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1 Introduction
The compressible isentropic Navier-Stokes equations with density-dependent viscosity

coefficients can be written for ¢ > 0 as

o¢ +div(pU) =0, (1.1)

(pU); + div(pU® U) — diV(M(p)D(U)) - V(A(,o) div U) +VP(p)=0, (1.2)

where p(x,t), U(x,£) and P(p) = p¥ (y > 1) stand for the fluid density, velocity, and pres-
sure, respectively, and

D(U) - w 13)

is the strain tensor and u(p), A(p) are the Lamé viscosity coefficients satisfying

u(p) >0, u(p) + Ni(p) = 0. (1.4)

In this paper we establish the regularity of global solutions to the compressible Navier-
Stokes equations with cylinder symmetry in R3. We will pay attention to the flows between
two circular coaxial cylinders. We assume that the corresponding solutions depend only
on the radial variable r € G = {r|0 < a < r < b < +00} and the time variable ¢ € [0, T']. For
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simplicity, we will take p(p) = p* and A(p) = pu'(p) — n(p) = (@ — 1)p* with @ > 1/2 and
D(U) = VU. Then system (1.1)-(1.2) reduce to the following form:

1
Pt + ;(rpu)r =0, (L5)

rpUL + TPUL, — PVE + r(py)r - (r,o"‘u,)r

1 1
—(a - 1)r<—p°‘(ru),> +-p%u=0, (1.6)
r ., T
o 1 o
rOVs + FOUV, + puv — (r,o v,)r +-p%v=0, 1.7)
r
rOW; + FPUW, — (r,o"w,)r =0. (1.8)

We consider the initial boundary value problem (1.5)-(1.8) subject to the following initial

and boundary conditions:

(pr M,V,W)(V,O) = (,O(),M(),V(),W())(V), re [ﬂ! b]r (19)
u(a) =u(b) =0, v(a) =v(b) = 0, w(a) = w(b) = 0. (1.10)

First we find it convenient to transfer problems (1.5)-(1.10) into that in Lagrangian co-
ordinates and present the desired results. It is well known that Eulerian coordinates (r, £)

are connected to the Lagrangian coordinates (£, £) by the following relation:
t
6. =)+ [ e v)dr, 1
0
where (&, t) = u(r(&,t),t) and

@) =@, ) - f sools)ds, reG. 112)

It follows from (1.5) and the boundary condition (1.10) that

9 r(&,t) r
— (/ sp(s, t) ds) = pru+ / sp;ds = 0. (1.13)
at\J, @
Thus,
r 70
/ sp(s,t)ds = / spo(s)ds =& (1.14)
a a

and G is transformed to Q = (0,1) with

b b
1:/ sp(s,t)ds:/ spo(s) ds. (1.15)
Moreover, we have

0er(6, ) = [r(6, 00 (r(&,0),0)] (116)
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For a function ¢(r,t), if we write ¢(&,t) = ¢(r(&, 1), t), by virtue of (1.11), (1.16), and the
chain rule, we have
P&, 1) = dp(r,0) + v3,9(r, 1), (1.17)
0:h(E,0) = 3,0 (r, 0061 (E,1) = (P p(r, ) 9,81, ). (1.18)
In the following, without danger of confusion we denote (o, %, v, w) still by (p, u, v, w) and

(¢,t) by (x,2). Therefore, (1.5)-(1.8) in the Eulerian coordinates can be written in the La-
grangian coordinates in the new variables (x, t) as follows (see also [1]):

o+ p2(ru), =0, (1.19)
“ L (o), el ), - O, (120)
% + % _ (PMI(’”V)x)x B (PO;)xV’ (121)
Wy — (rzp“"‘wx)x =0, (1.22)

subject to the following initial and boundary conditions:

(Ior u,v, W)(xro) = (pO’MO; Vo, WO)(x)r X € Q’ (123)

(u,v,w)(0,¢) = (u,v,w)(1,£) =0, ¢t>0, (1.24)

where r(x, £) is determined by

re(x, t) = u(x, t), r(x, t)re(x, t) = %,
(1.25)
~ ~ ) x 1 ]1/2
rle-o = ro(x) = [a +2/0 00D dy| .

