Hwang et al. *Journal of Inequalities and Applications* (2016) 2016:184 DOI 10.1186/s13660-016-1125-x Journal of Inequalities and Applications a SpringerOpen Journal

RESEARCH

Open Access

CrossMark

A rank formula for the self-commutators of rational Toeplitz tuples

In Sung Hwang¹, An Hyun Kim^{2*} and Sumin Kim¹

*Correspondence: ahkim@changwon.ac.kr ²Department of Mathematics, Changwon National University, Changwon, 641-773, Korea Full list of author information is available at the end of the article

Abstract

In this paper we derive a rank formula for the self-commutators of tuples of Toeplitz operators with matrix-valued rational symbols.

MSC: Primary 47B20; 47B35; 47A13; secondary 30H10; 47A57

Keywords: block Toeplitz operators; jointly hyponormal; bounded type functions; rational functions; self-commutators

1 Introduction

Let \mathcal{H} and \mathcal{K} be complex Hilbert spaces, let $\mathcal{B}(\mathcal{H},\mathcal{K})$ be the set of bounded linear operators from \mathcal{H} to \mathcal{K} , and write $\mathcal{B}(\mathcal{H}) := \mathcal{B}(\mathcal{H},\mathcal{H})$. For $A, B \in \mathcal{B}(\mathcal{H})$, we let [A, B] := AB - BA. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be normal if $[T^*, T] = 0$, hyponormal if $[T^*, T] \ge 0$. For an operator $T \in \mathcal{B}(\mathcal{H})$, we write ker T and ran T for the kernel and the range of T, respectively. For a subset \mathcal{M} of a Hilbert space \mathcal{H} , cl \mathcal{M} and \mathcal{M}^{\perp} denote the closure and the orthogonal complement of \mathcal{M} , respectively. Also, let $\mathbb{T} \equiv \partial \mathbb{D}$ be the unit circle (where \mathbb{D} denotes the open unit disk in the complex plane \mathbb{C}). Recall that $L^{\infty} \equiv L^{\infty}(\mathbb{T})$ is the set of bounded measurable functions on \mathbb{T} , that the Hilbert space $L^2 \equiv L^2(\mathbb{T})$ has a canonical orthonormal basis given by the trigonometric functions $e_n(z) = z^n$, for all $n \in \mathbb{Z}$, and that the Hardy space $H^2 \equiv H^2(\mathbb{T})$ is the closed linear span of $\{e_n : n \ge 0\}$. An element $f \in L^2$ is said to be analytic if $f \in H^2$. Let $H^{\infty} := L^{\infty} \cap H^2$, *i.e.*, H^{∞} is the set of bounded analytic functions on \mathbb{D} .

We review the notion of functions of bounded type and a few essential facts about Hankel and Toeplitz operators and for that we will use [1-4].

For $\varphi \in L^{\infty}$, we write

$$\varphi_+ \equiv P\varphi \in H^2$$
 and $\varphi_- \equiv \overline{P^{\perp}\varphi} \in zH^2$,

where P and P^{\perp} denote the orthogonal projection from L^2 onto H^2 and $(H^2)^{\perp}$, respectively. Thus we may write $\varphi = \overline{\varphi_-} + \varphi_+$. We recall that a function $\varphi \in L^{\infty}$ is said to be of *bounded type* (or in the Nevanlinna class \mathcal{N}) if there are functions $\psi_1, \psi_2 \in H^{\infty}$ such that

 $\varphi(z) = \frac{\psi_1(z)}{\psi_2(z)}$ for almost all $z \in \mathbb{T}$.

© 2016 Hwang et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

We recall [5], Lemma 3, that if $\varphi \in L^{\infty}$ then

$$\varphi$$
 is of bounded type $\iff \ker H_{\varphi} \neq \{0\}.$ (1.1)

Assume now that both φ and $\overline{\varphi}$ are of bounded type. Then from the Beurling's theorem, ker $H_{\overline{\varphi_-}} = \theta_0 H^2$ and ker $H_{\overline{\varphi_+}} = \theta_+ H^2$ for some inner functions θ_0, θ_+ . We thus have $b := \overline{\varphi_-} \theta_0 \in H^2$, and hence we can write

$$\varphi_{-} = \theta_0 \overline{b}$$
 and similarly $\varphi_{+} = \theta_{+} \overline{a}$ for some $a \in H^2$. (1.2)

By Kronecker's lemma [3], p.183, if $f \in H^{\infty}$ then \overline{f} is a rational function if and only if rank $H_{\overline{f}} < \infty$, which implies that

$$\overline{f}$$
 is rational $\iff f = \theta \overline{b}$ with a finite Blaschke product θ . (1.3)

Let $M_{n\times r}$ denote the set of all $n \times r$ complex matrices and write $M_n := M_{n\times n}$. For \mathcal{X} a Hilbert space, let $L^2_{\mathcal{X}} \equiv L^2_{\mathcal{X}}(\mathbb{T})$ be the Hilbert space of \mathcal{X} -valued norm square-integrable measurable functions on \mathbb{T} and let $L^{\infty}_{\mathcal{X}} \equiv L^{\infty}_{\mathcal{X}}(\mathbb{T})$ be the set of \mathcal{X} -valued bounded measurable functions on \mathbb{T} . We also let $H^2_{\mathcal{X}} \equiv H^2_{\mathcal{X}}(\mathbb{T})$ be the corresponding Hardy space and $H^{\infty}_{\mathcal{X}} \equiv H^{\infty}_{\mathcal{X}}(\mathbb{T}) = L^{\infty}_{\mathcal{X}} \cap H^2_{\mathcal{X}}$. We observe that $L^2_{\mathbb{C}^n} = L^2 \otimes \mathbb{C}^n$ and $H^2_{\mathbb{C}^n} = H^2 \otimes \mathbb{C}^n$.

For a matrix-valued function $\Phi \equiv (\varphi_{ij}) \in L^{\infty}_{M_n}$, we say that Φ is of *bounded type* if each entry φ_{ij} is of bounded type, and we say that Φ is *rational* if each entry φ_{ij} is a rational function.

Let $\Phi \equiv (\varphi_{ij}) \in L_{M_n}^\infty$ be such that Φ^* is of bounded type. Then each $\overline{\varphi}_{ij}$ is of bounded type. Thus in view of (1.2), we may write $\varphi_{ij} = \theta_{ij}\overline{b}_{ij}$, where θ_{ij} is inner and θ_{ij} and b_{ij} are coprime, in other words, there does not exist a nonconstant inner divisor of θ_{ij} and b_{ij} . Thus if θ is the least common multiple of $\{\theta_{ij} : i, j = 1, 2, ..., n\}$, then we may write

$$\Phi = (\varphi_{ij}) = (\theta_{ij}\overline{b}_{ij}) = (\theta\overline{a}_{ij}) \equiv \theta A^* \quad (\text{where } A \equiv (a_{ii}) \in H^2_{M_n}).$$
(1.4)

In particular, $A(\alpha)$ is nonzero whenever $\theta(\alpha) = 0$ and $|\alpha| < 1$.

