
RESEARCH Open Access

Effect of boundary conditions on stochastic Ising-
like financial market price model
Wen Fang and Jun Wang*

* Correspondence: wangjun@bjtu.
edu.cn
Department of Mathematics, Key
Laboratory of Communication and
Information System, Beijing
Jiaotong University, 100044 Beijing,
P.R. China

Abstract

Price formation in financial markets based on the 2D stochastic Ising-like spin model
is proposed, with a randomized inverse temperature of each trading day. The
statistical behaviors of returns of this financial model are investigated for zero
boundary condition and five different classes of mixed boundary conditions. For
comparison with actual financial markets, we also analyze the statistical properties of
Shanghai Stock Exchange (SSE) composite Index, Shenzhen Stock Exchange (SZSE)
component Index and Hushen 300 Index. Fluctuation properties, fat-tail phenomena,
power-law distributions and fractal behaviors of returns for these indexes and the
simulative data are studied. With the plus boundary condition, for example the
boundary condition ¿6, the value of market depth parameter ¿ is smaller than those
of the corresponding market depth parameters ¿ with zero boundary condition ¿1
and weak mixed boundary conditions ¿2 and ¿3. And the changing range of tails
exponents of boundary condition ¿6 is much smaller than those of the other five
boundary conditions.

Keywords: stochastic Ising-like spin model, boundary condition, financial time series,
statistical analysis, stock market

1 Introduction
As the stock markets are becoming deregulated worldwide, the modeling of the

dynamics of the forward prices is becoming a key problem in risk management, physi-

cal assets valuation and derivatives pricing, see [1-6], and it is also important to under-

stand the statistical properties of fluctuations of stock price in globalized securities

markets, for example see [7,8]. A complex behavior can emerge due to the interactions

among smallest components of that system, see [9], and it is often a successful strategy

to analyze the behavior of a complex system by studying these components. In finan-

cial markets, these components are comprised by the market participants who buy and

sell assets in order to realize their trading and investment decisions. Similar to physical

systems, the superimposed flow of all individual orders submitted to the exchange

trading system initiated by market participants and its change in time generate a com-

plex system with fascinating properties, see [1,2].

Recently, the theory of stochastic interacting particle systems [10-12] has been

applied to investigate the statistical behaviors of fluctuations for stock prices, and the

corresponding valuation and hedging of contingent claims for these price process mod-

els are also studied, see [1,2,11,12]. In the present article, we suppose that traders
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determine their positions at each time by observing the market information (and then

evaluating the market behavior, market sentiment and their trading strategies), each

trader is thought to be a subunit in the stock market, and may take positive (buying)

position, negative (selling) position or neutral position, denoted by +, -, and 0, respec-

tively. Traders with buying positions or selling positions are called market participants,

and the configuration of positions for all traders is assumed as the main factor result-

ing in price fluctuations in this financial model. The reason that we use interacting

particle systems to investigate the fluctuation of stock markets is that all of these sys-

tems consist of subunits. The Ising spin system, which can describe the mechanism of

making a decision in a closed community, is the most popular ferromagnetic model of

interacting particle systems. The subunits in a 2D Ising model are called spins (with

the interactions between the nearest neighbors), the clusters of parallel spins in the

square-lattice Ising model can be defined as groups of traders acting together on the

stock market model, for example see [1,3,4]. The objective of this work is to study the

financial phenomena of the price model developed by the stochastic Ising-like spin

model. In this model, all of the spins are flipped by following Ising dynamic system

[13], and the inverse temperature of each trading day is randomly chosen in a certain

interval. And for different boundary conditions, the statistical behaviors of the price

model are studied. Further, the empirical research in financial market fluctuations for

the actual stock market and the financial model is made by comparison analysis.

2 Description of 2D Ising-like spin model
Considering the Ising model on 2D integer lattice ¿2, at sufficiently low temperatures,

we have known that the model exhibits phase transition, i.e., there is a critical point ßc
> 0, if ß >ßc, the Ising model exhibits the phase transition, for more details see

[4,14,15]. Let ¿2 be the usual 2D square lattice with sites u = (u1, u2), equipped with

the l1-norm: || u || = | u1 | + | u2 |. Given ¿ ¿ ¿2 and ¿c = ¿2 - ¿, ¿¿ = {-1, +1}¿ is the

configuration space. An element of ¿¿ = {-1, +1}¿ will usually denote by ¿¿ = {¿(u): u ¿

¿}. Whenever confusion does not arise, we will also omit the subscript ¿ in the notation

¿¿, and we also denote by |¿| the cardinality of ¿. The set B¿ of bonds in ¿ is defined by

B¿ = {(u, v) ¿ ¿ × ¿: || u - v || = 1}, which means the bonds of vertical and horizontal

nearest neighbors but not diagonal neighbors. Given a boundary condition

τ ∈ �Z2 = {−1, 0, +1}Z2 , we consider the Hamiltonian

Hτ
�(ω) = −

∑
(u,v)∈B�

ω(u)ω(v) −
∑

(u,v)∈�×�c

‖u−v‖ =1

ω(u)τ (v).

