
Hwang et al. Journal of Inequalities and Applications  (2016) 2016:184 
DOI 10.1186/s13660-016-1125-x

R E S E A R C H Open Access

A rank formula for the self-commutators
of rational Toeplitz tuples
In Sung Hwang1, An Hyun Kim2* and Sumin Kim1

*Correspondence:
ahkim@changwon.ac.kr
2Department of Mathematics,
Changwon National University,
Changwon, 641-773, Korea
Full list of author information is
available at the end of the article

Abstract
In this paper we derive a rank formula for the self-commutators of tuples of Toeplitz
operators with matrix-valued rational symbols.

MSC: Primary 47B20; 47B35; 47A13; secondary 30H10; 47A57

Keywords: block Toeplitz operators; jointly hyponormal; bounded type functions;
rational functions; self-commutators

1 Introduction
Let H and K be complex Hilbert spaces, let B(H,K) be the set of bounded linear operators
from H to K, and write B(H) := B(H,H). For A, B ∈ B(H), we let [A, B] := AB – BA. An
operator T ∈ B(H) is said to be normal if [T∗, T] = , hyponormal if [T∗, T] ≥ . For an
operator T ∈ B(H), we write ker T and ran T for the kernel and the range of T , respectively.
For a subset M of a Hilbert space H, clM and M⊥ denote the closure and the orthogonal
complement of M, respectively. Also, let T ≡ ∂D be the unit circle (where D denotes the
open unit disk in the complex plane C). Recall that L∞ ≡ L∞(T) is the set of bounded
measurable functions on T, that the Hilbert space L ≡ L(T) has a canonical orthonormal
basis given by the trigonometric functions en(z) = zn, for all n ∈ Z, and that the Hardy space
H ≡ H(T) is the closed linear span of {en : n ≥ }. An element f ∈ L is said to be analytic
if f ∈ H. Let H∞ := L∞ ∩ H, i.e., H∞ is the set of bounded analytic functions on D.

We review the notion of functions of bounded type and a few essential facts about Han-
kel and Toeplitz operators and for that we will use [–].

For ϕ ∈ L∞, we write

ϕ+ ≡ Pϕ ∈ H and ϕ– ≡ P⊥ϕ ∈ zH,

where P and P⊥ denote the orthogonal projection from L onto H and (H)⊥, respectively.
Thus we may write ϕ = ϕ– + ϕ+. We recall that a function ϕ ∈ L∞ is said to be of bounded
type (or in the Nevanlinna class N ) if there are functions ψ,ψ ∈ H∞ such that

ϕ(z) =
ψ(z)
ψ(z)

for almost all z ∈ T.
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We recall [], Lemma , that if ϕ ∈ L∞ then

ϕ is of bounded type ⇐⇒ ker Hϕ �= {}. (.)

Assume now that both ϕ and ϕ are of bounded type. Then from the Beurling’s theo-
rem, kerHϕ– = θH and kerHϕ+ = θ+H for some inner functions θ, θ+. We thus have
b := ϕ–θ ∈ H, and hence we can write

ϕ– = θb and similarly ϕ+ = θ+a for some a ∈ H. (.)

By Kronecker’s lemma [], p., if f ∈ H∞ then f is a rational function if and only if
rank Hf < ∞, which implies that

f is rational ⇐⇒ f = θb with a finite Blaschke product θ . (.)

Let Mn×r denote the set of all n × r complex matrices and write Mn := Mn×n. For X a
Hilbert space, let L

X ≡ L
X (T) be the Hilbert space of X -valued norm square-integrable

measurable functions on T and let L∞
X ≡ L∞

X (T) be the set of X -valued bounded mea-
surable functions on T. We also let H

X ≡ H
X (T) be the corresponding Hardy space and

H∞
X ≡ H∞

X (T) = L∞
X ∩ H

X . We observe that L
Cn = L ⊗C

n and H
Cn = H ⊗C

n.
For a matrix-valued function � ≡ (ϕij) ∈ L∞

Mn , we say that � is of bounded type if each
entry ϕij is of bounded type, and we say that � is rational if each entry ϕij is a rational
function.

Let � ≡ (ϕij) ∈ L∞
Mn be such that �∗ is of bounded type. Then each ϕij is of bounded type.