For $\Phi \equiv [\varphi_{ij}] \in L^{\infty}_{M_n}$, we write

$$\Phi_+ := \left[P(\varphi_{ij}) \right] \in H^2_{M_n} \quad \text{and} \quad \Phi_- := \left[P^{\perp}(\varphi_{ij}) \right]^* \in H^2_{M_n}.$$

Thus we may write $\Phi = \Phi_{-}^{*} + \Phi_{+}$. However, it will often be convenient to allow the constant term in Φ_{-} . Hence, if there is no confusion we may assume that Φ_{-} shares the constant term with Φ_{+} : in this case, $\Phi(0) = \Phi_{+}(0) + \Phi_{-}(0)^{*}$. If $\Phi = \Phi_{-}^{*} + \Phi_{+} \in L_{M_{n}}^{\infty}$ is such that Φ and Φ^{*} are of bounded type, then in view of (1.4), we may write

$$\Phi_+ = \theta_1 A^* \quad \text{and} \quad \Phi_- = \theta_2 B^*, \tag{1.5}$$

where θ_1 and θ_2 are inner functions and $A, B \in H^2_{M_n}$. In particular, if $\Phi \in L^{\infty}_{M_n}$ is rational then the θ_i can be chosen as finite Blaschke products, as we observed in (1.3). For simplicity, we write H^2_0 for $zH^2_{M_n}$.

We now introduce the notion of Hankel operators and Toeplitz operators with matrixvalued symbols. If Φ is a matrix-valued function in $L^{\infty}_{M_n}$, then $T_{\Phi}: H^2_{\mathbb{C}^n} \to H^2_{\mathbb{C}^n}$ denotes Toeplitz operator with symbol Φ defined by

$$T_{\Phi}f := P_n(\Phi f) \quad \text{for } f \in H^2_{\mathbb{C}^n},$$

where P_n is the orthogonal projection of $L^2_{\mathbb{C}^n}$ onto $H^2_{\mathbb{C}^n}$. A Hankel operator with symbol $\Phi \in L^{\infty}_{\mathcal{M}_n}$ is an operator $H_{\Phi}: H^2_{\mathbb{C}^n} \to H^2_{\mathbb{C}^n}$ defined by

$$H_{\Phi}f := J_n P_n^{\perp}(\Phi f) \quad \text{for } f \in H^2_{\mathbb{C}^n},$$

where P_n^{\perp} is the orthogonal projection of $L_{\mathbb{C}^n}^2$ onto $(H_{\mathbb{C}^n}^2)^{\perp}$ and J_n denotes the unitary operator from $L_{\mathbb{C}^n}^2$ onto $L_{\mathbb{C}^n}^2$ given by $J_n(f)(z) := \overline{z}f(\overline{z})$ for $f \in L_{\mathbb{C}^n}^2$. For $\Phi \in L_{M_{n\times m}}^\infty$, write

$$\widetilde{\Phi}(z) := \Phi^*(\overline{z}).$$

A matrix-valued function $\Theta \in H^{\infty}_{M_{n\times m}}$ is called *inner* if $\Theta^* \Theta = I_m$ almost everywhere on \mathbb{T} , where I_m denotes the $m \times m$ identity matrix. If there is no confusion we write simply I for I_m . The following basic relations can easily be derived:

$$T_{\Phi}^* = T_{\Phi^*}, \qquad H_{\Phi}^* = H_{\widetilde{\Phi}} \quad \left(\Phi \in L_{M_n}^{\infty}\right); \tag{1.6}$$

$$T_{\Phi\Psi} - T_{\Phi}T_{\Psi} = H_{\Phi^*}^* H_{\Psi} \quad \left(\Phi, \Psi \in L_{M_n}^{\infty}\right); \tag{1.7}$$

$$H_{\Phi}T_{\Psi} = H_{\Phi\Psi}, \qquad H_{\Psi\Phi} = T^*_{\widetilde{\Psi}}H_{\Phi} \quad \left(\Phi \in L^{\infty}_{M_n}, \Psi \in H^{\infty}_{M_n}\right). \tag{1.8}$$

In 2006, Gu *et al.* [6] have considered the hyponormality of Toeplitz operators with matrix-valued symbols and characterized it in terms of their symbols.

Lemma 1.1 (Hyponormality of block Toeplitz operators [6]) For each $\Phi \in L^{\infty}_{M_n}$, let

$$\mathcal{E}(\Phi) := \left\{ K \in H_{M_n}^{\infty} : \|K\|_{\infty} \le 1 \text{ and } \Phi - K \Phi^* \in H_{M_n}^{\infty} \right\}.$$

Then T_{Φ} is hyponormal if and only if Φ is normal and $\mathcal{E}(\Phi)$ is nonempty.

For a matrix-valued function $\Phi \in H^2_{M_{n\times r}}$, we say that $\Delta \in H^2_{M_{n\times m}}$ is a *left inner divisor* of Φ if Δ is an inner matrix function such that $\Phi = \Delta A$ for some $A \in H^2_{M_{m\times r}}$. We also say that two matrix functions $\Phi \in H^2_{M_{n\times r}}$ and $\Psi \in H^2_{M_{n\times m}}$ are *left coprime* if the only common left inner divisor of both Φ and Ψ is a unitary constant, and that $\Phi \in H^2_{M_{n\times r}}$ and $\Psi \in H^2_{M_{m\times r}}$ are *right coprime* if Φ and Ψ are left coprime. Two matrix functions Φ and Ψ in $H^2_{M_n}$ are said to be *coprime* if they are both left and right coprime. We note that if $\Phi \in H^2_{M_n}$ is such that det $\Phi \neq 0$, then any left inner divisor Δ of Φ is square, *i.e.*, $\Delta \in H^2_{M_n}$ (*cf.* [7]). If $\Phi \in H^2_{M_n}$ is such that det $\Phi \neq 0$, then we say that $\Delta \in H^2_{M_n}$ is a *right inner divisor* of Φ if Δ is a left inner divisor of Φ .

Let $\{\Theta_i \in H_{M_n}^{\infty} : i \in J\}$ be a family of inner matrix functions. The greatest common left inner divisor Θ_d and the least common left inner multiple Θ_m of the family $\{\Theta_i \in H_{M_n}^{\infty} : I \in J\}$

 $i \in J$ are the inner functions defined by

$$\Theta_d H^2_{\mathbb{C}^p} = \bigvee_{i \in J} \Theta_i H^2_{\mathbb{C}^n}$$
 and $\Theta_m H^2_{\mathbb{C}^q} = \bigcap_{i \in J} \Theta_i H^2_{\mathbb{C}^n}.$

Similarly, the greatest common right inner divisor Θ'_d and the least common right inner multiple Θ'_m of the family { $\Theta_i \in H^{\infty}_{M_n} : i \in J$ } are the inner functions defined by

$$\widetilde{\Theta}'_d H^2_{\mathbb{C}^r} = \bigvee_{i \in J} \widetilde{\Theta}_i H^2_{\mathbb{C}^n} \text{ and } \widetilde{\Theta}'_m H^2_{\mathbb{C}^s} = \bigcap_{i \in J} \widetilde{\Theta}_i H^2_{\mathbb{C}^n}.$$

The Beurling-Lax-Halmos theorem guarantees that Θ_d and Θ_m exist and are unique up to a unitary constant right factor, and Θ'_d and Θ'_m are unique up to a unitary constant left factor. We write

$$\begin{split} \Theta_d &= \text{left-g.c.d.}\{\Theta_i : i \in J\}, \qquad \Theta_m = \text{left-l.c.m.}\{\Theta_i : i \in J\}, \\ \Theta'_d &= \text{right-g.c.d.}\{\Theta_i : i \in J\}, \qquad \Theta'_m = \text{right-l.c.m.}\{\Theta_i : i \in J\} \end{split}$$

If n = 1, then left-g.c.d.{·} = right-g.c.d.{·} (simply denoted g.c.d.{·}) and left-l.c.m.{·} = right-l.c.m.{·} (simply denoted l.c.m.{·}). In general, it is not true that left-g.c.d.{·} = right-g.c.d.{·} and left-l.c.m.{·} = right-l.c.m.{·}.