The compressible Navier-Stokes system has been noticed academically by physicists and
mathematicians for a relatively long time. We are interested in the case that the viscosity is
density-dependent. Now let us first recall the related results in this direction. In the one-
dimensional case, for the initial boundary value problems in a bounded domain, there
have been many works (see, e.g., [2-11]) on the existence, uniqueness, and asymptotic
behavior of weak solutions, based on the initial finite mass and the flow density being
connected with the infinite vacuum either continuously or by a jump discontinuity. For
the one-dimensional Cauchy problem, see, e.g., [12] and references therein for the results
on global existence based on the density-dependent viscosity.

In two or three dimensions, the global existence and large time behavior of solution
to compressible Navier-Stokes equations (1.1)-(1.2) with constant viscosity and density-
dependent viscosity have been investigated for initial boundary value problems, we refer
the reader to [1, 13—27] and references therein. Among them, Bresch and Desjardins [13,
14] obtained the global existence of 2D shallow water equations. For the spherically sym-
metric problem to a three-dimensional compressible isentropic Navier-Stokes problem,
Guo et al. [19] analyzed the structure of the solution; Huang et al. [28] studied the global
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well-posedness of the classical solutions with large oscillations and vacuum; Lian ez al. [22]
obtained the global existence of spherically symmetric solution for the exterior problem
and the initial boundary value problem; Zhang and Fang [27] investigated the global exis-
tence and uniqueness of the weak solution without a solid core. For the cylindrically sym-
metric problem to the three-dimensional compressible Navier-Stokes equations, when the
viscosity coefficients are both constants, the uniqueness of the weak solutions was proved
in [17,18], the global existence of isentropic compressible cylindrically symmetric solution
was established in [29]; this result was later generalized to the nonisentropic case in [21].
Recently, Cui and Yao [15] proved the asymptotic behavior of a compressible pth power
Newtonian fluid with cylinder symmetry; Qin [24] established the exponential stability in
H' and H? for an ideal fluid. Later on, Qin and Jiang [25] proved the global existence and
the exponential stability in H*. Jiang and Zhang [21] established a boundary layer effect
and the convergence rate as the shear viscosity . goes to zero. When the viscosity coeffi-
cient u(p) is density-dependent and A(p) is a positive constant, the global existence was
obtained in [26]. When viscosity coefficients n and A are density-dependent, Liu and Lian
[1] established the global existence and asymptotic behavior of cylindrically symmetric
solutions, however, there is no result on the regularity for this system.

It is noticed that the above analysis concerns the existence of solution in H'[0, 1], the reg-
ularity in H*[0,1] has never been investigated for the three-dimensional isentropic com-
pressible Navier-Stokes equations. Therefore, we continue the work by Liu and Lian [1]
and study the regularity of the solutions in H*. In order to obtain a higher regularity of
global strong solutions, there are many complicated estimates on higher derivations of
the solution involved; this is our difficulty. To overcome this difficulty, we shall use some
proper embedding theorems, and the interpolation techniques as well as many delicate
estimates.

The notation in this paper will be as follows: 7, 1 < p < +o0, W™, m € N, H' = W2,
H} = W&'z denote the usual (Sobolev) spaces on [0,1]. In addition, || - || 5 denotes the norm
in the space B; we also put || - || = || - || ;2. Subscripts ¢ and x denote the (partial) derivatives
with respect to ¢ and x, respectively. We use C; (i = 1,2,4) to denote the generic positive
constant depending only on the H'  norm of the initial data (pg, #o, Vo, wo) and the vari-
able t.

Before stating the main result, we assume the initial data
- 4
(/00 = P, Up, Vo, WO) € (H4[0>1]) ) (126)

with pg >0 and p = bi—a fab oot dr, and we define

1 2, .2 2 1 y=1_ ~y-1 % 1 1
HO:‘/0 5(u0+vo+w0)+y_1(p0 - N +p Fa dx,
H, :/l<l((uo +7(p§) )2+V2 +wd) + ——(pg " =577 +,5V<l - l))dx
e \2 O Ty 1 p )

Now we are in a position to state our main results.