The Gibbs measure associated with the Hamiltonian is defined as

μ
β,τ
� (ω) = exp[−βHτ

�(ω)]

/ ∑
ω∈��

exp[−βHτ
�(ω)]

where ß > 0 is a parameter. The stochastic dynamics that we want to study is defined

by the Markov generator

(Aβ,τ
� f )(ω) =

∑
u∈�

c(u,ω, τ )[f (ωu) − f (ω)]
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acting on L2(��, dμ
β,τ
� ) , where ¿u(v) = +¿(v) if v ¿ u, and ¿u(v) = -¿(v), if v = u. c(u,

¿, ¿)is the transition rates for the process [15], satisfying nearest neighbor interactions,

attractivity, boundedness and detailed balance condition

c(u,ω, τ )μβ,τ
� (ω) = c(u,ωu, τ )μβ,τ

� (ωu) . In the present article, we take

c(u,ω, τ ) = exp

⎧⎨
⎩−βω(u)

⎡
⎣ ∑

v∈�,‖u,v‖=1
ω(v) +

∑
(u,v)∈∂�

τ (v)

⎤
⎦

⎫⎬
⎭

where we define the interior and exterior boundaries of ¿ as

∂int� = {u ∈ � : ∃v /∈ �, ‖ u − v ‖= 1}, ∂ext� ≡ {u /∈ � : ∃v ∈ �, ‖ u − v ‖= 1}

and the edge boundary ¿¿ as

∂� = {(u, v) : u ∈ ∂int�, v ∈ ∂ext�, ‖ u − v ‖= 1}.

If we set ¿(u) = 0 for all u ¿ ¿2, then we call the resulting boundary condition the

zero or open boundary condition, if ¿(u) = +1 for all u ¿ ¿2, the boundary condition is

called the plus boundary condition, if ¿(u) = -1 for all u ¿ ¿2, then the resulting bound-

ary condition is called the minus boundary condition, and if there are either ¿(u) = +1

or ¿(u) = -1 for some u ¿ ¿2, and ¿(u) = 0 for the others, we call this kind of condition

the mixed boundary condition. The spin of the Ising model can point up (spin value

+1) or point down (spin value -1), and it flips between the two orientations. At suffi-

ciently low temperatures, the energy effect predominates and we have known that the

model exhibits phase transition. Correlations are related to the phase transition and

the spin fluctuations of the model. As ß increases (from 0), the correlations begin to

extend, these correlations take the form of spin fluctuations, which are islands of a few

spins each that mostly point in the same direction. As ß approaches the critical inverse

temperature ßc from below, spin fluctuation are present at all scales of length. At ß =

ßc, the correlations decay by a power law, but for ß >ßc, there are two distinct pure

phases. Correlations play an important role in studying the fluctuations of the phase

interfaces for the statistical physics model, see [4,14]. In the following section, since

the financial price model heavily depends on the number of spin values, we set the

intensity of interaction among the market investors ß = ¿¿, where ¿ is a random vari-

able with the uniform distribution in 0[1], and ¿ is a intensity parameter, then we

obtain the Ising-like spin model.

3 Financial model and boundary conditions
In this section, we develop a financial price model by Ising-like spin dynamic system.

For a stock market, we consider a single stock and assume that there are n2 traders in

this stock, and each trader can trade unit number of stocks at each time t. At each

time t, the behavior of stock price process is determined by the number of traders x
+(t) (with buying positions) and x-(t) (with selling positions). If the number of traders

in buying positions is larger than that of traders in selling positions, it implies that the

stock price is considered to be low by the market participants, and the stock price auc-

tions higher searching for buyers, similarly for the opposite case. Let xij(t) be the

investing position of a trader (1 ¿ i ¿ n, 1 ¿ j ¿ n) at time t, and x(t) = (x11(t),..., x1n
(t),..., xn1(t),..., xnn(t)) be the configuration of positions for n2 traders. A space of all
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configurations of positions for n2 traders from time 1 to t is given by

X = {x = (x(1), . . . , x(t))} . For a given configuration x ∈ X and a trading day t, let

N (x(t)) = x+(t) − x−(t).

Suppose that ¿t(x) is a random variable which represents the information arrived on

the tth trading day, where ¿t = 1 for buying positions, ¿t = -1 for selling positions and

¿t = 0 for neutral positions with probability p1, p-1, and 1 - (p1 + p-1) respectively.

Then these investors send bullish, bearish or neutral signal to the market. If

ξt(x) | N (x(t)) |> 0 , there are more buyers than sellers, then the stock price is auc-

tioned up, similarly for other cases. From the above definitions and [2,4,5], we define

the stock price of the model at time t(t = 1, 2,...)as St = eγ ξt(x)|N (x(t))|/n2St−1 , where ¿ >

0 is the depth parameter of the market, and S0 be the the initial price at time t = 0.

Then, we have

St = S0 exp

{
γ

t∑
k=1

ξk(x) | N (x(k)) |
n2

}
. (1)

The formula of the single-period stock logarithmic returns from t - 1 to t is given by

r(t) = ln St − ln St−1. (2)

Next, we consider the different boundary conditions for the model in a finite square

¿, which is defined by ¿ = {(u1, u2): 1 ¿ u1 ¿ n, 1 ¿ u2 ¿ n} for a large integer n, and

then we have |¿ext¿| = 4n. The six classes of boundary conditions ¿1, ¿2, ¿3, ¿4, ¿5, ¿6 of

the financial model based on the Ising-like system are given as follows, where

τi ∈ {+1, 0, −1}Z2 for i = 1,..., 6.

A. Boundary Condition 1. The boundary condition ¿1 is defined as follows: ¿1(u) = 0

for all u ¿ ¿ext¿. ¿1(u) = 0 means that the site u is open or there is no spin on the site

u, this boundary condition is called the zero boundary condition.

B. Boundary Condition 2. The boundary condition ¿2 is defined as follows: Starting

from the site (1, n+1), we give a clockwise order to the sites in ¿ext¿, that is {u
i, i = 1,...,

4n}. Assume that there are two positive integers l and m such that 4n = lm for a prop-

erly chosen large integer n. For any ui ¿ ¿ext¿, i = 1,..., 4n, we set

τ2(ui) =
{
+1, lm1 < i ≤ l(m1 + 1), for some m1 = 0, 2, 4, 6, . . .