If θ is an inner function we write I_{θ} for θI_n and $\mathcal{Z}(\theta)$ for the set of all zeros of θ .

Lemma 1.2 Let $\Theta_i := I_{\theta_i}$ for an inner function θ_i $(i \in J)$.

(a) $left-g.c.d.\{\Theta_i: i \in J\} = right-g.c.d.\{\Theta_i: i \in J\} = I_{\theta_d}$, where $\theta_d = g.c.d.\{\theta_i: i \in J\}$.

(b) *left-l.c.m.* { $\Theta_i : i \in J$ } = *right-l.c.m.* { $\Theta_i : i \in J$ } = I_{θ_m} , where $\theta_m = l.c.m.$ { $\theta_i : i \in J$ }.

Proof See [7], Lemma 2.1.

In view of Lemma 1.2, if $\Theta_i = I_{\theta_i}$ for an inner function θ_i ($i \in J$), we can define the greatest common inner divisor Θ_d and the least common inner multiple Θ_m of the Θ_i by

$$\Theta_d \equiv \text{g.c.d.}\{\Theta_i : i \in J\} := I_{\theta_d}, \text{ where } \theta_d = \text{g.c.d.}\{\theta_i : i \in J\}$$

and

 $\Theta_m \equiv \text{l.c.m.}\{\Theta_i : i \in J\} := I_{\theta_m}, \text{ where } \theta_m = \text{l.c.m.}\{\theta_i : i \in J\}.$

Both Θ_d and Θ_m are *diagonal-constant* inner functions, *i.e.*, diagonal inner functions, and constant along the diagonal.

By contrast with scalar-valued functions, in (1.4), I_{θ} and A need not be (right) coprime. If $\Omega = \text{left-g.c.d.}\{I_{\theta}, A\}$ in the representation (1.4), that is,

 $\Phi = \theta A^*$,

then $I_{\theta} = \Omega \Omega_{\ell}$ and $A = \Omega A_{\ell}$ for some inner matrix Ω_{ℓ} (where $\Omega_{\ell} \in H^2_{M_n}$ because det $(I_{\theta}) \neq 0$) and some $A_l \in H^2_{M_n}$. Therefore if $\Phi^* \in L^{\infty}_{M_n}$ is of bounded type then we can write

$$\Phi = A_{\ell}^* \Omega_{\ell}, \quad \text{where } A_{\ell} \text{ and } \Omega_{\ell} \text{ are left coprime.}$$
(1.9)

In this case, $A_{\ell}^* \Omega_{\ell}$ is called the *left coprime factorization* of Φ and write, briefly,

$$\Phi = A_{\ell}^* \Omega_{\ell} \quad \text{(left coprime)}. \tag{1.10}$$

Similarly, we can write

$$\Phi = \Omega_r A_r^*, \quad \text{where } A_r \text{ and } \Omega_r \text{ are right coprime.}$$
(1.11)

In this case, $\Omega_r A_r^*$ is called the *right coprime factorization* of Φ and we write, succinctly,

$$\Phi = \Omega_r A_r^* \quad \text{(right coprime)}. \tag{1.12}$$

In this case, we define the *degree* of Φ by

$$\deg(\Phi) := \dim \mathcal{H}(\Omega_r),$$

where $\mathcal{H}(\Theta) := H^2_{\mathbb{C}^n} \ominus \Theta H^2_{\mathbb{C}^n}$ for an inner function Θ . It was known (*cf.* [8], Lemma 3.3) that if θ is a finite Blaschke product then I_{θ} and $A \in H^2_{M_n}$ are left coprime if and only if they are right coprime. In this viewpoint, in (1.10) and (1.12), Ω_ℓ or Ω_r is I_{θ} (θ a finite Blaschke product) then we shall write

$$\Phi = \theta A^*$$
 (coprime).

On the other hand, we recall that an operator $T \in \mathcal{B}(\mathcal{H})$ is said to be subnormal if T has a normal extension, *i.e.*, $T = N|_{\mathcal{H}}$, where N is a normal operator on some Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ such that \mathcal{H} is invariant for N. The Bram-Halmos criterion for subnormality [9, 10] states that an operator $T \in \mathcal{B}(\mathcal{H})$ is subnormal if and only if $\sum_{i,j} (T^i x_j, T^j x_i) \ge 0$ for all finite collections $x_0, x_1, \ldots, x_k \in \mathcal{H}$. It is easy to see that this is equivalent to the following positivity test:

$$\begin{pmatrix} [T^*, T] & [T^{*2}, T] & \dots & [T^{*k}, T] \\ [T^*, T^2] & [T^{*2}, T^2] & \dots & [T^{*k}, T^2] \\ \vdots & \vdots & \ddots & \vdots \\ [T^*, T^k] & [T^{*2}, T^k] & \dots & [T^{*k}, T^k] \end{pmatrix} \ge 0 \quad (\text{all } k \ge 1).$$

$$(1.13)$$

Condition (1.13) provides a measure of the gap between hyponormality and subnormality. In fact the positivity condition (1.13) for k = 1 is equivalent to the hyponormality of *T*, while subnormality requires the validity of (1.13) for all *k*. For $k \ge 1$, an operator *T* is said to be *k*-hyponormal if *T* satisfies the positivity condition (1.13) for a fixed *k*. Thus the Bram-Halmos criterion can be stated thus: *T* is subnormal if and only if *T* is *k*-hyponormal for all $k \ge 1$. The notion of *k*-hyponormality has been considered by many authors aiming at understanding the bridge between hyponormality and subnormality. In view of (1.13), between hyponormality and subnormality there exists a whole slew of increasingly stricter conditions, each expressible in terms of the joint hyponormality of the tuples $(I, T, T^2, ..., T^k)$. Given an *n*-tuple $\mathbf{T} = (T_1, ..., T_n)$ of operators on \mathcal{H} , we let $[\mathbf{T}^*, \mathbf{T}] \in \mathcal{B}(\mathcal{H} \oplus \cdots \oplus \mathcal{H})$ denote the *self-commutator* of **T**, defined by

$$\begin{bmatrix} \mathbf{T}^*, \mathbf{T} \end{bmatrix} := \begin{pmatrix} [T_1^*, T_1] & [T_2^*, T_1] & \dots & [T_n^*, T_1] \\ [T_1^*, T_2] & [T_2^*, T_2] & \dots & [T_n^*, T_2] \\ \vdots & \vdots & \ddots & \vdots \\ [T_1^*, T_n] & [T_2^*, T_n] & \dots & [T_n^*, T_n] \end{pmatrix}.$$

By analogy with the case n = 1, we shall say [11, 12] that **T** is *jointly hyponormal* (or simply, *hyponormal*) if $[\mathbf{T}^*, \mathbf{T}] \ge 0$, *i.e.*, $[\mathbf{T}^*, \mathbf{T}]$ is a positive-semidefinite operator on $\mathcal{H} \oplus \cdots \oplus \mathcal{H}$.