Thus in view of (.), we may write ϕij = θijbij, where θij is inner and θij and bij are coprime,
in other words, there does not exist a nonconstant inner divisor of θij and bij. Thus if θ is
the least common multiple of {θij : i, j = , , . . . , n}, then we may write

� = (ϕij) = (θijbij) = (θaij) ≡ θA∗ (
where A ≡ (aji) ∈ H

Mn

)
. (.)

In particular, A(α) is nonzero whenever θ (α) =  and |α| < .
For � ≡ [ϕij] ∈ L∞

Mn , we write

�+ :=
[
P(ϕij)

] ∈ H
Mn and �– :=

[
P⊥(ϕij)

]∗ ∈ H
Mn .

Thus we may write � = �∗
– +�+. However, it will often be convenient to allow the constant

term in �–. Hence, if there is no confusion we may assume that �– shares the constant
term with �+: in this case, �() = �+() + �–()∗. If � = �∗

– + �+ ∈ L∞
Mn is such that �

and �∗ are of bounded type, then in view of (.), we may write

�+ = θA∗ and �– = θB∗, (.)

where θ and θ are inner functions and A, B ∈ H
Mn . In particular, if � ∈ L∞

Mn is rational
then the θi can be chosen as finite Blaschke products, as we observed in (.). For simplic-
ity, we write H

 for zH
Mn .
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We now introduce the notion of Hankel operators and Toeplitz operators with matrix-
valued symbols. If � is a matrix-valued function in L∞

Mn , then T� : H
Cn → H

Cn denotes
Toeplitz operator with symbol � defined by

T�f := Pn(�f ) for f ∈ H
Cn ,

where Pn is the orthogonal projection of L
Cn onto H

Cn . A Hankel operator with symbol
� ∈ L∞

Mn is an operator H� : H
Cn → H

Cn defined by

H�f := JnP⊥
n (�f ) for f ∈ H

Cn ,

where P⊥
n is the orthogonal projection of L

Cn onto (H
Cn )⊥ and Jn denotes the unitary op-

erator from L
Cn onto L

Cn given by Jn(f )(z) := zf (z) for f ∈ L
Cn . For � ∈ L∞

Mn×m , write

�̃(z) := �∗(z).

A matrix-valued function � ∈ H∞
Mn×m is called inner if �∗� = Im almost everywhere on T,

where Im denotes the m × m identity matrix. If there is no confusion we write simply I
for Im. The following basic relations can easily be derived:

T∗
� = T�∗ , H∗

� = H�̃

(
� ∈ L∞

Mn

)
; (.)

T�	 – T�T	 = H∗
�∗H	

(
�,	 ∈ L∞

Mn

)
; (.)

H�T	 = H�	 , H	� = T ∗̃
	

H�

(
� ∈ L∞

Mn ,	 ∈ H∞
Mn

)
. (.)

In , Gu et al. [] have considered the hyponormality of Toeplitz operators with
matrix-valued symbols and characterized it in terms of their symbols.

Lemma . (Hyponormality of block Toeplitz operators []) For each � ∈ L∞
Mn , let

E(�) :=
{

K ∈ H∞
Mn : ‖K‖∞ ≤  and � – K�∗ ∈ H∞

Mn

}
.

Then T� is hyponormal if and only if � is normal and E(�) is nonempty.

For a matrix-valued function � ∈ H
Mn×r , we say that 
 ∈ H

Mn×m is a left inner divisor of
� if 
 is an inner matrix function such that � = 
A for some A ∈ H

Mm×r . We also say that
two matrix functions � ∈ H

Mn×r and 	 ∈ H
Mn×m are left coprime if the only common left

inner divisor of both � and 	 is a unitary constant, and that � ∈ H
Mn×r and 	 ∈ H

Mm×r

are right coprime if �̃ and 	̃ are left coprime. Two matrix functions � and 	 in H
Mn are

said to be coprime if they are both left and right coprime. We note that if � ∈ H
Mn is such

that det� �= , then any left inner divisor 
 of � is square, i.e., 
 ∈ H
Mn (cf. []). If � ∈ H

Mn

is such that det� �= , then we say that 
 ∈ H
Mn is a right inner divisor of � if 
̃ is a left

inner divisor of �̃.
Let {�i ∈ H∞

Mn : i ∈ J} be a family of inner matrix functions. The greatest common left
inner divisor �d and the least common left inner multiple �m of the family {�i ∈ H∞

Mn :
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i ∈ J} are the inner functions defined by

�dH
Cp =

∨

i∈J

�iH
Cn and �mH

Cq =
⋂

i∈J

�iH
Cn .

