1=, (2 ) s 00
Mm+1
It is evident that (53) and (54) are extensions of the following equivalent inequalities:
o0 [o¢]
0N k(nly, n Viamby > Ky ()llall, g, 151g., (55)
n=2 m=2
00 v 00 PYp
:Z 71 21y, (Z ko, (In U, In V,,)am) } > K, (0a)llall, g, (56)
n=2 n m=2
where the constant factor K, (1;) is the best possible.
Theorem 4 If p < 0, {iy}e and {v,};2, are decreasing, Uy, = Voo = 00, ||allp0, € R,

and ”b”Z,‘IIA € R, then we have the following equivalent inequalities with the best possible
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constant factor K, (A1)

Page 17 of 19

> klinall,InBV,)anb, > K, ()lallye, 16l 7, (57)

n=2 m=2

1

e ) T "7
R {3 S kilinath, npVan ) > K Gllalye,. (59)
n m=2

— (L= 0GPV,

Proof Using (18) and (21) in the reverses of (28) and (29), since

==
-

(a)()‘Z’ I’I’l))
(@ (1, 1))

> (K,(M))? (p<0),

> (K, (1)) i (1- 0(/\1,;4))% (0<g<1),

Q=

and

1 5 1 5 0
|:(Ky()\1))p_l(1 - ﬁ(kl,”))p_l} ” [(W(M»”))’H] b <0),

we obtain equivalent inequalities (57) and (58).
For ¢ € (0, min{gAy,q(1 — A1)}), we set M=A+s (e (0,1)), Ay = Ay — 9 (€ (0,1)), and

~ Mm+1 /vLm+1 _5_1

Ay = Bmil jphi-e- Yall, = In* all,,
u, Um

= Un+l | 5o—ee Un+l | ap—£-1

b, := ——1n**1 gV, = In*2"a7" BV,
n n

Then, by (24), (25) and (18), we have

l@llp,o, 101l 5,

1 1
_ i Mm+1 v Z (1 - ﬁ()\lr n))vn+1 1
= U, In"* al,, V, In'*¢ BV,

n=2

[ee] i [ee] [ee] .
p q
Mm+1 Un+l Un+l
- 2 e E E O
<m=2 U, ln1+8aUm> ( V,In"™** gV, — (v In**¢ BV, ))

1

- E[E; + eO(l)T [% +e(0) - Ol(l))] q’

In® o (1 + o) In® B(1 + vy)

1= i i k. (Inal,, In BV,,)admby,

n=2 m=2
e o In* o ll, -
= Z[ka(lnaum,]nﬁvn)v - n- ‘ :| Mlﬂ?l
m=2| n=2 Vn lnli)\zlgvi’l Um In all
,um+1a)()"2:m) Him+1
= Z 1 8+1 I( ()‘1)2 ] 5*‘1
m= 2
1 - 1
=—-K,(A — +e0(1) |.
P 2 1)|:11‘1£,3(1+U2) ( ):|
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If there exists a positive constant K > K, (;) such that (57) is valid when replacing
K, (A1) by K, then, in particular, we have el > eK||allp,o, I

e 1
(o5 et 200

1 » 1 ) 1

It follows that K, (A;) > K (¢ — 0%). Hence, K = K, (1) is the best possible constant factor
of (57).
Similarly to the reverse of (32), we still can find that

;1> namely,

1> L|lb| (59)

a1

Hence, the constant factor K, (A1) in (58) is still the best possible. Otherwise, we would
reach the contradiction by (59) that the constant factor in (57) is not the best possible. [J

Remark 3 Fora =8 =1, set

In(Les(n)
g, DI+ po)

1
MK, () InnpY, :O<znxzum)€(°’1) (9(1) € (0,1)),

~ - V. gq-1
Vi(n) = (1 - 9(A, n))( " ) (In V70221,

Un+l

O, n) =

It is evident that (57) and (58) are extensions of the following equivalent inequalities:

DY kinly, In Vi)amby > Ky (a)llallpg, 1615, (60)
n=2 m=2
A1 Y
= Untl In?"2~ Vn >
_ ky(InU,,,In V,)a,, > K, (M) llallpg, (61)
{22: Vi(1 =D (31, 1)) (% ' e

where the constant factor K, (1;) is the best possible.

5 Conclusions

In this paper, by using the way of weight coefficients, the technique of real analysis, and
Hermite-Hadamard’s inequality, a more accurate Hardy-Mulholland-type inequality with
multi-parameters and a best possible constant factor is given by Theorems 1, 2, and the
equivalent forms are considered. The equivalent reverses with the best possible constant
factor are obtained by Theorems 3, 4. Moreover, the operator expressions and some par-
ticular cases are considered. The method of weight coefficients is very important, which
helps us to prove the main inequalities with the best possible constant factor. The lemmas
and theorems provide an extensive account of this type of inequalities.
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