Tuples $\mathbf{T} \equiv (T_{\Phi_1}, \dots, T_{\Phi_m})$ of block Toeplitz operators T_{Φ_i} $(i = 1, \dots, m)$ will be called a (block) Toeplitz tuples. Moreover, if each Toeplitz operator T_{Φ_i} has a symbol Φ_i which is a matrix-valued rational function, then the tuple $\mathbf{T} \equiv (T_{\Phi_1}, \dots, T_{\Phi_m})$ is called a rational Toeplitz tuple. In this paper we will derive a rank formula for the self-commutator of a rational Topelitz tuple.

2 The results and discussion

For an operator $S \in \mathcal{B}(\mathcal{H})$, $S^{\sharp} \in \mathcal{B}(\mathcal{H})$ is called the Moore-Penrose inverse of *S* if

$$SS^{\sharp}S = S$$
, $S^{\sharp}SS^{\sharp} = S^{\sharp}$, $(S^{\sharp}S)^* = S^{\sharp}S$, and $(SS^{\sharp})^* = SS^{\sharp}$.

It is well known [13], Theorem 8.7.2, that if an operator *S* on a Hilbert space has a closed range then *S* has a Moore-Penrose inverse. Moreover, the Moore-Penrose inverse is unique whenever it exists. On the other hand, it is well known that if

$$S := \begin{bmatrix} A & B \\ B^* & C \end{bmatrix} \quad \text{on } \mathcal{H}_1 \oplus \mathcal{H}_2$$

(where the \mathcal{H}_i are Hilbert spaces, $A \in \mathcal{B}(\mathcal{H}_1)$, $C \in \mathcal{B}(\mathcal{H}_2)$, and $B \in \mathcal{B}(\mathcal{H}_2, \mathcal{H}_1)$), then

$$S \ge 0 \quad \iff \quad A \ge 0, C \ge 0, \text{ and } B = A^{\frac{1}{2}}DC^{\frac{1}{2}} \text{ for some contraction } D;$$
 (2.1)

moreover, in [14], Lemma 1.2, and [15], Lemma 2.1, it was shown that if $A \ge 0$, $C \ge 0$, and ran A is closed then

$$S \ge 0 \quad \Longleftrightarrow \quad B^* A^{\sharp} B \le C \text{ and } \operatorname{ran} B \subseteq \operatorname{ran} A,$$

$$(2.2)$$

or equivalently [12], Lemma 1.4,

$$\left| \langle Bg, f \rangle \right|^2 \le \langle Af, f \rangle \langle Cg, g \rangle \quad \text{for all } f \in \mathcal{H}_1, g \in \mathcal{H}_2 \tag{2.3}$$

and furthermore, if both A and C are of finite rank then

$$\operatorname{rank} S = \operatorname{rank} A + \operatorname{rank} (C - B^* A^{\sharp} B).$$
(2.4)

In fact, if $A \ge 0$ and ran *A* is closed then we can write

$$A = \begin{bmatrix} A_0 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran} A \\ \operatorname{ker} A \end{bmatrix} \to \begin{bmatrix} \operatorname{ran} A \\ \operatorname{ker} A \end{bmatrix},$$

so that the Moore-Penrose inverse of *A* is given by

$$A^{\sharp} = \begin{bmatrix} (A_0)^{-1} & 0\\ 0 & 0 \end{bmatrix}.$$
 (2.5)

Proposition 2.1 If $A \in \mathcal{B}(\mathcal{H})$ has a closed range then $A(A^*A)^{\sharp}A^*$ is the orthogonal projection onto ran A.

Proof Suppose $A \in \mathcal{B}(\mathcal{H})$ has a closed range. Then (2.5) can be written as

$$(P_{\operatorname{ran}A}AP_{\operatorname{ran}A})^{-1} = P_{\operatorname{ran}A}A^{\sharp}P_{\operatorname{ran}A}.$$
(2.6)

Since by assumption, A^*A has also a closed range, there exists the Moore-Penrose inverse $(A^*A)^{\sharp}$. Observe

$$(A(A^*A)^{\sharp}A^*)(A(A^*A)^{\sharp}A^*) = A(A^*A)^{\sharp}A^*$$

and

$$\left(A\left(A^*A\right)^{\sharp}A^*\right)^* = A\left(A^*A\right)^{\sharp}A^*,$$

which implies that $A(A^*A)^{\sharp}A^*$ is an orthogonal projection. Put

$$K := \operatorname{ran} A^* A = \operatorname{ran} A^* = (\ker A)^{\perp}.$$

We then have

$$A(A^*A)^{\sharp}A^* = AP_K(A^*A)^{\sharp}P_KA^*$$

= $A(P_K(A^*A)P_K)^{-1}A^*$ (by (2.5)),

which implies that $ran(A(A^*A)^{\sharp}A^*) = ranA$.

In the sequel we often encounter the following matrix:

$$S := \begin{bmatrix} A^*A & A^*B \\ B^*A & [B^*,B] \end{bmatrix},$$

where *A* has a closed range. If $S \ge 0$ and if *A* and $[B^*, B]$ are of finite rank then by (2.4), we have

$$\operatorname{rank} S = \operatorname{rank}(A^*A) + \operatorname{rank}([B^*, B] - B^*A(A^*A)^{\sharp}A^*B).$$
(2.7)

Thus, if we write P_K for the orthogonal projection onto $K := \operatorname{ran} A$, then by Proposition 2.1 we have

$$\operatorname{rank} S = \operatorname{rank}(A^*) + \operatorname{rank}([B^*, B] - B^* P_K B)$$
$$= \operatorname{rank}(A^*) + \operatorname{rank}(B^* P_{K^{\perp}} B - B B^*).$$
(2.8)

If
$$\Phi, \Psi \in L^{\infty}_{M_n}$$
, then by (1.7),

$$[T_{\Phi}, T_{\Psi}] = H_{\Psi^*}^* H_{\Phi} - H_{\Phi^*}^* H_{\Psi} + T_{\Phi\Psi - \Psi\Phi}.$$

Since the normality of Φ is a necessary condition for the hyponormality of T_{Φ} (*cf.* [15]), the positivity of $H_{\Phi^*}^* H_{\Phi^*} - H_{\Phi}^* H_{\Phi}$ is an essential condition for the hyponormality of T_{Φ} . If $\Phi \in L_{M_n}^{\infty}$, the *pseudo-self-commutator* of T_{Φ} is defined by

$$[T_{\Phi}^*, T_{\Phi}]_n := H_{\Phi^*}^* H_{\Phi^*} - H_{\Phi}^* H_{\Phi^*}$$

Then T_{Φ} is said to be *pseudo-hyponormal* if $[T_{\Phi}^*, T_{\Phi}]_p \ge 0$. We also see that if $\Phi \in L_{M_n}^{\infty}$ then $[T_{\Phi}^*, T_{\Phi}] = [T_{\Phi}^*, T_{\Phi}]_p + T_{\Phi^*\Phi - \Phi\Phi^*}$.