Theorem 1.1 Let y >1, a > 1/2. Assume that the initial data satisfies (1.26) and Hy(Hy +
Hy) < a?a*(2a — 1)2p7*%7 L, Then there exists a unique generalized global solution
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(o(2), u(®), v(t), w(t)) € (H*[0,1])* to the problem (1.19)-(1.24) verifying that, for T > 0,

p - peL®([0,T],H*[0,1]) N L*([0, T, H*[0,1]), (1.27)
(u,v,w) € L*([0, T1,H*[0,1]) N L*([0, T, H[0,1]), (1.28)
(s, vio we) € L®([0, T1, H[0,1]) N L*([0, T], H[0,1]), (1.29)
(thser v wae) € L ([0, T, L7[0,1]) N L*([0, T, H'[0, 1]). (1.30)

Corollary 1.1 Under the assumptions of Theorem 1.1, (1.27)-(1.28) implies (p(t), u(t),

v(t), w(t)) is the classical solution verifying, for any t > 0,

||,0(t) - '5”63“/2 + ”M(t) ||C3+1/2 + ”V(t) ||C3+1/2 + ”W(t) ||C3+1/2 <Cs. (1.31)

The rest of the paper is arranged as follows. Section 2 is concerned with the proof of
the regularity for a cylindrically symmetric solution to the compressible Navier-Stokes
problem in detail.

2 Proof of Theorem 1.1
We will complete the proof of Theorem 1.1 and assume that the assumptions in Theo-

rem 1.1 are valid. We begin with the following lemma.

Lemma 2.1 Under the assumptions in Theorem 1.1, there exist positive constants p, > 0
and p* > 0 with p, < p < p* so that the unique global solution (p(t), u(t), v(t), w(t)) to prob-
lem (1.19)-(1.24) exists and satisfies, for any T > 0,

0<pe <plxt) < p%, (2.1)

(p - p)x € L([0, T),L7[0,1]) N L*([0, T],L*[0,1]), (2.2)

(u,v,w) € L*([0, T1, H?*[0,1]) N L*([0, T1, H*[0,1]), (2.3)

| Gt ve w) @) + / | Gtz ve wi)(s) |3 ds < o, VEE10,T], (2.4)
0

where p is the same as in Theorem 1.1.
Proof Estimates (2.1)-(2.4) were obtained in Ref. [1], the proof is complete. d

Lemma 2.2 Under the assumptions in Theorem 1.1, the following estimate holds for any
T>0:

loa®)]? + fo low®| ds < Co £ 10,T]. (25)

Proof Differentiating (1.20) with respect to x, exploiting (1.19), we have

2 o
Uy v atl 14 (p%)xut 223
= = (=p” +ap®(ru),) + | = - +—, 2.6
5 (v, <r2 ) 2.6)
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a-1 y-1 _
(P oxx), + VP" ™ Prx = Mo (%, £) 2.7)
with
v, 20%r
Mo, 1) = =5+ = == — (o = 1)(20° 7 pupus — (@ = 2)p" 7 117
r r
. (0 )uxth + (0%)xtt (P*)att Uy Wy
—y(y =1)p"?p; = —— e e
r or r - pr
Multiplying (2.7) by %! p,,, integrating the result over [0,1], we deduce
d . 2 ! _
g7 0% (D) +/ yp' 2 p dx
¢ 0
1
<G / loxl (Ivall + [V + loxpell + [ oeo | + | 03]
0
Loy
+ 1ol + Ntz ll + Nl2az 1) —/ a;pza_Zpﬁxdx,
0
which, by Young’s inequality and the interpolation inequality, implies
d, ., 2
P 107 pax (8™ < Crllloael® + N0l + Nl 2 + Naae 7). (2.8)