−1, otherwise

where m1 is a positive integer which depends on the number 4n for a fixed l. In this

case, for the first connected sites of length l in {ui} from the site (1, n + 1), we assign

the same spins (” + “ spin) on these sites, then on the next connected sites of length l

we assign the “ - “ spins on these sites, and so on. This is a mixed boundary condition,

and suppose that l = 10 in the following parts of the present article.

C. Boundary Condition 3. The boundary condition ¿3 is defined as follows: For any u

= (u1, u2) ¿ ¿
2, let

τ3(u) =
{
+1, if u2 ≥ n + 1 or u2 ≤ 0
−1, otherwise

.
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In this case, the plus spins are assigned on the top side and the bottom side of the

exterior boundary ¿ext¿, and the minus spins are assigned on the left side and the right

side of ¿ext¿.

D. Boundary Condition 4. The boundary condition ¿4 is defined as follows: Suppose

that the boundaries of the top side, the bottom side and the left side of the exterior

boundary ¿ext¿ are zero boundary conditions, and the right side of ¿ext¿ is defined by

τ4(n + 1, u2) =
{−1, if u2 = 3m2, m2 = 1, 2, . . .

+1, otherwise

where m2 is a positive integer such that m2 <n/3.

E. Boundary Condition 5. The boundary condition ¿5 is defined as follows: Four sides

boundary conditions of the exterior boundary ¿ext¿ are same as that of the right side

boundary condition in ¿4.

F. Boundary Condition 6. The boundary condition ¿6 is defined as follows: ¿(u) = +1

for all u ¿ ¿2, the boundary condition is called the plus boundary condition.

We also draw the boundary conditions ¿1, ¿2, ¿3, ¿4, ¿5, ¿6 with n = 20 which are

described in Figure 1. For the above boundary conditions ¿1, ¿2 and ¿3, neither “ + “

nor “ - “ predominates the other, whereas the overwhelming part of the boundary sites

in ¿4, ¿5 and ¿6 is plus. In a stock market, here the boundary condition ¿ may represent

the information or the situation on this stock, including the estimation for this stock

price, positive or negative news, trends, political event and economic policy, etc.

In our computer simulations, the system size is n = 100, and the position probabil-

ities p1 = p-1 = 0.5. Each step represents one trading minute, 240 steps constitute one

trading day, the random variable ¿ is stochastically chosen in the uniform distribution
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Figure 1 The plots of six classes of the boundary conditions. (a-f) The six classes of boundary
conditions ¿1, ¿2, ¿3, ¿4, ¿5, and ¿6 with n = 20 respectively.
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0[1] once for every step, where the value of inverse temperature ß = ¿¿ is defined in

Section 2. We typically simulate 1200000 steps, which corresponds to 5000 trading

days for each boundary condition and each fixed intensity parameter ¿. We analyze the

historical data sets of Hushen 300 Index, Shanghai Stock Exchange (SSE) Composite

Index and Shenzhen Stock Exchange (SZSE) Component Index, which records every

trade for all the securities in the Chinese stock market during the period from January

4, 2005 to December 31, 2010, a total number of observed trading days is 1457, see

http://www.sse.com.cn and http://www.szse.cn. The Hushen 300 Index consists of 300

actively traded large cap companies in the SSE (179 companies) and SZSE (121 compa-

nies), which has a good representative of the market. For these databases, the records

of the daily closing price are continuous in regular open days for every week, due to

the removal of all market closure times.

According to the definitions of the logarithmic changes of stock price from the t -

1th day to tth day in (1) and (2), we plot the figures of the stock price series and the

returns by simulating the financial model with the parameter ¿ = 0.8 in the zero

boundary condition ¿1 and the Hushen 300 Index, see Figure 2a-d. We also plot the

probability density functions (PDF) of SZSE Component Index and the financial model

with the zero boundary condition ¿1 for different parameter values ¿, and the corre-

sponding Gaussian distribution is plotted for comparison in Figure 3. Comparing with

the Gaussian distribution, the probability densities of SZSE Component Index and the

simulative data with the zero boundary conditions ¿1 obviously show the phenomena

of the peak distributions in Figure 3. And when the value ¿ increases, the peak phe-

nomenon of the returns are more evidently. The peak distribution of simulative data

with ¿1 and ¿ = 0.5 is much closer to that of SZSE Component Index.
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Figure 2 The fluctuations of stock prices and the corresponding returns. (a) The price time series
simulated by the price model with the zero boundary condition ¿1 for ¿ = 0.8, ¿ = 0.58. (b) The
corresponding logarithmic returns of the simulated price time series. (c) The closing prices of Hushen 300
Index from January 4, 2005 to December 31, 2010. (d) The corresponding logarithmic returns of Hushen
300 Index.
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4 Statistical behaviors of financial model with different boundary conditions
Statistical behaviors of price fluctuations are very important to understand and model

financial market dynamics, which have long been a focus of economic research. Stock

price volatility is of interest to traders because it quantifies risk, optimizes the portfolio,

and provides a key input of option pricing models that are based on the estimation of

the volatility of the asset, see [6,7].