Similarly, the greatest common right inner divisor �′
d and the least common right inner

multiple �′
m of the family {�i ∈ H∞

Mn : i ∈ J} are the inner functions defined by

�̃′
dH

Cr =
∨

i∈J

�̃iH
Cn and �̃′

mH
Cs =

⋂

i∈J

�̃iH
Cn .

The Beurling-Lax-Halmos theorem guarantees that �d and �m exist and are unique up
to a unitary constant right factor, and �′

d and �′
m are unique up to a unitary constant left

factor. We write

�d = left-g.c.d.{�i : i ∈ J}, �m = left-l.c.m.{�i : i ∈ J},
�′

d = right-g.c.d.{�i : i ∈ J}, �′
m = right-l.c.m.{�i : i ∈ J}.

If n = , then left-g.c.d.{·} = right-g.c.d.{·} (simply denoted g.c.d.{·}) and left-l.c.m.{·} =
right-l.c.m.{·} (simply denoted l.c.m.{·}). In general, it is not true that left-g.c.d.{·} =
right-g.c.d.{·} and left-l.c.m.{·} = right-l.c.m.{·}.

If θ is an inner function we write Iθ for θ In and Z(θ ) for the set of all zeros of θ .

Lemma . Let �i := Iθi for an inner function θi (i ∈ J).
(a) left-g.c.d.{�i : i ∈ J} = right-g.c.d.{�i : i ∈ J} = Iθd , where θd = g.c.d.{θi : i ∈ J}.
(b) left-l.c.m.{�i : i ∈ J} = right-l.c.m.{�i : i ∈ J} = Iθm , where θm = l.c.m.{θi : i ∈ J}.

Proof See [], Lemma .. �

In view of Lemma ., if �i = Iθi for an inner function θi (i ∈ J), we can define the greatest
common inner divisor �d and the least common inner multiple �m of the �i by

�d ≡ g.c.d.{�i : i ∈ J} := Iθd , where θd = g.c.d.{θi : i ∈ J}

and

�m ≡ l.c.m.{�i : i ∈ J} := Iθm , where θm = l.c.m.{θi : i ∈ J}.

Both �d and �m are diagonal-constant inner functions, i.e., diagonal inner functions, and
constant along the diagonal.

By contrast with scalar-valued functions, in (.), Iθ and A need not be (right) coprime.
If � = left-g.c.d.{Iθ , A} in the representation (.), that is,

� = θA∗,

then Iθ = ��� and A = �A� for some inner matrix �� (where �� ∈ H
Mn because det(Iθ ) �=

) and some Al ∈ H
Mn . Therefore if �∗ ∈ L∞

Mn is of bounded type then we can write

� = A�
∗��, where A� and �� are left coprime. (.)
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In this case, A∗
��� is called the left coprime factorization of � and write, briefly,

� = A∗
��� (left coprime). (.)

Similarly, we can write

� = �rA∗
r , where Ar and �r are right coprime. (.)

In this case, �rA∗
r is called the right coprime factorization of � and we write, succinctly,

� = �rA∗
r (right coprime). (.)

In this case, we define the degree of � by

deg(�) := dimH(�r),

where H(�) := H
Cn � �H

Cn for an inner function �. It was known (cf. [], Lemma .)
that if θ is a finite Blaschke product then Iθ and A ∈ H

Mn are left coprime if and only if they
are right coprime. In this viewpoint, in (.) and (.), �� or �r is Iθ (θ a finite Blaschke
product) then we shall write

� = θA∗ (coprime).