Integrating (2.8) with respect to ¢ over [0, 7], using initial condition (1.26) and Lemma 2.1,

we derive
t
low®[? <G+ G f low(s)|*ds, Vee0,T],
0

which, by virtue of Gronwall’s inequality, gives (2.5). The proof is complete. O

Lemma 2.3 Under the assumptions in Theorem 1.1, the following estimates hold for any
T>0:

t t
lua @] + / ltsl) [ ds < s + C f (luess > + Va2 ) s, £€10,T],  (2.9)
0 0
t t
lva@)| + f Ivies(s)| ds < Ca + G / (Ivessl® + s P) s ds,  £€10,T], (2.10)
0 0
t
lwa®)]> + / Iwen®)|>ds < Car 210,71, (2.11)
0

Proof We infer from (1.20)-(1.22) and Lemmas 2.1-2.2 that

[u®] = C([ox@] + @] o + [v=@])), (212)
[v@] = G(lo:x@] + [ux®] + v ). (213)

[we®] < G([wa@) ]| 1 + [ £2@)])- (214)

Page 6 of 16
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Differentiating (1.20)-(1.22) with respect to x, respectively, and exploiting Lemmas 2.1-2.2,

we have
|e®] = Ci([l @) o + [v2 O] + [0 ,2), (2.15)
[ve@®)] < G2 1 + [ + [ve®)]12), (2.16)
[wee®)] < CL(]| 2@ ||, + [ WD) ,12)» (217)
or

|ttax (8| < CL(| x| + [[vx@ | + |1 @®) | 11 + 28D, (2.18)
[Veee@ || < CL(|| 20| 0 + [ 2D + [V ()] 1 + [vex(D])s (2.19)
[Weex @) ]| < CL([| 22 (D] 1 + [| W@ ] 1 + [ we®) ) (2.20)

Differentiating (1.20)-(1.22) with respect to x twice, respectively, using Lemmas 2.1-2.2,

we get
[uex®] = Culll 2@ 2 + [ 1 + 1@ + [0@ ), (221)
[veee®]] = G 2 + [ve®) ] + (1@ g + (V2O ), (2:22)
||thx(t)|| = Cl(”px(t)”Hz + ”Wx(t) ||H3)’ (2.23)
or
|taex @] < Cr([ 2@ |12 + (4O ]2 + [v2®) |11 + [0 2), (2.24)
[Vaxer®] < CL[| 2@ |2 + [ve®) |12 + [ 1 + [v2(®) ]2, (2.25)
[ W @] < (02O [ 1o + [wx®)] o + [Wesx O])- (2.26)

Differentiating (1.20)-(1.22) with respect to ¢, respectively, we deduce

Jua®)]| < o[ ®] 2 + [ve® ] + [ 05O + 120 1), (2.27)
[ve®] < C([ve®] o + || + [ 02O + )] 1), (2.28)
[we®] = Cr (O 1+ [ 2e®)] + [165(8) | )- (2.29)

Now differentiating (1.20) with respect to ¢ twice, multiplying the resulting equation by
(%) in L2[0,1], and using integration by parts and (1.19), we conclude

1d (Y/u\? 1 u
- - d - _ _ AV o+l - d
27t ), (V>n x /0( o’ +ap ('0”)")”<r>m x

1 V2—M2 u 1 (pa)xu u
+/0( r2 )tt<;)ttdx_/0( r >tt(;)ttdx

= A1 +A2 +A3. (230)
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Employing Lemmas 2.1-2.2, (2.27)-(2.28), (1.19), and the interpolation inequality, we get,
for any small ¢ € (0,1),

1 u
A =- / (=p” + ap““(pu)x)tt<;> dx
0

ttx
lpa+2 ) 9 9 9
< a / L dr e un®]” + ol @ + [

w30+ [ua®] + @] + [ 06 10)

<=M | + Co|ue®) [ 10 + | 6O 11 + |00 | 2) (2.31)

1,2 2
Ay = / <V 2u ) (Z> dx
0 r a\"/u

< Gwe® |0 + [vi® 10 + [a®)])” + [va®)] + |ue()]”)

= G(|u@l o + vl + 2@ + D] ). (232)

(), (),
0 r a\"/u

< Co(|ua® |’ + ue®) |3 + | ps®] + | x| + | 0x0)]*)