Proposition 2.2 Let $\Phi \equiv \Phi_{-}^* + \Phi_{+} \in L_{M_n}^{\infty}$ be such that Φ and Φ^* are of bounded type. Thus in view of (1.4), we may write

$$\Phi_+ = \theta_1 A^*$$
 and $\Phi_- = \theta_2 B^*$,

where θ_1 and θ_2 are inner functions and $A, B \in H^2_{M_n}$. If T_{Φ} is hyponormal then θ_2 is an inner divisor of θ_1 , i.e., $\theta_1 = \theta_0 \theta_2$ for some inner function θ_0 .

Proof See [7], Proposition 3.2.

In view of Proposition 2.2, when we study the hyponormality of block Toeplitz operators with *bounded type symbols* Φ (*i.e.*, Φ and Φ^* are of bounded type) we may assume that the symbol $\Phi \equiv \Phi^*_{-} + \Phi_{+} \in L^{\infty}_{M_n}$ is of the form

 $\Phi_+ = \theta_0 \theta_1 A^*$ and $\Phi_- = \theta_0 B^*$,

where θ_0 and θ_1 are inner functions and $A, B \in H^2_{M_n}$.

We first observe that if $\mathbf{T} = (T_{\varphi}, T_{\psi})$ then the self-commutator of \mathbf{T} can be expressed as

$$\begin{bmatrix} \mathbf{T}^{*}, \mathbf{T} \end{bmatrix} = \begin{bmatrix} [T_{\varphi}^{*}, T_{\varphi}] & [T_{\psi}^{*}, T_{\varphi}] \\ [T_{\varphi}^{*}, T_{\psi}] & [T_{\psi}^{*}, T_{\psi}] \end{bmatrix} = \begin{bmatrix} H_{\overline{\varphi_{+}}}^{*} H_{\overline{\varphi_{+}}} - H_{\overline{\varphi_{-}}}^{*} H_{\overline{\varphi_{-}}} & H_{\overline{\psi_{+}}}^{*} H_{\overline{\psi_{+}}} - H_{\overline{\psi_{-}}}^{*} H_{\overline{\psi_{-}}} \\ H_{\overline{\psi_{+}}}^{*} H_{\overline{\psi_{+}}} - H_{\overline{\psi_{-}}}^{*} H_{\overline{\psi_{-}}} & H_{\overline{\psi_{+}}}^{*} H_{\overline{\psi_{+}}} - H_{\overline{\psi_{-}}}^{*} H_{\overline{\psi_{-}}} \end{bmatrix}.$$
(2.9)

For a block Toeplitz pair $\mathbf{T} \equiv (T_{\Phi}, T_{\Psi})$, the *pseudo-commutator* of **T** is defined by

$$\begin{split} \left[\mathbf{T}^{*},\mathbf{T}\right]_{p} &\coloneqq \left[\begin{bmatrix} T_{\Phi}^{*},T_{\Phi} \end{bmatrix}_{p} & [T_{\Psi}^{*},T_{\Phi}]_{p} \\ [T_{\Phi}^{*},T_{\Psi}]_{p} & [T_{\Psi}^{*},T_{\Psi}]_{p} \end{bmatrix} \\ &= \begin{bmatrix} H_{\Phi_{\Phi}^{*}}^{*}H_{\Phi_{\Phi}^{*}} - H_{\Phi_{\Phi}^{*}}^{*}H_{\Phi_{\Phi}^{*}} & H_{\Phi_{\Phi}^{*}}^{*}H_{\Psi_{\Phi}^{*}} - H_{\Psi_{\Phi}^{*}}^{*}H_{\Phi_{\Phi}^{*}} \\ H_{\Psi_{\Psi}^{*}}^{*}H_{\Phi_{\Psi}^{*}} - H_{\Phi_{\Phi}^{*}}^{*}H_{\Psi_{-}^{*}} & H_{\Psi_{\Psi}^{*}}^{*}H_{\Psi_{+}^{*}} - H_{\Psi_{-}^{*}}^{*}H_{\Psi_{-}^{*}} \end{bmatrix}. \end{split}$$

Let $\Phi_i \in L^{\infty}_{M_n}$ (*i* = 1, 2, ..., *m*) be normal and mutually commuting and let σ be a permutation on $\{1, 2, ..., m\}$. Then evidently,

$$\mathbf{T} := (T_{\Phi_1}, \dots, T_{\Phi_m}) \text{ is hyponormal}$$
$$\iff \mathbf{T}_{\sigma} := (T_{\Phi_{\sigma(1)}}, \dots, T_{\Phi_{\sigma(m)}}) \text{ is hyponormal.}$$
(2.10)

Moreover, we have

$$\operatorname{rank}[\mathbf{T}^*,\mathbf{T}] = \operatorname{rank}[\mathbf{T}^*_{\sigma},\mathbf{T}_{\sigma}].$$
(2.11)

For every $m_0 \leq m$, let $\mathbf{T}_{m_0} := (T_{\Phi_1}, \dots, T_{\Phi_{m_0}})$. Since

$$\begin{bmatrix} \mathbf{T}^*, \mathbf{T} \end{bmatrix} = \begin{bmatrix} [\mathbf{T}^*_{\Phi_{m_0}}, \mathbf{T}_{\Phi_{m_0}}] & * \\ * & * \end{bmatrix},$$

we can see that if **T** is hyponormal then in view of (2.10), every sub-tuple of **T** is hyponormal.

We then have the following.

Lemma 2.3 Let $\Phi_i \in L^{\infty}_{M_n}$ be normal and mutually commuting. Let $\mathbf{T} \equiv (T_{\Phi_1}, ..., T_{\Phi_m})$ and $\mathbf{S} \equiv (T_{\Lambda_1 \Phi_1}, ..., T_{\Lambda_m \Phi_m})$, where the Λ_i are mutually commuting and are invertible constant normal matrices commuting with Φ_j and Λ_j for each i, j = 1, 2, ..., m. Then

T is hyponormal \iff S is hyponormal.

Furthermore, $rank[T^*, T] = rank[S^*, S]$.

Proof In view of equation (2.10), it suffices to prove the lemma when $\Lambda_i = I$ for all i = 2, ..., m. Put $\mathcal{T} := [\mathbf{T}^*, \mathbf{T}]$ and $\mathcal{S} := [\mathbf{S}^*, \mathbf{S}]$. Since Λ_1 is a constant normal matrix commuting with Φ_i , it follows that, for all i > 1,

$$\begin{split} \mathcal{S}_{1j} &= H^*_{(\Lambda_1 \Phi_1)^*_+} H_{(\Phi_j)^*_+} - H^*_{(\Phi_j)^*_-} H_{(\Lambda_1 \Phi_1)^*_-} \\ &= H^*_{(\Phi_1)^*_+ \Lambda^*_1} H_{(\Phi_j)^*_+} - H^*_{(\Phi_j)^*_-} H_{\Lambda_1 (\Phi_1)^*_-} \\ &= T_{\Lambda_1} H^*_{(\Phi_1)^*_+} H_{(\Phi_j)^*_+} - H^*_{(\Phi_j)^*_-} T_{\Lambda_1} H_{(\Phi_1)^*_-} \\ &= T_{\Lambda_1} H^*_{(\Phi_1)^*_+} H_{(\Phi_j)^*_+} - H^*_{(\Phi_j)^*_- \Lambda^*_1} H_{(\Phi_1)^*_-} \\ &= T_{\Lambda_1} \left(H^*_{(\Phi_1)^*_+} H_{(\Phi_j)^*_+} - H^*_{(\Phi_j)^*_-} H_{(\Phi_1)^*_-} \right) \\ &= T_{\Lambda_1} \mathcal{T}_{1j}. \end{split}$$