On the other hand, we recall that an operator T ∈ B(H) is said to be subnormal if T has
a normal extension, i.e., T = N |H, where N is a normal operator on some Hilbert space
K ⊇ H such that H is invariant for N . The Bram-Halmos criterion for subnormality [,
] states that an operator T ∈ B(H) is subnormal if and only if

∑
i,j(Tixj, Tjxi) ≥  for all

finite collections x, x, . . . , xk ∈ H. It is easy to see that this is equivalent to the following
positivity test:

⎛

⎜⎜⎜
⎜
⎝

[T∗, T] [T∗, T] . . . [T∗k , T]
[T∗, T] [T∗, T] . . . [T∗k , T]

...
...

. . .
...

[T∗, Tk] [T∗, Tk] . . . [T∗k , Tk]

⎞

⎟⎟⎟
⎟
⎠

≥  (all k ≥ ). (.)

Condition (.) provides a measure of the gap between hyponormality and subnormal-
ity. In fact the positivity condition (.) for k =  is equivalent to the hyponormality
of T , while subnormality requires the validity of (.) for all k. For k ≥ , an operator
T is said to be k-hyponormal if T satisfies the positivity condition (.) for a fixed k.
Thus the Bram-Halmos criterion can be stated thus: T is subnormal if and only if T is
k-hyponormal for all k ≥ . The notion of k-hyponormality has been considered by many
authors aiming at understanding the bridge between hyponormality and subnormality.
In view of (.), between hyponormality and subnormality there exists a whole slew of
increasingly stricter conditions, each expressible in terms of the joint hyponormality of
the tuples (I, T , T, . . . , Tk). Given an n-tuple T = (T, . . . , Tn) of operators on H, we let
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[T∗, T] ∈ B(H⊕ · · · ⊕H) denote the self-commutator of T, defined by

[
T∗, T

]
:=

⎛

⎜⎜
⎜⎜
⎝

[T∗
 , T] [T∗

 , T] . . . [T∗
n , T]

[T∗
 , T] [T∗

 , T] . . . [T∗
n , T]

...
...

. . .
...

[T∗
 , Tn] [T∗

 , Tn] . . . [T∗
n , Tn]

⎞

⎟⎟
⎟⎟
⎠

.

By analogy with the case n = , we shall say [, ] that T is jointly hyponormal (or simply,
hyponormal) if [T∗, T] ≥ , i.e., [T∗, T] is a positive-semidefinite operator on H⊕· · ·⊕H.

Tuples T ≡ (T� , . . . , T�m ) of block Toeplitz operators T�i (i = , . . . , m) will be called a
(block) Toeplitz tuples. Moreover, if each Toeplitz operator T�i has a symbol �i which
is a matrix-valued rational function, then the tuple T ≡ (T� , . . . , T�m ) is called a rational
Toeplitz tuple. In this paper we will derive a rank formula for the self-commutator of a
rational Topelitz tuple.

2 The results and discussion
For an operator S ∈ B(H), S ∈ B(H) is called the Moore-Penrose inverse of S if

SSS = S, SSS = S,
(
SS

)∗ = SS, and
(
SS

)∗ = SS.

It is well known [], Theorem .., that if an operator S on a Hilbert space has a closed
range then S has a Moore-Penrose inverse. Moreover, the Moore-Penrose inverse is unique
whenever it exists. On the other hand, it is well known that if

S :=

[
A B
B∗ C

]

on H ⊕H

(where the Hj are Hilbert spaces, A ∈ B(H), C ∈ B(H), and B ∈ B(H,H)), then

S ≥  ⇐⇒ A ≥ , C ≥ , and B = A

 DC


 for some contraction D; (.)

moreover, in [], Lemma ., and [], Lemma ., it was shown that if A ≥ , C ≥ , and
ran A is closed then

S ≥  ⇐⇒ B∗AB ≤ C and ran B ⊆ ran A, (.)

or equivalently [], Lemma .,

∣∣〈Bg, f 〉∣∣ ≤ 〈Af , f 〉〈Cg, g〉 for all f ∈H, g ∈H (.)

and furthermore, if both A and C are of finite rank then

rank S = rank A + rank
(
C – B∗AB

)
. (.)

In fact, if A ≥  and ran A is closed then we can write

A =

[
A 
 

]

:

[
ran A
ker A

]

→
[

ran A
ker A

]

,
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so that the Moore-Penrose inverse of A is given by

A =

[
(A)– 

 

]

. (.)