4.1 The statistical properties of the model

In this section, we investigate the statistical properties of the financial model with six

classes boundary conditions, including the kurtosis and the skewness of the market

returns. Kurtosis is a measure of the flatness of the probability distribution for a real

valued random variable. Higher kurtosis which means more of the variance is due to

infrequent extreme deviations, as opposed to frequent modestly sized deviations. It is

known that the kurtosis of the Gaussian distribution is 3, while the kurtosis of the real

markets is usually larger than 3 by the empirical research. The recent research shows

that returns on the financial markets are not Gaussian, but exhibit the excess kurtosis

and the fatter tails than the normal distribution, which is usually called the “fat-tail”

phenomenon, see [2]. The kurtosis and skewness are defined as follows

kurtosis =

∑n
t=1 (rt − r̄)4

(n − 1)σ 4
, skewness =

∑n
t=1 (rt − r̄)3

(n − 1)σ 3

where rt denotes the return of tth trading day, r̄ is the mean of r, n is the total num-

ber of the data, and ¿ is the corresponding standard variance. The kurtosis shows the

centrality of data and the skewness shows the symmetry of the data. It is known that

the skewness of standard normal distribution is 0.

In Table 1, we consider the statistics of returns for SSE Composite Index, SZSE

Component Index and Hushen 300 Index from January 4, 2005 to December 31, 2010.

This shows that three kurtosis vlaues of returns of the Chinese stock market indexes

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

30

P
ro

b
a
b
il
it
y

d
en

si
ti
es

 

 

−0.01 0 0.01

15

20

25

 

 

SZSE
λ = 1.0
λ = 0.8
λ = 0.6
λ = 0.5
λ = 0.45
λ = 0.4
λ = 0.3
Gaussian

Figure 3 The probability density function (PDF) of logarithmic returns of SZSE Component Index
and the price model with the zero boundary condition ¿1 for different intensity values ¿ = 1.0, ¿ =
0.8, ¿ = 0.6, ¿ = 0.5, ¿ = 0.45, ¿ = 0.4 and ¿ = 0.3. And the corresponding Gaussian distribution is
plotted for comparison.
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are larger than 3, which implies that these returns exhibits the excess kurtosis and the

fatter tails than the corresponding Gaussian distributions, and the biased distributions

of skewness also exist for the indexes. Since the range of daily price fluctuation is lim-

ited in Chinese stock markets, that is, the changing limits of daily returns for stock

prices and stock market indexes are between -10% and 10%, then the value of market

depth parameter ¿ (which is defined in (1) of Section 3) depends on the given intensity

value of ¿, in an attempt to make the financial price model satisfy the changing limits

of daily returns for Chinese stock markets. In the simulation of the financial model,

the statistical properties of the returns for different boundary conditions are displayed

in Table 2. They show that the kurtosis values are also larger than 3, and the kurtosis

value is becoming smaller with the intensity ¿ decreasing for each boundary condition.

In Table 2, for each fixed boundary condition ¿, as the intensity parameter ¿

decreases, the depth parameter ¿ of the model has the tend to increase. The interaction

among the market investors decreases for the intensity parameter decreasing, this

means that investors may pay less attention to the other people’s investment attitude

around them. In this situation, Table 2 shows that the market depth parameter may

play a great role in the price model. And for each fixed value of intensity parameter ¿,

when the boundary conditions are neither “ + “ nor “ - “ predominates the other, for

example the boundary conditions ¿1, ¿2, and ¿3, the values of depth parameters ¿ are

larger than that of the corresponding depth parameter ¿ of plus boundary condition ¿6,

which is the plus is the overwhelming part of the boundary sites. When the interaction

among the market investors increases or the external environment is dominant by one

view for a long time, the value of market depth parameter ¿ may decrease. And the

ranges of variances of returns with six boundary conditions ¿1, ¿2, ¿3, ¿4, ¿5, ¿6 are

[0.00037, 0.00068], [0.00031, 0.00067], [0.00045, 0.00067], [0.00033, 0.00067], [0.00033,

0.00050], [0.00037, 0.00057], respectively. Since the variances of SSE, SZSE and Hushen

300 are 0.000382, 0.00046, and 0.000431, respectively, from the view of fluctuations,

the simulation of model with boundary condition ¿5 is closer to this period of January

4, 2005 to December 31, 2010 in real Chinese stock markets.

For understanding the difference between the normal distribution and the distribu-

tions of SSE Index, SZSE Index, Hushen 300 Index and the simulative data, we also

make single-sample Kolmogorov-Smirnov test [16] by the statistical method. We com-

pute the statistical values of the returns for Hushen 300 Index, SSE Index, SZSE Index,

and the simulative data numerically, see Tables 3 and 4 after normalizing these time

series. The null hypothesis is that the data vector has a standard normal distribution.

The alternative hypothesis is that the the sample does not have that distribution. The

result h is 1 if the test rejects the null hypothesis at the 5% significance level, 0 other-

wise. The p-value p, the test statistic k, and the cutoff value cv for determining whether

k-s statistical is significant. From Tables 3 and 4, they indicate that the behaviors of the

financial model are close to the real market when the intensity ¿ ranges from 0.4 to

Table 1 The statistical properties of Chinese stock market

Mean Variance Max Min Kurtosis Skewness

SSE 0.000546 0.000382 0.090345 -0.092561 5.584019 -0.347366

SZSE 0.000962 0.000466 0.091615 -0.097501 4.962429 -0.377435

Hushen 300 0.000786 0.000431 0.089310 -0.096949 5.267240 -0.412498
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Table 2 The statistical properties of price model with six classes boundary conditions