< G[w®] 0 + [ @] + [ux(8)] 7)- (2.33)

As

Integrating (2.30) with respect to ¢, applying Lemmas 2.1-2.2, initial condition (1.26), and
(2.31)-(2.33), we obtain (2.9).
Differentiating (1.21) with respect to ¢ twice, multiplying the resulting equation by (7);

in L2[0,1], and using integration by parts, we have

1d (Y/v\? 1 ol v L/ (p%),v v
v, (), 2= [omn() e [ (), (7),

= Bl + Bz, (234)

where

1 1 o
Bl(t)=—/0 (pa+1(pv)x)tt(;> dx, Bz(t)z_/o‘ ((pr)xV_%) (;) dx.

Using the interpolation inequality, Lemmas 2.1-2.2 and (2.27)-(2.28), we obtain for € €
(0,1),

1 a+2
Bi(t) < - / ”vam dx + €|[ves(®)|* + Co (e ® | + [vel®) |3 + | vee(®)
0

I
+oa®[ + [pw®] + | 2@ + [1:0])
lpoz+2 ) 2 9 2
< [ Evidrs et + o0+ [0
0

@] + [ 0e®) 10 + )] 10), (2.35)



Huang and Lian Journal of Inequalities and Applications (2016) 2016:117 Page 9 of 16

By(8) < Co([va(®)])* + |ve® [ + |we®) | 11 + | 2ee®)]|* + | peex O]
+ou@l + [o@n + [@])
= Go([w@ i + @ 2 + @l + el 1) (236)
Integrating (2.34) with respect to ¢, using Lemmas 2.1-2.2 and (2.35)-(2.36), and picking
€ small enough, we conclude (2.10).

Similarly, differentiating (1.22) with respect to ¢ twice, multiplying the resulting equation

by wy in L2[0,1], and using integration by parts, we deduce

1d (!
2 / w2 (x, t) dx
0

1
= _/ (Vzplmwx)ﬁwttx dx
0
1
2 l+a, 2
< —/ rp e wi (x 0) dx + Co(llwell + lluewll + [l oeweell + 1| oo wea|
0
+ [l pewall + ”ptwtx”)”thx”

< =Wl + Co(Jwx @ + || + [we® |2 + 0] ) (2.37)

Integrating (2.37) with respect to ¢, using Lemmas 2.1-2.2, we derive the estimate (2.11).
The proof is complete. 0

Lemma 2.4 Under the assumptions in Theorem 1.1, the following estimates hold for any
T >0 and ¢ €(0,1):

t t
|us@)]? + / |teex(s) | ds < Ca + C;'e? / |unls)|*ds, te€0,T), (2.38)
0 0
t t
@ + / Vi) |2 ds < Ca + C;e? / I’ ds, ¢ [0,7], (2.39)
0 0
t
|wae)|* + / | Wea(s)||* ds < Ca,  £€10,T1. (2.40)
0

Proof Differentiating (1.20) with respect to ¢ and x, then multiplying the result by (%), in
L?[0,1], and integrating by parts, we deduce that

1d (! 2
-—— (E) dx
2 dt 0 r P

= Do (x, t) + Dl(t) + Dz(t), (241)
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where

1
Do(x,t) = (—p” + ap“l(pu)x)tx(%) :

tx10

1
Di(t) = —/ (-p” +0tp“”(pu)x)tx(%) dx,
0

1/.2_ .2 o
Dz(t)=/0 (V r2u —(pr)"”>tx<%>txdx.