Proposition . If A ∈ B(H) has a closed range then A(A∗A)A∗ is the orthogonal projec-
tion onto ran A.

Proof Suppose A ∈ B(H) has a closed range. Then (.) can be written as

(Pran AAPran A)– = Pran AAPran A. (.)

Since by assumption, A∗A has also a closed range, there exists the Moore-Penrose inverse
(A∗A). Observe

(
A

(
A∗A

)A∗)(A
(
A∗A

)A∗) = A
(
A∗A

)A∗

and

(
A

(
A∗A

)A∗)∗ = A
(
A∗A

)A∗,

which implies that A(A∗A)A∗ is an orthogonal projection. Put

K := ran A∗A = ran A∗ = (ker A)⊥.

We then have

A
(
A∗A

)A∗ = APK
(
A∗A

)PK A∗

= A
(
PK

(
A∗A

)
PK

)–A∗ (
by (.)

)
,

which implies that ran(A(A∗A)A∗) = ran A. �

In the sequel we often encounter the following matrix:

S :=

[
A∗A A∗B
B∗A [B∗, B]

]

,

where A has a closed range. If S ≥  and if A and [B∗, B] are of finite rank then by (.), we
have

rank S = rank
(
A∗A

)
+ rank

([
B∗, B

]
– B∗A

(
A∗A

)A∗B
)
. (.)

Thus, if we write PK for the orthogonal projection onto K := ran A, then by Proposition .
we have

rank S = rank
(
A∗) + rank

([
B∗, B

]
– B∗PK B

)

= rank
(
A∗) + rank

(
B∗PK⊥B – BB∗). (.)
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If �,	 ∈ L∞
Mn , then by (.),

[T�, T	 ] = H∗
	∗H� – H∗

�∗H	 + T�	–	�.

Since the normality of � is a necessary condition for the hyponormality of T� (cf. []),
the positivity of H∗

�∗H�∗ – H∗
�H� is an essential condition for the hyponormality of T�. If

� ∈ L∞
Mn , the pseudo-self-commutator of T� is defined by

[
T∗

�, T�

]
p := H∗

�∗H�∗ – H∗
�H�.

Then T� is said to be pseudo-hyponormal if [T∗
�, T�]p ≥ . We also see that if � ∈ L∞

Mn

then [T∗
�, T�] = [T∗

�, T�]p + T�∗�–��∗ .

Proposition . Let � ≡ �∗
– +�+ ∈ L∞

Mn be such that � and �∗ are of bounded type. Thus
in view of (.), we may write

�+ = θA∗ and �– = θB∗,

where θ and θ are inner functions and A, B ∈ H
Mn . If T� is hyponormal then θ is an inner

divisor of θ, i.e., θ = θθ for some inner function θ.

Proof See [], Proposition .. �

In view of Proposition ., when we study the hyponormality of block Toeplitz operators
with bounded type symbols � (i.e., � and �∗ are of bounded type) we may assume that
the symbol � ≡ �∗

– + �+ ∈ L∞
Mn is of the form

�+ = θθA∗ and �– = θB∗,

where θ and θ are inner functions and A, B ∈ H
Mn .

We first observe that if T = (Tϕ , Tψ ) then the self-commutator of T can be expressed as

[
T∗, T

]
=

[
[T∗

ϕ , Tϕ] [T∗
ψ , Tϕ]

[T∗
ϕ , Tψ ] [T∗

ψ , Tψ ]

]

=

[
H∗

ϕ+ Hϕ+ – H∗
ϕ– Hϕ– H∗

ϕ+ Hψ+ – H∗
ψ–

Hϕ–

H∗
ψ+

Hϕ+ – H∗
ϕ– Hψ– H∗

ψ+
Hψ+ – H∗

ψ–
Hψ–

]

. (.)

For a block Toeplitz pair T ≡ (T�, T	 ), the pseudo-commutator of T is defined by

[
T∗, T

]
p :=

[
[T∗

�, T�]p [T∗
	 , T�]p

[T∗
�, T	 ]p [T∗

	 , T	 ]p

]

=

[
H∗

�∗
+
H�∗

+ – H∗
�∗– H�∗– H∗

�∗
+
H	∗

+ – H∗
	∗– H�∗–

H∗
	∗

+
H�∗

+ – H∗
�∗– H	∗– H∗

	∗
+
H	∗

+ – H∗
	∗– H	∗–

]

.