Observe that

$$\begin{split} \mathcal{S}_{11} &= H^*_{(\Lambda_1 \Phi_1)^*_+} H_{(\Lambda_1 \Phi_1)^*_+} - H^*_{(\Lambda_1 \Phi_1)^*_-} H_{(\Lambda_1 \Phi_1)^*_-} \\ &= H^*_{(\Phi_1)^*_+ \Lambda_1^*} H_{(\Phi_1)^*_+ \Lambda_1^*} - H^*_{(\Phi_1)^*_- \Lambda_1^*} H_{(\Phi_1)^*_- \Lambda_1^*} \\ &= T_{\Lambda_1} H^*_{(\Phi_1)^*_+} H_{(\Phi_1)^*_+} T^*_{\Lambda_1} - T_{\Lambda_1} H^*_{(\Phi_1)^*_-} H_{(\Phi_1)^*_-} T^*_{\Lambda_1} \\ &= T_{\Lambda_1} \Big(H^*_{(\Phi_1)^*_+} H_{(\Phi_1)^*_+} - H^*_{(\Phi_1)^*_-} H_{(\Phi_1)^*_-} \Big) T^*_{\Lambda_1} \\ &= T_{\Lambda_1} \mathcal{T}_{11} T^*_{\Lambda_1}. \end{split}$$

Let *Q* be the block diagonal operator with the diagonal entries $(T_{\Lambda_1}, I, ..., I)$. Then *Q* is invertible and $S = QTQ^*$, which gives the result.

Lemma 2.4 Let $\mathbf{T} \equiv (T_{\Phi_1}, T_{\Phi_2}, \dots, T_{\Phi_m})$, where the $\Phi_i \in L^{\infty}_{M_n}$ $(i = 1, \dots, m)$ are normal and mutually commuting. If $\mathbf{S} := (T_{\Phi_1 - \Phi_{i_0}}, T_{\Phi_2}, \dots, T_{\Phi_m})$ for some j_0 $(2 \le j_0 \le m)$, then

T is hyponormal \iff **S** is hyponormal.

Furthermore, rank $[\mathbf{T}^*, \mathbf{T}] = \operatorname{rank}[\mathbf{S}^*, \mathbf{S}]$.

Proof Obvious.

Corollary 2.5 Let $\Phi_i \in L^{\infty}_{M_n}$ (i = 1, ..., m) be normal and mutually commuting. Let $\mathbf{T} \equiv (T_{\Phi_1}, ..., T_{\Phi_m})$ and put

 $\mathbf{S} := (T_{\Phi_1 - \Lambda_1 \Phi_m}, T_{\Phi_2 - \Lambda_2 \Phi_m}, \dots, T_{\Phi_{m-1} - \Lambda_{m-1} \Phi_m}, T_{\Phi_m}),$

where the Λ_i (i = 1, ..., m - 1) are mutually commuting and are invertible constant normal matrices commuting with Φ_j for each j = 1, ..., m. Then

T is hyponormal \iff S is hyponormal.

Furthermore, rank $[T^*, T]$ = rank $[S^*, S]$.

Proof This follows from Lemmas 2.3 and 2.4.

We now have the following.

Theorem 2.6 Let $\Phi_i \in H_{M_n}^{\infty}$ (i = 1, 2, ..., m - 1) be mutually commuting and normal rational functions of the form

 $\Phi_i = A_i^* \Theta_i$ (left coprime),

where the Θ_i are inner matrix functions and $\Phi_m \equiv (\Phi_m)^*_- + (\Phi_m)_+ \in L^{\infty}_{M_n}$. If $\mathbf{T} := (T_{\Phi_1}, \ldots, T_{\Phi_m})$ is hyponormal then

$$\operatorname{rank}[\mathbf{T}^*, \mathbf{T}] = \operatorname{deg}(\Theta) + \operatorname{rank}[T^*_{\Phi^{1,\Theta}_m}, T_{\Phi^{1,\Theta}_m}]_p,$$
(2.12)

where $\Theta := right-l.c.m.\{\Theta_i : i = 1, 2, ..., m-1\}$ and $\Phi_m^{1,\Theta} := (\Phi_m)_-^* + P_{H_0^2}((\Phi_m)_+\Theta^*).$

Proof Let $\mathbf{H}_{\Phi^*} := (H_{\Phi_1^*}, \dots, H_{\Phi_{m-1}^*})$. Since $\Phi_i \equiv (\Phi_i)_+ \in H_{M_n}^{\infty}$ $(i = 1, 2, \dots, m-1)$, **T** is hyponormal if and only if

$$\begin{bmatrix} \mathbf{T}^*, \mathbf{T} \end{bmatrix} = \begin{bmatrix} \mathbf{H}_{\Phi^*}^* \mathbf{H}_{\Phi^*} & \mathbf{H}_{\Phi^*}^* H_{\Phi_m^*} \\ H_{\Phi_m^*}^* \mathbf{H}_{\Phi^*} & [T_{\Phi_m}^*, T_{\Phi_m}] \end{bmatrix} \ge 0,$$

or equivalently, for each $X \in \bigoplus_{j=1}^{m-1} H^2_{\mathbb{C}^n}$ and $Y \in H^2_{\mathbb{C}^n}$,

$$\left|\left\langle \mathbf{H}_{\Phi^*} H_{\Phi_m^*}^* Y, X\right\rangle\right|^2 \le \left\langle \mathbf{H}_{\Phi^*}^* \mathbf{H}_{\Phi^*} X, X\right\rangle \!\! \left\langle \left[T_{\Phi_m}^*, T_{\Phi_m}\right] Y, Y\right\rangle\!\! .$$
(2.13)

Since $\operatorname{clran} H_{\Phi_i^*} = \mathcal{H}(\widetilde{\Theta}_i)$ (i = 1, 2, ..., n-1), it follows that

$$\operatorname{cl}\operatorname{ran}\mathbf{H}_{\Phi^{*}} = \bigvee_{i=1}^{m-1}\operatorname{cl}\operatorname{ran}H_{\Phi^{*}_{i}} = \bigvee_{i=1}^{m-1}\mathcal{H}(\widetilde{\Theta}_{i}) = \left(\bigcap_{i=1}^{m-1}\widetilde{\Theta}_{i}H_{\mathbb{C}^{n}}^{2}\right)^{\perp}$$
$$= \left(\widetilde{\Theta}H_{\mathbb{C}^{n}}^{2}\right)^{\perp} = \mathcal{H}(\widetilde{\Theta}) = \operatorname{cl}\operatorname{ran}H_{\Theta^{*}}, \qquad (2.14)$$

where $\mathcal{H}(\Delta) := H^2_{\mathbb{C}^n} \ominus \Delta H^2_{\mathbb{C}^n}$. If the Φ_i are rational functions then, by (1.3) and (1.4), we can write

 $\Phi_i = \theta_i A_i^*$ (θ_i , finite Blaschke product).