Boundary ¿ ¿ Mean Variance Max Min Kurtosis Skewness

¿1 1 0.5 0.00003 0.00040 0.09890 -0.09380 4.85178 0.13589

¿1 0.8 0.58 0.00007 0.00037 0.09616 -0.09512 4.88207 0.10954

¿1 0.6 0.9 -0.00043 0.00050 0.09792 -0.08802 4.46219 0.13983

¿1 0.5 0.92 0.00009 0.00039 0.09090 -0.09734 4.35889 -0.08853

¿1 0.45 1.1 -0.00028 0.00048 0.09680 -0.09416 4.17186 -0.07398

¿1 0.4 1.5 0.00034 0.00068 0.09480 -0.09810 3.49030 -0.02603

¿1 0.3 1.7 0.00048 0.00063 0.09554 -0.09656 3.37645 0.05148

¿2 1 0.5 0.00059 0.00044 0.09662 -0.09870 4.79473 0.05917

¿2 0.8 0.59 0.00019 0.00037 0.09853 -0.08767 5.10466 0.06324

¿2 0.6 0.7 0.00037 0.00031 0.09982 -0.09100 4.93810 0.07865

¿2 0.5 1.05 0.00049 0.00048 0.09303 -0.09618 4.04856 0.06254

¿2 0.45 1.1 0.00028 0.00046 0.09812 -0.09108 4.11700 0.10904

¿2 0.4 1.2 0.00020 0.00045 0.09552 -0.09888 3.85836 -0.02008

¿2 0.3 1.75 0.00004 0.00067 0.09135 -0.09835 3.32317 -0.00956

¿3 1 0.53 0.00058 0.00045 0.09932 -0.09158 5.00763 0.12602

¿3 0.8 0.66 0.00035 0.00048 0.09332 -0.09913 4.61243 -0.00751

¿3 0.6 0.85 0.00010 0.00045 0.09571 -0.09758 4.69311 0.00167

¿3 0.5 1.05 0.00033 0.00047 0.09744 -0.09891 4.11189 0.00977

¿3 0.45 1.1 0.00048 0.00053 0.09724 -0.09856 4.12251 0.04151

¿3 0.4 1.25 0.00024 0.00049 0.09875 -0.09425 3.79751 -0.00912

¿3 0.3 1.75 0.00007 0.00067 0.09135 -0.09975 3.32325 -0.01994

¿4 1 0.48 -0.00004 0.00039 0.09504 -0.09926 4.76332 -0.00688

¿4 0.8 0.64 0.00035 0.00043 0.09894 -0.09536 4.93876 0.13699

¿4 0.6 0.7 0.00037 0.00033 0.09688 -0.09898 5.14323 0.09849

¿4 0.5 0.85 0.00019 0.00033 0.09367 -0.09979 4.49162 -0.04789

¿4 0.45 1.2 -0.00022 0.00057 0.09216 -0.09648 3.84336 -0.03486

¿4 0.4 1.3 0.00014 0.00053 0.09178 -0.09880 3.87194 -0.03044

¿4 0.3 1.75 0.00027 0.00067 0.09240 -0.09765 3.35798 0.02708

¿5 1 0.41 0.00010 0.00037 0.09938 -0.09479 4.92090 0.09551

¿5 0.8 0.46 0.00030 0.00033 0.09752 -0.09504 5.85585 -0.16673

¿5 0.6 0.73 0.00031 0.00041 0.09928 -0.09505 4.73252 0.16074

¿5 0.5 0.88 -0.00036 0.00042 0.09979 -0.09258 4.88828 0.01417

¿5 0.45 0.95 0.00016 0.00040 0.09937 -0.09804 4.43247 -0.10505

¿5 0.4 1.2 0.00052 0.00052 0.09888 -0.09264 3.99503 0.05671

¿5 0.3 1.42 -0.00023 0.00050 0.09883 -0.09656 3.56444 0.00311

¿6 1 0.3 0.00021 0.00037 0.09951 -0.09877 4.62543 0.14243

¿6 0.8 0.48 -0.00025 0.00057 0.09168 -0.09936 4.38937 -0.09951

¿6 0.6 0.55 0.00053 0.00038 0.09680 -0.09768 4.62340 0.08621

¿6 0.5 0.78 -0.00011 0.00051 0.09625 -0.09937 4.14862 -0.00981

¿6 0.45 0.84 0.00038 0.00046 0.09912 -0.09442 4.14778 0.01051

¿6 0.4 0.92 -0.00006 0.00042 0.08777 -0.09954 3.97269 0.07773

¿6 0.3 1.3 0.00014 0.00051 0.09074 -0.09698 3.81253 -0.07299

Table 3 Power law and fractal behavior of Chinese stock markets

Stock ¿ H1 H2 h p cv k

Hushen 300 2.9755 0.69374 0.64784 1 3.89E-06 0.0355 0.067

SSE 2.9291 0.69399 0.6505 1 2.17E-08 0.0355 0.0791

SZSE 3.0819 0.70723 0.6445 1 1.17E-05 0.0355 0.0641
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1.0, and the hypothesis is denied that the distributions of returns follow the corre-

sponding Gaussian distribution. In Table 4, when ¿ = 0.3, only the returns with the

plus boundary condition ¿6 fail to follow the Gaussian distribution, which is different

from the other five classes boundary conditions.