Let �i ∈ L∞
Mn (i = , , . . . , m) be normal and mutually commuting and let σ be a permuta-

tion on {, , . . . , m}. Then evidently,

T := (T� , . . . , T�m ) is hyponormal

⇐⇒ Tσ := (T�σ () , . . . , T�σ (m) ) is hyponormal. (.)
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Moreover, we have

rank
[
T∗, T

]
= rank

[
T∗

σ , Tσ

]
. (.)

For every m ≤ m, let Tm := (T� , . . . , T�m
). Since

[
T∗, T

]
=

[
[T∗

�m
, T�m

] ∗
∗ ∗

]

,

we can see that if T is hyponormal then in view of (.), every sub-tuple of T is hyponor-
mal.

We then have the following.

Lemma . Let �i ∈ L∞
Mn be normal and mutually commuting. Let T ≡ (T� , . . . , T�m ) and

S ≡ (T�� , . . . , T�m�m ), where the �i are mutually commuting and are invertible constant
normal matrices commuting with �j and �j for each i, j = , , . . . , m. Then

T is hyponormal ⇐⇒ S is hyponormal.

Furthermore, rank[T∗, T] = rank[S∗, S].

Proof In view of equation (.), it suffices to prove the lemma when �i = I for all i =
, . . . , m. Put T := [T∗, T] and S := [S∗, S]. Since � is a constant normal matrix commuting
with �j, it follows that, for all j > ,

Sj = H∗
(��)∗+ H(�j)∗+ – H∗

(�j)∗– H(��)∗–

= H∗
(�)∗+�∗


H(�j)∗+ – H∗

(�j)∗– H�(�)∗–

= T� H∗
(�)∗+ H(�j)∗+ – H∗

(�j)∗– T� H(�)∗–

= T� H∗
(�)∗+ H(�j)∗+ – H∗

(�j)∗–�∗

H(�)∗–

= T�

(
H∗

(�)∗+ H(�j)∗+ – H∗
(�j)∗– H(�)∗–

)

= T�Tj.

Observe that

S = H∗
(��)∗+ H(��)∗+ – H∗

(��)∗– H(��)∗–

= H∗
(�)∗+�∗


H(�)∗+�∗


– H∗

(�)∗–�∗

H(�)∗–�∗



= T� H∗
(�)∗+ H(�)∗+ T∗

� – T� H∗
(�)∗– H(�)∗– T∗

�

= T�

(
H∗

(�)∗+ H(�)∗+ – H∗
(�)∗– H(�)∗–

)
T∗

�

= T�TT∗
� .

Let Q be the block diagonal operator with the diagonal entries (T� , I, . . . , I). Then Q is
invertible and S = QT Q∗, which gives the result. �
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Lemma . Let T ≡ (T� , T� , . . . T�m ), where the �i ∈ L∞
Mn (i = , . . . , m) are normal and

mutually commuting. If S := (T�–�j
, T� , . . . T�m ) for some j ( ≤ j ≤ m), then

T is hyponormal ⇐⇒ S is hyponormal.

Furthermore, rank[T∗, T] = rank[S∗, S].

Proof Obvious. �

Corollary . Let �i ∈ L∞
Mn (i = , . . . , m) be normal and mutually commuting. Let T ≡

(T� , . . . T�m ) and put

S := (T�–��m , T�–��m , . . . , T�m––�m–�m , T�m ),

where the �i (i = , . . . , m – ) are mutually commuting and are invertible constant normal
matrices commuting with �j for each j = , . . . , m. Then

T is hyponormal ⇐⇒ S is hyponormal.

Furthermore, rank[T∗, T] = rank[S∗, S].

Proof This follows from Lemmas . and .. �

We now have the following.

Theorem . Let �i ∈ H∞
Mn (i = , , . . . , m – ) be mutually commuting and normal ratio-

nal functions of the form

�i = A∗
i �i (left coprime),

where the �i are inner matrix functions and �m ≡ (�m)∗– + (�m)+ ∈ L∞
Mn . If T :=

(T� , . . . , T�m ) is hyponormal then

rank
[
T∗, T

]
= deg(�) + rank

[
T∗

�
,�
m

, T
�

,�
m

]
p, (.)

where � := right-l.c.m.{�i : i = , , . . . , m – } and �,�
m := (�m)∗– + PH


((�m)+�∗).