Now employing Lemmas 2.1-2.2 and the interpolation inequality, using Young’s inequality

several times, we have, for ¢ € (0,1),

2 2
Do, 1) < Co(llpxllfoo + lloxthalloe + Nthllzoo + || 07 the | oo
2
+ ”pxux ”Loo + [[tgttx |l 100 + || Oxthx [l 200 + || oxthe]| 00
2
+ |2 oo + Nthesllzoo ) llttexll oo
1 1
< Collaellzre + lloxllpn + otz % |28l 2
1 1 1 1
2 12 ) 202112 (241112
-1.2 2 2
<Cye (“utxx” + [ s | )

+ C28_6(||utx”2 + ”ux”?{z + ||,0x||f,1), (2.42)
1
2
Di(t) < -« / P U dx + & |1 (2) |
0

+ Co([lox@) 7 + (0]

+ ua®|? + 10|, (2.43)
Dy (t) < Colluataell + Nl + Nvellppn + llasell + [vell + || + V2]

+ 1ol + | pexttell + | pcthell + | otz ]| + 1| e

ol (Nt + laag ] + Nzl + |6 )

2 2 2 2 2
< Co(llxliz + loxllzp + Vel + Nateliz + vell7n)- (2.44)

On the other hand, we differentiate (1.20)-(1.22) with respect to x and ¢, and use Lemmas
2.1-2.2 and (2.12)-(2.29) to conclude

|tesax O] < Co[|a®) ] 1o + | 02O 1 + ()| 12 + [ ]), (2.45)
[vieas )] < Co[|tx® ] 1o + | 05O 1 + [ve® ] 1o + [vex D], (2.46)
[Weeax @] < Co([[2a) |10 + [Wes O] 1 + [ween(D)]).- (2.47)

Integrating (2.41) with respect to ¢, using (2.42)-(2.45) and Lemmas 2.1-2.2, we obtain
(2.38).
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Analogously, differentiating (1.21) with respect to ¢ and x, then multiplying the resultant
by () in L2[0,1], and integrating by parts, we deduce that

1d (Y/v\>
—— <K> dx
2 dt 0 r e

1

_ a+l K _ ! a+l K
=(p (pv)x)"“<r>mo /O(p (pv)")tx(r)mdx

Loouv  (p%)v v
+/0 (V_Z_ r >tx(;>mdx

=Eo(x, £) + E1(t) + Ex(2), (2.48)

where

1

1
Eo(x, t) _ (pa+1(pv)x)tx<;> , El(t) = —/O (pO‘*l(pV)x)tx(;) dx,
tx10 e

1 2 ax
ro- [ (% -2 )()d

Now we apply the interpolation inequality and Young’s inequality to estimate Ey (;, £), E1(£),
E(¢) for any € > 0,

Eo(6,8) < Co(IVesallie + Vel + 1Vepallzss + 1vellioe + lttallioe + sl
+ aallzoe + Notallzss + L palli) Vil
< Ca(llusle + WVl + llpsllin + Mvellin
1 1 1 1 1 1
172 1l 2+ Va2 Va1 2) DVl 2 Vi 2
— 2 2 _ 2
=G (@] + [vas @) + G ([ra®] + [0} 2

+ @l + @] ), (2.49)
1 1 1
B = [ v g [0 dy s i+ il
0 0

+ oxllZ + [1vell® + 1veell®), (2.50)
Ex(8) < Co(llueall + Nloteviell + Notavell + I1veell + Nogell + 1vell + losl

+ Vil + L oexell + 1 osevell + 1l 0xavell + Il oxVexll + [l oxell + L oavel

+ 11 oxxl + N oxvill + 1l oxttall) (IVexll + Ivell + sl + veell)

2 2 2 2 2
< Collluelizp + Ivelizp + Nl + Noxllfa + Ivelizp)- (2.51)

Inserting (2.46) into (2.49), integrating (2.48) with respect to ¢, and using (2.49)-(2.51),
we can get (2.39).



Huang and Lian Journal of Inequalities and Applications (2016) 2016:117 Page 12 of 16

Differentiating (1.22) with respect to x and ¢, multiplying the resulting equation by wy,
in L2[0,1], integrating by parts, we have

1
~ Wil = (20 wx), Wex / (P wy) , Wi dx
0

= Fo(x,t) + Fi(£). (2.52)

Employing Lemmas 2.1-2.2, the interpolation inequality and (2.47), we infer for any ¢ €
(0,1) that

Fo(x,8) = (P2 p""wx), Wi,
< Co(llwallzoe + lIwsttellzoo + | oxWell oo + [[Wallzoo
+ 1 Weellzoo + [Weaxllzoo ) [ Wegll oo
< E(Iweaxl® + 1weaax1?) + Co(Iwal2 + Il 7 + Ntell2p + I wel?)