Table 4 The power law and fractal behavior of the financial price model

Boundary ¿ ¿ H1 H2 h p cv k

¿1 1 2.9858 0.62932 0.52649 1 3.52E-14 0.0192 0.0562

¿1 0.8 2.9914 0.62918 0.56231 1 1.28E-13 0.0192 0.0551

¿1 0.6 3.1079 0.62977 0.54157 1 1.50E-10 0.0192 0.0482

¿1 0.5 3.1914 0.62464 0.57616 1 3.48E-05 0.0192 0.0331

¿1 0.45 3.2673 0.60693 0.49562 1 1.93E-05 0.0192 0.0339

¿1 0.4 3.5877 0.61531 0.52876 1 0.0242 0.0192 0.021

¿1 0.3 3.7026 0.62881 0.54277 0 0.0671 0.0192 0.0184

¿2 1 2.9605 0.65835 0.57159 1 2.99E-14 0.0192 0.0564

¿2 0.8 2.9962 0.64852 0.57482 1 7.42E-13 0.0192 0.0534

¿2 0.6 3.0368 0.60431 0.57264 1 8.08E-09 0.0192 0.0439

¿2 0.5 3.2509 0.61399 0.50458 1 1.62E-06 0.0192 0.0374

¿2 0.45 3.2829 0.62111 0.55096 1 2.45E-05 0.0192 0.0336

¿2 0.4 3.4894 0.65298 0.54266 1 3.58E-04 0.0192 0.0293

¿2 0.3 3.7573 0.62058 0.512 0 0.0584 0.0192 0.0188

¿3 1 2.9426 0.62758 0.52255 1 2.33E-14 0.0192 0.0566

¿3 0.8 3.1303 0.64643 0.58522 1 1.95E-12 0.0192 0.0525

¿3 0.6 3.0115 0.64581 0.5978 1 4.02E-09 0.0192 0.0447

¿3 0.5 3.3363 0.60074 0.52125 1 5.80E-06 0.0192 0.0357

¿3 0.45 3.235 0.60871 0.48946 1 2.68E-05 0.0192 0.0335

¿3 0.4 3.4714 0.65577 0.54144 1 6.15E-04 0.0192 0.0284

¿3 0.3 3.7332 0.61767 0.49896 0 0.1043 0.0192 0.0172

¿4 1 3.0509 0.63533 0.57367 1 1.33E-13 0.0192 0.055

¿4 0.8 2.9779 0.64633 0.53821 1 4.68E-12 0.0192 0.0517

¿4 0.6 2.9488 0.63554 0.54294 1 2.68E-12 0.0192 0.0522

¿4 0.5 3.2594 0.6237 0.53025 1 1.61E-05 0.0192 0.0342

¿4 0.45 3.4414 0.60189 0.46971 1 1.88E-04 0.0192 0.0304

¿4 0.4 3.433 0.62462 0.57237 1 0.002 0.0192 0.0263

¿4 0.3 3.7723 0.63278 0.54339 0 0.0528 0.0192 0.019

¿5 1 3.0892 0.6298 0.55672 1 1.64E-18 0.0192 0.0645

¿5 0.8 2.6359 0.67195 0.56048 1 1.25E-24 0.0192 0.0746

¿5 0.6 2.9661 0.62938 0.55315 1 1.41E-09 0.0192 0.0458

¿5 0.5 2.9836 0.63758 0.58806 1 1.78E-09 0.0192 0.0456

¿5 0.45 3.1455 0.62375 0.52021 1 1.82E-07 0.0192 0.0402

¿5 0.4 3.4035 0.6429 0.56318 1 5.06E-04 0.0192 0.0287

¿5 0.3 3.7789 0.61718 0.51631 0 0.2839 0.0192 0.0139

¿6 1 3.2594 0.61485 0.53234 1 6.40E-14 0.0192 0.0557

¿6 0.8 3.088 0.64219 0.54102 1 5.51E-13 0.0192 0.0537

¿6 0.6 3.1714 0.64848 0.59233 1 1.50E-10 0.0192 0.0482

¿6 0.5 3.2267 0.65057 0.58373 1 9.70E-10 0.0192 0.0463

¿6 0.45 3.267 0.63234 0.56437 1 5.29E-07 0.0192 0.0389

¿6 0.4 3.3155 0.6084 0.50981 1 3.59E-05 0.0192 0.033

¿6 0.3 3.4349 0.60951 0.51533 1 0.0028 0.0192 0.0256
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4.2 Power-law behavior and fractal phenomena of financial time series

The aim of this part is to study the power law behavior of the financial model and the

real stock markets by comparison. The tail probability distributions of market returns

are found empirically to be (see [8])

P(| r(t) |> x) ∼ x−α

for some ¿ ¿ 3. The main feature of this function is invariance of scale, in other

words, the shape of the function is preserved. Power-law distributions show no typical

scale or size, and in some cases they are connected with fractals, which also lack typi-

cal scales. Power-law distributions occur very often in natural and social fields. A few

notable examples are Pareto’s law for income distributions, behavior near a second-

order phase transition and Zipf’s law. They are commonly cited as examples of power

laws.

In Tables 3 and 4, they exhibit that the returns follow the power law distributions for

the tails, the ordinary least square estimate yields ¿ = 3.0 ± 0.1 for the three real stock

market indexes, we refer to this phenomenon as “the cubic law of returns”. In Table 3,

the values of exponents ¿ are given for returns of SSE, SZSE, and Hushen 300. In

Table 4, according to the simulation of the financial time series, the value ¿ varies

from 2.6359 to 3.7789. Figure 4a, b and Table 4 display that, for the fixed boundary

condition ¿4, the smallest value of ¿ is 2.9488, and the largest one is 3.7723, the tail

probability distributions of the simulated market returns are different. Similarly, we

can discuss other cases for different boundary conditions and different parameters. In

Figure 4c, d and Table 4, with the fixed intensity parameter ¿ = 0.6, the tail probability

distributions change for different boundary conditions, and the tail distribution of ¿6 in

Figure 4c declined quicker than the others. In Figure 4e, f, the comparisons between

the Chinese stock markets and the simulative data are given. The plot and the semilog

plot of cumulative distributions of simulated returns for ¿ = 0.5 and ¿ = 0.6 with the

boundary condition ¿5, and the corresponding plots of returns for Hushen 300 and

SSE are given in Figure 4e. The log-log plot and the semilog plot of cumulative distri-

butions of simulated returns for ¿ = 0.6 with zero boundary condition ¿1, and the cor-

responding plots of returns of SZSE are given in Figure 4f. These empirical results

show that the price model is accord with the real market to some degree. In Table 4,

the interval of the tails exponents of ¿6 is [3.088,3.4349], which is much smaller than

the range intervals of other five classes boundary conditions, which can show that the

intensity parameter ¿ has a relative weak effect on the tails distributions of financial

model with boundary condition ¿6 by comparison with other boundary conditions.