Proof Let H�∗ := (H�∗

, . . . , H�∗

m–
). Since �i ≡ (�i)+ ∈ H∞

Mn (i = , , . . . , m – ), T is hy-
ponormal if and only if

[
T∗, T

]
=

[
H∗

�∗H�∗ H∗
�∗H�∗

m

H∗
�∗

m
H�∗ [T∗

�m , T�m ]

]

≥ ,

or equivalently, for each X ∈ ⊕m–
j= H

Cn and Y ∈ H
Cn ,

∣∣〈H�∗H∗
�∗

m
Y , X

〉∣∣ ≤ 〈
H∗

�∗H�∗X, X
〉〈[

T∗
�m , T�m

]
Y , Y

〉
. (.)
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Since cl ran H�∗
i

= H(�̃i) (i = , , . . . , n – ), it follows that

cl ran H�∗ =
m–∨

i=

cl ran H�∗
i

=
m–∨

i=

H(�̃i) =

(m–⋂

i=

�̃iH
Cn

)⊥

=
(
�̃H

Cn
)⊥ = H(�̃) = cl ran H�∗ , (.)

where H(
) := H
Cn � 
H

Cn . If the �i are rational functions then, by (.) and (.), we
can write

�i = θiA∗
i (θi, finite Blaschke product).

Since �i is a right inner divisor of Iθi , we have deg(�i) ≤ deg(Iθi ) = n deg(θi) < ∞. Thus
since by (.), cl ran H�∗ = H(�̃) and

deg(�) = rank H∗
�∗ = rank H�∗ = deg(�̃) < ∞.

Therefore H�∗ is of finite rank and hence, so is H∗
�∗H�∗ and, moreover,

rank
(
H∗

�∗H�∗
)

= rank
(
H∗

�∗
)

= rank(H�∗ ) = deg(�).

Thus by (.), we have

rank
[
T∗, T

]
= rank

[
H∗

�∗H�∗ H∗
�∗H�∗

m

H∗
�∗

m
H�∗ [T∗

�m , T�m ]

]

= rank
(
H∗

�∗H�∗
)

+ rank
([

T∗
�m , T�m

]
– H∗

�∗
m

H�∗
(
H∗

�∗H�∗
)H∗

�∗H�∗
m

)

= deg(�) + rank
([

T∗
�m , T�m

]
– H∗

�∗
m

H�∗
(
H∗

�∗H�∗
)H∗

�∗H�∗
m

)
.

On the other hand, by Proposition ., H�∗ (H∗
�∗H�∗ )H∗

�∗ is the projection PH(�̃). There-
fore it follows from (.) and (.) that

[
T∗

�m , T�m

]
– H∗

�∗
m

H�∗
(
H∗

�∗H�∗
)H∗

�∗H�∗
m

=
[
T∗

�m , T�m

]
– H∗

�∗
m

H�∗H∗
�∗H�∗

m

= H∗
�∗

m+

(
I – H�∗H∗

�∗
)
H�∗

m+ – H∗
�∗

m–
H�∗

m–

=
(
H∗

�∗
m+

T�̃

)
(T�̃∗H�∗

m+ ) – H∗
�∗

m–
H�∗

m–

= H∗
��∗

m+
H��∗

m+ – H∗
�∗

m–
H�∗

m–

=
[
T∗

�
,�
m

, T
�

,�
m

]
p,

which gives the result. �

Very recently, the hyponormality of rational Toeplitz pairs was characterized in [].
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Lemma . (Hyponormality of rational Toeplitz pairs) [] Let T ≡ (T�, T	 ) be a Toeplitz
pair with rational symbols �,	 ∈ L∞

Mn of the form

�+ = θθA∗, �– = θB∗, 	+ = θθC∗, 	– = θD∗ (coprime). (.)