2 2 2 2 2 2 2
< & (IWeall® + llweexl®) + Co(Iwallzpe + Npxllzp + letallzp + Iwesll?), (2.53)

1
Fi(t) =~ /0 (0" Wy) , Wens At

1

2 1 2

< —/ rp +awtxxdx+ CZ(”Wx” + | watsx || + ([ Wy px |l + [[Waxll
0

+ (| Wae |l + ”pxwtx”)”thx”

< =CiMlwex® + Co(Iwall 2 + Iwell 2 + el ) (2.54)

Integrating (2.52) with respect to ¢, picking ¢ small enough, using Lemmas 2.1-2.3 and
(2.53)-(2.54), we derive the estimate (2.40). The proof is complete. O

Lemma 2.5 Under the assumptions in Theorem 1.1, the following estimates hold for any
T>0:

t

|un(®)| + |ua®)]* + / (I1stexxlI® + lteexl|®) (5) < Car £ €10, T7, (2.55)
0
t

|va@®|? + [vau®)| + fo (IVisl® + Vs l?) (5) < Ca, - £ €0, T, (2.56)

L
||pxxx(t)||2 + “uxxx(t) H2 + ||Vxxx(t)||2 + ”Wxxx(t)”2 +/ (”pxxxHZ + ||uxxxx||2
0
+ [ Waansl|? + [ Waas|*) (8) ds < Ca, - £ € [0, T1. (257)
Proof Adding (2.38) and (2.39), using (2.9)-(2.10) and picking ¢ small enough, we easily

obtain (2.55)-(2.56).
Differentiating (2.7) with respect to x, we have

a(pailpxxx)t + prilpxxx = Mi(x, 1), (2.58)
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where

M (1) = Moy, ) = (@ = 1) (0% pxxx), = ¥ (¥ = 1) pxPors-

An easy calculation with the interpolation inequality, Lemmas 2.1-2.2, and (2.55)-(2.56)
gives

“Ml(t) H = CZ(”MOx” + ”pxpxx” + ”pxtpxx” + ”pxptxx”)
< Co([|[V2]| + Mvsell + N oxprell + | oxwexll + | 07 pex]| + 1 P22
+ ”pxpxx” + ”pxxx” + ”pxxux” + ”utx” + ”utxx” + ”ut” + ”utpx”)

< G([o® ] + )12 + [V [ + |8 2),

which, along with Lemmas 2.1-2.2 and (2.55)-(2.56), implies

t t
/ |My(s) | ds < Cy + C, / | oxxe(s)|* ds, V£ € [0,T). (2.59)
0 0

Multiplying (2.58) by 0%~} px in L2[0,1], we deduce

d 1
L La X S / P2l dx < G @), (2.60)
t 0
which implies
Ay o1 g2 2
. XXX =1 1 . .
2| | < il 0] 26
Integrating (2.61) with respect to ¢, using (2.59), we conclude
2 ¢ 2
||pa71pxxx|| <C+ G / “pxxx(s) || ds,
0
which, by virtue of Gronwall’s inequality and (2.60), gives
t
”pxxx(t)”Z + / ”;Oxxx(s)Hz ds<Cs, Vtel0,T]. (2.62)
0
By (2.18)-(2.20), (2.55)-(2.56), and Lemmas 2.1-2.4, we conclude
|tass @[ + [Vas®]) + | Waa®)]|* < Car VEE [0, 7). (2.63)

By virtue of (2.24)-(2.26), (2.55)-(2.56), (2.62), and Lemmas 2.1-2.4, we can get

t
/ (lttmms >+ [+ [Wenal?) 5 ds < Cav £ [0, ],
0

which, along with (2.62)-(2.63), gives (2.57). The proof is complete. O
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Lemma 2.6 Under the assumptions in Theorem 1.1, the following estimates hold for any
T>0:

|t ®)|* + [vea®) ] + |Wee @] < Cay £ €10, T, (2.64)
o] + /0 lomss®|ds < o £ 10,70, (2.65)

t
”Mxxxx(t) ”2 + ”Vxxxx(t) ”2 + ”Wxxxx(t) H2 +/ (”uxxxxxnz
0

+ ”Vxxxxx”Z + ||Wxxxxx||2)(s) ds<Cy, te€l0,T] (2.66)