Since Θ_i is a right inner divisor of I_{θ_i} , we have $\deg(\Theta_i) \leq \deg(I_{\theta_i}) = n \deg(\theta_i) < \infty$. Thus since by (2.14), cl ran $\mathbf{H}_{\Phi^*} = \mathcal{H}(\widetilde{\Theta})$ and

$$\deg(\Theta) = \operatorname{rank} H^*_{\Theta^*} = \operatorname{rank} H_{\Theta^*} = \deg(\widetilde{\Theta}) < \infty.$$

Therefore H_{Φ^*} is of finite rank and hence, so is $H_{\Phi^*}^*H_{\Phi^*}$ and, moreover,

$$\operatorname{rank}(\mathbf{H}_{\Phi^*}^*\mathbf{H}_{\Phi^*}) = \operatorname{rank}(\mathbf{H}_{\Phi^*}^*) = \operatorname{rank}(\mathbf{H}_{\Phi^*}) = \operatorname{deg}(\Theta).$$

Thus by (2.7), we have

$$\operatorname{rank}[\mathbf{T}^*,\mathbf{T}] = \operatorname{rank}\begin{bmatrix} \mathbf{H}_{\Phi^*}^* \mathbf{H}_{\Phi^*} & \mathbf{H}_{\Phi^*}^* H_{\Phi_m^*} \\ H_{\Phi_m^*}^* \mathbf{H}_{\Phi^*} & [T_{\Phi_m^*}^*, T_{\Phi_m}] \end{bmatrix}$$
$$= \operatorname{rank}(\mathbf{H}_{\Phi^*}^* \mathbf{H}_{\Phi^*}) + \operatorname{rank}([T_{\Phi_m^*}^*, T_{\Phi_m}] - H_{\Phi_m^*}^* \mathbf{H}_{\Phi^*} (\mathbf{H}_{\Phi^*}^* \mathbf{H}_{\Phi^*})^{\sharp} \mathbf{H}_{\Phi^*}^* H_{\Phi_m^*})$$
$$= \operatorname{deg}(\Theta) + \operatorname{rank}([T_{\Phi_m^*}^*, T_{\Phi_m}] - H_{\Phi_m^*}^* \mathbf{H}_{\Phi^*} (\mathbf{H}_{\Phi^*}^* \mathbf{H}_{\Phi^*})^{\sharp} \mathbf{H}_{\Phi^*}^* H_{\Phi_m^*}).$$

On the other hand, by Proposition 2.1, $\mathbf{H}_{\Phi^*}(\mathbf{H}_{\Phi^*}^*\mathbf{H}_{\Phi^*})^{\sharp}\mathbf{H}_{\Phi^*}^*$ is the projection $P_{\mathcal{H}(\widetilde{\Theta})}$. Therefore it follows from (1.7) and (1.8) that

$$\begin{split} \left[T_{\Phi_{m}}^{*}, T_{\Phi_{m}} \right] &- H_{\Phi_{m}^{*}}^{*} \mathbf{H}_{\Phi^{*}} \left(\mathbf{H}_{\Phi^{*}}^{*} \mathbf{H}_{\Phi^{*}} \right)^{\sharp} \mathbf{H}_{\Phi^{*}}^{*} H_{\Phi_{m}^{*}} \\ &= \left[T_{\Phi_{m}}^{*}, T_{\Phi_{m}} \right] - H_{\Phi_{m}^{*}}^{*} H_{\Theta^{*}} H_{\Phi_{m}^{*}} \\ &= H_{\Phi_{m+}^{*}}^{*} \left(I - H_{\Theta^{*}} H_{\Theta^{*}}^{*} \right) H_{\Phi_{m+}^{*}} - H_{\Phi_{m-}^{*}}^{*} H_{\Phi_{m-}^{*}} \\ &= \left(H_{\Phi_{m+}^{*}}^{*} T_{\Theta}^{*} \right) \left(T_{\Theta^{*}} H_{\Phi_{m+}^{*}} \right) - H_{\Phi_{m-}^{*}}^{*} H_{\Phi_{m-}^{*}} \\ &= H_{\Theta\Phi_{m+}^{*}}^{*} H_{\Theta\Phi_{m+}^{*}} - H_{\Phi_{m-}^{*}}^{*} H_{\Phi_{m-}^{*}} \\ &= \left[T_{\Phi_{m}^{1,\Theta}}^{*}, T_{\Phi_{m}^{1,\Theta}}^{1,\Theta} \right]_{p}, \end{split}$$

which gives the result.

Very recently, the hyponormality of rational Toeplitz pairs was characterized in [16].

Lemma 2.7 (Hyponormality of rational Toeplitz pairs) [16] Let $\mathbf{T} \equiv (T_{\Phi}, T_{\Psi})$ be a Toeplitz pair with rational symbols $\Phi, \Psi \in L^{\infty}_{M_{w}}$ of the form

$$\Phi_{+} = \theta_0 \theta_1 A^*, \qquad \Phi_{-} = \theta_0 B^*, \qquad \Psi_{+} = \theta_2 \theta_3 C^*, \qquad \Psi_{-} = \theta_2 D^* \quad (coprime). \tag{2.15}$$

Assume that θ_0 and θ_2 are not coprime. Assume also that $B(\gamma_0)$ and $D(\gamma_0)$ are diagonalconstant for some $\gamma_0 \in \mathcal{Z}(\theta_0)$. Then the pair **T** is hyponormal if and only if

- (i) Φ and Ψ are normal and $\Phi\Psi = \Psi\Phi$;
- (ii) $\Phi_{-} = \Lambda^{*} \Psi_{-}$ (with $\Lambda := B(\gamma_{0}) D(\gamma_{0})^{-1}$);

(iii) $T_{\Psi^{1,\Omega}}$ is pseudo-hyponormal with $\Omega := \theta_0 \theta_1 \theta_3 \overline{\theta} \Delta^*$,

where $\theta := g.c.d.(\theta_1, \theta_3)$ and $\Delta := left-g.c.d.(I_{\theta_0\theta}, \overline{\theta}(\theta_3A - \theta_1C\Lambda^*)).$

We now get a rank formula for the self-commutators of Toeplitz *m*-tuples.

Corollary 2.8 For each i = 1, 2, ..., m, suppose that $\Phi_i = (\Phi_i)^*_- + (\Phi_i)_+ \in L^{\infty}_{M_n}$ is a matrixvalued normal rational function of the form

 $(\Phi_i)_+ = \theta_i \delta_i A_i^*$ and $(\Phi_i)_- = \theta_i B_i^*$ (coprime),

where the θ_i and the δ_i are finite Blaschke products and there exists j_0 $(1 \le j_0 \le m)$ such that θ_{j_0} and θ_i are not coprime for each i = 1, 2, ..., m. Suppose $\Phi_i \Phi_j = \Phi_j \Phi_i$ for all i, j = 1, ..., m. Assume that each $B_i(\gamma_0)$ is diagonal-constant for some $\gamma_0 \in \mathcal{Z}(\theta_i)$. If $\mathbf{T} \equiv (T_{\Phi_1}, T_{\Phi_2}, ..., T_{\Phi_m})$ is hyponormal then

 $\operatorname{rank}[\mathbf{T}^*,\mathbf{T}] = \operatorname{deg}(\Omega) + \operatorname{rank}[T^*_{\Phi_{j_0}^{1,\Omega}}, T_{\Phi_{j_0}^{1,\Omega}}]_p,$

where $\Omega := right$ - $l.c.m.\{\theta_i \delta_i \delta_{j_0} \overline{\delta(i)} \Theta(i)^* : i = 1, 2, ..., m\}$. Here $\delta(i) := g.c.d.\{\delta_i, \delta_{j_0}\}$ and $\Theta(i) := left$ - $g.c.d.\{\theta_i \delta(i), \overline{\delta(i)}(\delta_{j_0}A_i - \delta_i A_{j_0} \Lambda(i)^*)\}$ with $\Lambda(i) := B_i(\gamma_0)B_{j_0}(\gamma_0)^{-1}$.