Assume that θ and θ are not coprime. Assume also that B(γ) and D(γ) are diagonal-
constant for some γ ∈Z(θ). Then the pair T is hyponormal if and only if

(i) � and 	 are normal and �	 = 	�;
(ii) �– = �∗	– (with � := B(γ)D(γ)–);

(iii) T	,� is pseudo-hyponormal with � := θθθθ
∗ ,
where θ := g.c.d.(θ, θ) and 
 := left-g.c.d.(Iθθ , θ (θA – θC�∗)).

We now get a rank formula for the self-commutators of Toeplitz m-tuples.

Corollary . For each i = , , . . . , m, suppose that �i = (�i)∗– + (�i)+ ∈ L∞
Mn is a matrix-

valued normal rational function of the form

(�i)+ = θiδiA∗
i and (�i)– = θiB∗

i (coprime),

where the θi and the δi are finite Blaschke products and there exists j ( ≤ j ≤ m)
such that θj and θi are not coprime for each i = , , . . . , m. Suppose �i�j = �j�i for
all i, j = , . . . , m. Assume that each Bi(γ) is diagonal-constant for some γ ∈ Z(θi). If
T ≡ (T� , T� , . . . , T�m ) is hyponormal then

rank
[
T∗, T

]
= deg(�) + rank

[
T∗

�
,�
j

, T
�

,�
j

]
p,

where � := right-l.c.m.{θiδiδjδ(i)�(i)∗ : i = , , . . . , m}. Here δ(i) := g.c.d.{δi, δj} and �(i) :=
left-g.c.d.{θiδ(i), δ(i)(δj Ai – δiAj�(i)∗)} with �(i) := Bi(γ)Bj (γ)–.

Proof Suppose T is hyponormal. Since every sub-tuple of T is hyponormal, we can see
that (T�i , T�j ) is hyponormal for all i, j = , , . . . , m. In view of (.), we may assume that
j = m. Put

S := (T�–�()�m , T�–�()�m , . . . , T�m––�(m–)�m , T�m ).

It follows from Corollary . that

T is hyponormal ⇐⇒ S is hyponormal.

Since δ(i) = g.c.d.{δi, δm}, we can write

δi = δ(i)ωi and δm = δ(i)ωm,

where ωi is a finite Blaschke product for i = , , . . . , m. Since �(i) = left-g.c.d.{θiδ(i),
δ(i)(δmAi – δAm�(i)∗)}, we get the following left coprime factorization:

�i – �(i)�m =
[(

ωmA∗
i – ωi�(i)A∗

m
)
�(i)

]
θiδiδmδ(i)�(i)∗.

Thus the result follows at once from Theorem .. �
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We conclude with the following.

Corollary . For each i = , , . . . , m, suppose that φi = (φi)– + (φi)+ ∈ L∞ is a rational
function of the form

(φi)+ = θiai and (φi)– = θibi (coprime).

If there exists j ( ≤ j ≤ m) such that θj and θi are not coprime for each i = , , . . . , m and
T ≡ (Tφ , Tφ , . . . , Tφm ) is hyponormal then

rank
[
T∗, T

]
= rank

[
T∗

�j
, T�j

]
.

Proof For each i = , , . . . , m, let λ(i) := bi(γ)bj (γ)– for some γ ∈ Z(θi). Write θ (i) ≡
g.c.d.{θi, (ai – ajλ(i))}. Since T ≡ (Tφ , Tφ , . . . , Tφn ) is hyponormal, (Tφi , Tφj

) is hyponor-
mal for all i = , , . . . , n. Thus it follows from Lemma . that T

φ
,ω(i)
j

is hyponormal with

ω(i) := θiθ (i). Observe that

(
φ

,ω(i)
j

)
+ = θ (i)ci and

(
φ

,ω(i)
j

)
– = θibi (coprime),

where ci := PH(θ (i))(ai). Since T
φ

,ω(i)
j

is hyponormal, it follows from Proposition . that θi

is an inner divisor of θ (i) and hence θ (i) = θi. Thus the result follows from Corollary ..
�

3 Conclusions
The self-commutators of bounded linear operators play an important role in the study of
hyponormal and subnormal operators. The main result of this paper is to derive a rank
formula for the self-commutators of tuples of Toeplitz operators with matrix-valued ra-
tional symbols. This result will contribute to the study of Toeplitz operators and the bridge
theory of operators.
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