Mandelbrot [17] verified that the empirical relation discovered by Hurst exhibited

the same form as the one presented by the series that describe the Brownian fractional

movement, regarding the rescaled range R/S in function to the period used in the cal-

culus N and, therefore, that the Hurst exponent H could be used to represent long

memory properties. The Hurst exponent H is defined in terms of the asymptotic beha-

vior of the rescaled range as a function of the time span for a time series as follows

[18]:

E
[
R(N)
S(N)

]
= CNH, N → ∞
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where [R(N)
S(N) ] is the rescaled range, E[x] is the expected value, N is the number of

data points in a time series, C is a constant.

Hurst exponent is referred to as the index of dependence, and is the relative ten-

dency of a time series to either strongly regress to the mean or cluster in a direction.

When 0 ¿ H ¿ 0.5, the analyzed series is anti-persistent, presenting reversion to the

mean; if H = 0.5, the series presents random walk; and if 0.5 ¿ H ¿ 1, the series is
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Figure 4 The plots of cumulative distributions of the stock returns. (a, b) The log-log plot and the
semilog plot of cumulative distributions for the returns of the Ising-like financial model with the boundary
condition of ¿4. (c, d) The log-log plot and the semilog plot of cumulative distributions for the returns of
the Ising-like financial model with ¿ = 0.6. (e) The plot of cumulative distributions and the semilog plot of
the simulated returns for ¿ = 0.5 and ¿ = 0.6 with the boundary condition ¿5, and the returns of Hushen
300 and SSE. (f) The log-log plot of cumulative distributions of the simulated returns for ¿ = 0.6 with zero
boundary condition ¿1 and the returns of SZSE.
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persistent, with the maintenance of tendency. This develops a method of the long

memory estimates for the volatilities series. The long memory is measured by the

Hurst exponent H, calculated through the rescaled range analysis (R/S), which can be

described as follows, for details, see [19].

Step 1: We define ¿t-returns as

r(�t) = ln S(t) − ln S(t − �t), �t = 1, 2, . . . , T.

Thus, we obtain the new time series of ¿t-returns.

Step 2: Then we divide time series of ¿t-returns into s subseries with length q:

Eq,k(�t) = {r1,k(�t), r2,k(�t), . . . , rq,k(�t)}, k = 1, 2, . . . , s

where q = [N/s] and N is the number of observation.

Step 3: From the time series of ¿t-returns, the deviation Dq, k(¿t) can be defined

directly from the mean of returns r̄q,k(�t) as

Dq,k(�t) =
q∑

d=1

(rd,k(�t) − r̄q,k(�t)), k = 1, 2, . . . , s

where

Rq,k(�t) = max{Di,k(�t)} − min{Di,k(�t)}, i = 1, . . . , q.

Step 4: Thus, the hierarchical average value (R/S)N (¿t) that stands for the relation

between RN, k(¿t) and Sq, k(¿t) becomes

(R
/
S)q(�t) =

1
s

s∑
k=1

Rq,k(�t)

Sq,k(�t)
∝ qH(�t)

where H(¿t) stands for Hurst exponent and

Sq,k(�t) =

√√√√1
q

q∑
d=1

(rd,k(�t) − r̄q,k(�t)), k = 1, 2, . . . , s

Step 5: Hurst exponents can be obtained by linear regression using

ln (R
/
S)q = ln(c) +H(�t) · ln(q).

The main purpose of inducing and computing V statistics is to find the nonperiodic

cycles by observing relative map of that statistics, in that if the curve of that statistics

is horizontal, the time series under study is random one which follows random walks,

otherwise, there exists long-term memory in the time series. If there are any critical

points, the q in these points stands for the length of the nonperiodic cycles, that is, the

memory of system information will be lost in the system after q days. V statistics can

be defined as

Vq =
(R

/
S)q√
q

.

In Figure 5, we concentrate on the fractal analysis of absolute return time series of

SSE Index and the corresponding simulative data of the financial model with boundary
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condition ¿6 and ¿ = 0.5 by using R/S analysis with ¿t = 1. From Figure 5a, c we can

obtain that the volatility exists both in the real stock market and the simulative data,

but the volatility in the simulative time series is a little weaker than that in the SSE

Index absolute returns. We also obtain the relation between the exponent H and n.

The way we calculate is that n = 60 is the starting point of the regression; gradually

increasing n to obtain a value of H regressing once for each additional day, up to 50%

of the length of the sequence. We also find in Figure 5b, d that the values of H are all

larger than 0.5 for SSE Composite Index and the data of simulation.

Next, we change the procedure of step 2 as follows: we divide time series of ¿t-

returns into s’ = [log2(N)] subseries with length q’:

Eq′ ,k′(�t) = {r1,k′(�t), r2,k′(�t), . . . , rq′ ,k′(�t)}, k′ = 20, 21, . . . , 2s
′
.

where q′ = 2s
′
/2k

′ and N is the number of observation. And we also change the step

5 to be

log2(R
/
S)q′ = log2(c) +H(�t) · log2(q′).