Proof Differentiating (1.20)-(1.22) with respect to t, respectively, we deduce

Juess®) | < CL([e® ] 0 + [[ve@ ] + [ 2@ | + [0 | 0 + [ D)) (2.67)
[vea®)] < Cu([[ve@) |1 + | + | 02O + [ | 1 + [vee@)]), (2.68)
[wes @) < (W] + |05 @] + |2 |10 + [ W@ ]| 10 + [wee@)])- (2.69)

By virtue of Lemmas 2.1-2.5 and estimates (2.67)-(2.69), we conclude (2.64).
Differentiating (2.58) with respect to x, we have

(0 prxxx), + V07 Prrax = Ma(, 1), (2.70)
where

My (x,£) = My(x,8) = (& = 1)(0° 7 xaxx), — ¥ (¥ = 1) sPxa
and

M (%,8) = Mo, 2) = Y (v = D)(pxe)x — (@ = 1) (0 piosx) -

Using the interpolation inequality, and the embedding theorem, Lemmas 2.1-2.5, we can
deduce that

(M0 = Caw@)] 1 + [ x5 + s o + [0 12)- (2.71)

Inserting (2.45) into (2.71), and integrating (2.71) with respect to ¢ over [0, 7], using Lem-

mas 2.1-2.5, we have
t 2 t 2
f [Ma(5)|*ds < Ca + C / | osms(s)|*ds, Ve € [0, 71, (2.72)
0 0

Multiplying (2.70) by p% ™ o in L2[0,1], we can get

d 1
%E ”pa_lpxxxxnz e _/0 py+a—2p§xxx dx < C, ”MZ(t) 2’ (2.73)
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which implies
dy .
E “:0 lpxxxx”Z = C2 ||M2(t)||2
Integrating (2.74) with respect to ¢ over [0, T'], using (2.72), we conclude
2 t 2
||pa71;0xxxx H = C4 + C2/ ”pxxxx(s) || dS, te [0) T],
0
which, by virtue of Gronwall’s inequality, gives
| paeas®|* < Car £ €[0,T1.

Thus, we can obtain (2.65) by virtue of (2.75)-(2.76).

By (2.24)-(2.26), (2.64)-(2.65), (2.45)-(2.47), and Lemmas 2.1-2.5, we deduce that

”uxxxx(t) ”2 + ”Vxxxx(t) ”2 + ”Wxxxx(t) H2

t
+/MMMHMMWHMWM@m§@ tel0,T].
0

Page 15 0f 16

(2.74)

(2.75)

(2.76)

(2.77)

On the other hand, we differentiate (1.20)-(1.22) with respect to x three times, use Lemmas

2.1-2.5 and (2.64)-(2.65) to conclude, for any ¢ € [0, T,

|tiras @) | < Ca[| x| + 2O 5 + | 05| 5 + [v2(®) 15,
”Vxxxxx(t) ” = C4(||Vtxxx(t) ” + ”ux(t) ||H3 + ||px(t)||H3 + HVx(t) ||H3)’

[ Wareax @] < Cal[Wexax @ + 2@ 15 + [ 2| 12 + [wa®)] 0)-

Thus we conclude from (2.77)-(2.80), (2.64)-(2.65), and Lemmas 2.1-2.5 that

t
/ (”uxxxxx”2 + ||Vxxxxx”2 + ||Wxxxxx||2)(s) ds<Cy, Vtel0,T]
0

which, combined with (2.77), implies (2.66). The proof is complete.

(2.78)
(2.79)

(2.80)

O

Proof of Theorem 1.1. Applying Lemmas 2.1-2.6, we readily get estimate (1.27)-(1.30) and

complete the proof of Theorem 1.1.
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