Proof Suppose **T** is hyponormal. Since every sub-tuple of **T** is hyponormal, we can see that (T_{Φ_i}, T_{Φ_j}) is hyponormal for all i, j = 1, 2, ..., m. In view of (2.10), we may assume that $j_0 = m$. Put

$$\mathbf{S} := (T_{\Phi_1 - \Lambda(1)\Phi_m}, T_{\Phi_2 - \Lambda(2)\Phi_m}, \dots, T_{\Phi_{m-1} - \Lambda(m-1)\Phi_m}, T_{\Phi_m}).$$

It follows from Corollary 2.5 that

T is hyponormal \iff **S** is hyponormal.

Since $\delta(i) = \text{g.c.d.} \{\delta_i, \delta_m\}$, we can write

$$\delta_i = \delta(i)\omega_i$$
 and $\delta_m = \delta(i)\omega_m$,

where ω_i is a finite Blaschke product for i = 1, 2, ..., m. Since $\Theta(i) = \text{left-g.c.d.}\{\theta_i \delta(i), \overline{\delta(i)}(\delta_m A_i - \delta_1 A_m \Lambda(i)^*)\}$, we get the following left coprime factorization:

$$\Phi_i - \Lambda(i)\Phi_m = \left[\left(\overline{\omega_m} A_i^* - \overline{\omega_i} \Lambda(i) A_m^* \right) \Theta(i) \right] \theta_i \delta_i \delta_m \overline{\delta(i)} \Theta(i)^*.$$

Thus the result follows at once from Theorem 2.6.

We conclude with the following.

Corollary 2.9 For each i = 1, 2, ..., m, suppose that $\phi_i = \overline{(\phi_i)} + (\phi_i) + \in L^{\infty}$ is a rational function of the form

 $(\phi_i)_+ = \theta_i \overline{a_i}$ and $(\phi_i)_- = \theta_i \overline{b_i}$ (coprime).

If there exists j_0 $(1 \le j_0 \le m)$ such that θ_{j_0} and θ_i are not coprime for each i = 1, 2, ..., m and $\mathbf{T} \equiv (T_{\phi_1}, T_{\phi_2}, ..., T_{\phi_m})$ is hyponormal then

rank[\mathbf{T}^*, \mathbf{T}] = rank[$T^*_{\Phi_{i_0}}, T_{\Phi_{i_0}}$].

Proof For each i = 1, 2, ..., m, let $\lambda(i) := b_i(\gamma_0)b_{j_0}(\gamma_0)^{-1}$ for some $\gamma_0 \in \mathcal{Z}(\theta_i)$. Write $\theta(i) \equiv$ g.c.d. $\{\theta_i, (a_i - a_{j_0}\overline{\lambda(i)})\}$. Since $\mathbf{T} \equiv (T_{\phi_1}, T_{\phi_2}, ..., T_{\phi_n})$ is hyponormal, $(T_{\phi_i}, T_{\phi_{j_0}})$ is hyponormal for all i = 1, 2, ..., n. Thus it follows from Lemma 2.7 that $T_{\phi_{j_0}^{1,\omega(i)}}$ is hyponormal with $\omega(i) := \theta_i \overline{\theta(i)}$. Observe that

 $\left(\phi_{j_0}^{1,\omega(i)}\right)_+ = \theta(i)\overline{c_i}$ and $\left(\phi_{j_0}^{1,\omega(i)}\right)_- = \theta_i\overline{b_i}$ (coprime),

where $c_i := P_{\mathcal{H}(\theta(i))}(a_i)$. Since $T_{\phi_{j_0}^{1,\omega(i)}}$ is hyponormal, it follows from Proposition 2.2 that θ_i is an inner divisor of $\theta(i)$ and hence $\theta(i) = \theta_i$. Thus the result follows from Corollary 2.8.

3 Conclusions

The self-commutators of bounded linear operators play an important role in the study of hyponormal and subnormal operators. The main result of this paper is to derive a rank formula for the self-commutators of tuples of Toeplitz operators with matrix-valued rational symbols. This result will contribute to the study of Toeplitz operators and the bridge theory of operators.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors contributed equally and significantly in writing this paper.

Author details

¹Department of Mathematics, Sungkyunkwan University, Suwon, 440-746, Korea. ²Department of Mathematics, Changwon National University, Changwon, 641-773, Korea.

Acknowledgements

The work of the first author was supported by National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (No. 2011-0022577). The work of the second author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2015R1D1A3A01016258).

Received: 14 April 2016 Accepted: 2 July 2016 Published online: 22 July 2016

References

- 1. Böttcher, A, Silbermann, B: Analysis of Toeplitz Operators. Springer, Berlin (2006)
- 2. Douglas, RG: Banach Algebra Techniques in Operator Theory. Academic Press, New York (1972)
- 3. Nikolskii, NK: Treatise on the Shift Operator. Springer, New York (1986)
- 4. Peller, VV: Hankel Operators and Their Applications. Springer, New York (2003)
- 5. Abrahamse, MB: Subnormal Toeplitz operators and functions of bounded type. Duke Math. J. 43, 597-604 (1976)

- 6. Gu, C, Hendricks, J, Rutherford, D: Hyponormality of block Toeplitz operators. Pac. J. Math. 223, 95-111 (2006)
- 7. Curto, RE, Hwang, IS, Lee, WY: Hyponormality and subnormality of block Toeplitz operators. Adv. Math. 230, 2094-2151 (2012)
- Curto, RE, Hwang, IS, Lee, WY: Which subnormal Toeplitz operators are either normal or analytic? J. Funct. Anal. 263(8), 2333-2354 (2012)
- 9. Bram, J: Subnormal operators. Duke Math. J. 22, 75-94 (1955)
- 10. Conway, JB: The Theory of Subnormal Operators. Math Surveys and Monographs, vol. 36. Am. Math. Soc., Providence (1991)
- 11. Athavale, A: On joint hyponormality of operators. Proc. Am. Math. Soc. 103, 417-423 (1988)
- Curto, RE, Muhly, PS, Xia, J: Hyponormal pairs of commuting operators. In: Gohberg, I, Helton, JW, Rodman, L (eds.): Contributions to Operator Theory and Its Applications, Mesa, AZ, 1987. Operator Theory: Advances and Applications, vol. 35, pp. 1-22. Birkhäuser, Basel (1988)
- Harte, RE: Invertibility and Singularity for Bounded Linear Operators. Monographs and Textbooks in Pure and Applied Mathematics, vol. 109. Dekker, New York (1988)
- 14. Curto, RE, Lee, WY: Joint Hyponormality of Toeplitz Pairs. Memoirs Amer. Math. Soc., vol. 712. Am. Math. Soc., Providence (2001)
- 15. Gu, C: On a class of jointly hyponormal Toeplitz operators. Trans. Am. Math. Soc. 354, 3275-3298 (2002)
- 16. Curto, RE, Hwang, IS, Lee, WY: Matrix functions of bounded type: An interplay between function theory and operator theory. Preprint (2016)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com