Then, we can get the Hurst parameter H1 from regression on all data of log2(R/S)q’
and the Hurst parameter H2 from regression on means of log2(R/S)q’ for each segmen-

tation of length q’ of the time series, see in Tables 3, 4 and Figure 6. From Table 4, for
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Figure 5 The fractal analysis of absolute return time series for SSE index and the financial model.
(a, c) Volatility term structure of the absolute simulative returns with ¿6, ¿ = 0.5 and SSE Index returns
respectively. (b, d) The values of H depend on different blocks n of absolute simulative returns with ¿6, ¿ =
0.5 and SSE Index returns respectively.
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most financial time series except the boundary conditions ¿1, ¿4 with ¿ = 0.45 and ¿3
with ¿ = 0.45, ¿ = 0.3, the Hurst parameter H1 and H2 are larger than 0.5. In Figure 6,

H > 0.5 for returns of Hushen 300 Index and the data of simulation. The above analy-

sis of fractal behaviors show that the long-memory exists in returns, and these time

series are persistent with the maintenance of tendency.

5 Conclusion
For the financial modeling, any model aiming at understanding price fluctuations needs

to define a mechanism for the formation of the price. In the present article, the finan-

cial model based on the Ising-like spin system is the contributor towards our ultimate

understanding of the impact of external condition and interaction among the market

investors and critical phenomena of the empirical stock markets. In this financial

model, we suppose that the financial market not only depends on the perspective that

the price movements are caused primarily by the external environment, but also

depends on the spread of investing information which is due to the interaction among

the market investors. The boundary condition ¿ may represent the information or the

situation on this stock, including the estimate for this stock price, positive or negative

news, trends, political event and economic policy, etc. The parameter ¿, phase transi-

tions and critical phenomena of the model can be explained as the intensity of interac-

tion among the market participants in the financial market.

In the model, the intensity parameter ¿ represents the strength of information spread

and the depth parameter ¿ describes the strength of market fluctuation, both of them

are defined in Section 3. Note that the range of daily price fluctuation is limited in

Chinese stock markets, that is, the changing limits of daily returns for stock prices and

stock market indexes are between -10% and 10%. In order to make the financial price

model satisfy the changing limits of daily returns for Chinese stock markets, the value

of ¿ is chosen dependently on the value of ¿ in Section 4. According to the empirical

research of the model in Table 2, for each fixed boundary condition ¿, the value of

depth parameter ¿ has the tend to decrease as the intensity parameter ¿ is increasing.

And for each fixed value of intensity parameter ¿, when the boundary conditions are

neither “ + “ nor “ - “ predominates the other, for example the boundary conditions ¿1,
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Figure 6 The plots of the Hurst parameters from regression analysis. (a) The Hurst parameter from
regression on all data and the Hurst parameter from regression on segmentation means for Hushen 300
Index. (b) The Hurst parameter from regression on all data and the Hurst parameter from regression on
segmentation means for the simulated data with ¿6, ¿ = 0.5.
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¿2 and ¿3 (which are usually called the “weak boundary conditions”), the corresponding

values of depth parameters ¿ are larger than that of depth parameter ¿ of plus bound-

ary condition ¿6 (when the plus (or the minus) is the overwhelming part of boundary

sites, it is usually called the “strong boundary condition”). The large value of intensity

parameter ¿ of the financial price model will exhibit the strong interaction among the

market participants, this implies that the information or news about the market may

spread far and wide among the market investors. The strong boundary condition of

the model also shows that the external investing environment has a strong impact on

the fluctuation of financial market. In the present article, by following the trading rules

of Chinese stock markets, we find that when the interaction among the market inves-

tors increases or the external environment is dominant by one view for a long time,

the value of depth parameter ¿ may decrease. This behavior may suggest that the pos-

sibility of long time continuous large volatilities of stock prices is small.

In Tables 3 and 4, the tails power law distributions and the fractal behaviors of mar-

ket returns for the price model and the real stock markets are analyzed by empirical

research and computer simulation. The values of exponents ¿ of returns are around

the value 3 for the financial indexes of SSE, SZSE and Hushen 300. For the boundary

condition ¿6 of the model, the largest value and the smallest value of tails exponent ¿

are 3.4349 and 3.088, respectively. Then the changing range of tails exponents of

boundary condition ¿6 is 0.3469 (= 3.4349 - 3.088), which is much smaller than the

corresponding changing ranges of tails exponents of other five boundary conditions.

This shows that the intensity ¿ of the model with the boundary condition ¿6 has a

weak impact on the tails distributions by comparing with other boundary conditions

cases. This behavior is due to that the strong boundary conditions (for example the

boundary condition ¿6) or the strong external environment have a deep influence on

the price dynamics in this work. According to the evolution of the price model which

is modelled by Ising-like dynamic system, the strong external environment may make

most of market participants take a similar investing strategy. So that, for the boundary

condition ¿6, the interaction among the market participants has a relative weak effect

on the price fluctuation, and the tails distributions exhibit more stable behavior for dif-

ferent values of intensity ¿ (by comparison with other boundary conditions cases).

In Section 4, the empirical analysis displays that the fractal behaviors and the persis-

tence properties exist in the real Chinese stock markets, SSE, SZSE, and Hushen 300.

And we also analyze the fractal behaviors and other statistical properties of the finan-

cial model with six kinds of boundary conditions, and we also investigate the fluctua-

tions of exponents H of absolute returns for the real markets and the price model. The

empirical research shows the price financial model also exhibits fractal and persistence

properties for different boundary conditions, this means that the six kinds of boundary

conditions of this article can not change the existence of fractal behaviors for the abso-

lute returns of the model. From the above summary, we think that the financial model

of the present article is reasonable for the real stock market to some extent.
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