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In this paper, we derive the identities of higher-order Bernoulli, Euler and
Frobenius-Euler polynomials from the orthogonality of Hermite polynomials. Finally,
we give some interesting and new identities of several special polynomials arising
from umbral calculus.
MSC: 05A10; 05A19

Keywords: Bernoulli polynomial; Euler polynomial; Abel polynomial

1 Introduction
The Hermite polynomials are defined by the generating function to be

ext–t
 = eH(x)t =

∞∑
n=

Hn(x)
tn

n!
(.)

with the usual convention about replacing Hn(x) by Hn(x) (see []). In the special case,
x = , Hn() =Hn are called the nth Hermite numbers. From (.) we have

Hn(x) = (H + x)n =
n∑
l=

(
n
l

)
Hn–lxll. (.)

Thus, by (.), we get

dk

dxk
Hn(x) = k(n)kHn–k(x) = k

n!
(n – k)!

Hn–k(x), (.)

where (x)k = x(x – ) · · · (x – k + ).
As is well known, the Bernoulli polynomials of order r are defined by the generating

function to be

(
t

et – 

)r

ext =
∞∑
n=

B(r)
n (x)

tn

n!
(r ∈ R). (.)

In the special case, x = , B(r)
n () = B(r)

n are called the nth Bernoulli numbers of order r (see
[–]).

© 2013 Kim et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/209062489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.advancesindifferenceequations.com/content/2013/1/73
mailto:taekyun64@hotmail.com
http://creativecommons.org/licenses/by/2.0


Kim et al. Advances in Difference Equations 2013, 2013:73 Page 2 of 11
http://www.advancesindifferenceequations.com/content/2013/1/73

The Euler polynomials of order r are also defined by the generating function to be

(


et + 

)r

ext =
∞∑
n=

E(r)
n (x)

tn

n!
(r ∈R). (.)

In the special case, x = , E(r)
n () = E(r)

n are called the nth Euler numbers of order r.
For λ(�= ) ∈C, the Frobenius-Euler polynomials of order r are given by

(
 – λ

et – λ

)r

ext =
∞∑
n=

H (r)
n (x|λ) t

n

n!
(r ∈R). (.)

In the special case, x = ,H (r)
n (|λ) =H (r)

n (λ) are called the nth Frobenius-Euler numbers of
order r (see [–]).
The Stirling numbers of the first kind are defined by the generating function to be

(x)n =
n∑

k=

S(n,k)xk (see [, ]), (.)

and the Stirling numbers of the second kind are given by

(
et – 

)n = n!
∞∑
l=n

S(l,n)
tl

l!
(see []). (.)

In [] it is known that H(x),H(x), . . . ,Hn(x) from an orthogonal basis for the space

Pn =
{
p(x) ∈Q[x]|degp(x) ≤ n

}
(.)

with respect to the inner product

〈
p(x),p(x)

〉
=

∫ ∞

–∞
e–x


p(x)p(x)dx (see []). (.)

For p(x) ∈ Pn, let us assume that

p(x) =
n∑

k=

CkHk(x). (.)

Then, from the orthogonality of Hermite polynomials and Rodrigues’ formula, we have

Ck =


kk!
√

π

∫ ∞

–∞
e–x


Hk(x)p(x)dx

=
(–)k

kk!
√

π

∫ ∞

–∞

(
dk

dxk
e–x


)
p(x)dx (see []). (.)
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In particular, for p(x) = xm (m≥ ), we easily get

∫ ∞

–∞

(
dn

dxn
e–x


)
xm dx

=

⎧⎨
⎩ if n >m or n≤ m withm – n �≡  (mod),

(–)nm!
√

π

m–n(m–n
 )! if n≤ m withm – n≡  (mod).

(.)

Let F be the set of all formal power series in the variable t over C with

F =

{
f (t) =

∞∑
k=

ak
k!
tk

∣∣∣ak ∈C

}
. (.)

Let us assume that P is the algebra of polynomials in the variable x over C and that P*

is the vector space of all linear functionals on P. 〈L|p(x)〉 denotes the action of the linear
functional L on polynomials p(x), and we remind that the vector space structure on P* is
defined by

〈
L +M|p(x)〉 = 〈

L|p(x)〉 + 〈
M|p(x)〉,〈

cL|p(x)〉 = c
〈
L|p(x)〉,

where c is a complex constant (see [, , ]).
The formal power series

f (t) =
∞∑
k=

ak
k!
tk ∈F (.)

defines a linear functional on P by setting

〈
f (t)|xn〉 = an for all n ∈ Z+ =N∪ {}. (.)

Thus, by (.) and (.), we get

〈
tk|xn〉 = n!δn,k (n,k ≥ ), (.)

where δn,k is the Kronecker symbol (see [, , ]).
Let fL(t) =

∑∞
k=

〈L|xk〉
k! tk . By (.), we get

〈
fL(t)|xn

〉
=

〈
L|xn〉, n≥ . (.)

Thus, by (.), we see that fL(t) = L. The map L �→ fL(t) is a vector space isomorphism
from P* onto F . Henceforth, F will be thought of as both a formal power series and a
linear functional.We callF theumbral algebra. The umbral calculus is the study of umbral
algebra (see [, , ]).
The order o(f (t)) of the nonzero power series f (t) is the smallest integer k for which the

coefficient of tk does not vanish. A series f (t) having o(f (t)) =  is called a delta series, and
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a series f (t) having o(f (t)) =  is called an invertible series (see [, , ]). By (.) and
(.), we see that 〈eyt|p(x)〉 = p(y). For f (t) ∈F and p(x) ∈ P, we have

f (t) =
∞∑
k=

〈f (t)|xk〉
k!

tk , p(x) =
∞∑
k=

〈tk|p(x)〉
k!

xk . (.)

Let f (t), g(t) ∈F and p(x) ∈ P. Then we easily see that

〈
f (t)g(t)|p(x)〉 = 〈

f (t)|g(t)p(x)〉 = 〈
g(t)|f (t)p(x)〉. (.)

From (.), we can derive the following equation:

p(k)() =
〈
tk|p(x)〉 and

〈
|p(k)(x)〉 = p(k)(). (.)

Thus, by (.), we get

tkp(x) = p(k)(x) =
dkp(x)
dxk

(see [, , ]). (.)

Let f (t) be a delta series, and let g(t) be an invertible series. Then there exists a unique
sequence Sn(x) of polynomials with 〈g(t)f (t)k|Sn(x)〉 = n!δn,k , where n,k ≥  (see [, , ]).
The sequence Sn(x) is called Sheffer sequence for (g(t), f (t)), which is denoted by Sn(x) ∼
(g(t), f (t)). For f (t) ∈F and p(x) ∈ P, we have

〈
eyt – 

t

∣∣∣p(x)〉 = ∫ y


p(u)du,

〈
eyt – |p(x)〉 = p(y) – p(), (.)

and

〈
f (t)|xp(x)〉 = 〈

f ′(t)|p(x)〉. (.)

In this paper, we introduce the identities of several special polynomialswhich are derived
from the orthogonality of Hermite polynomials. Finally, we give some new and interesting
identities of the higher-order Bernoulli, Euler and Frobenius-Euler polynomials arising
from umbral calculus.

2 Some identities of several special polynomials
From (.), we note that

(


et + 

)r

=
(
 +

et – 


)–r

=
∞∑
j=

(
–r
j

)(
et – 


)j

. (.)

By (.), we get

(


et + 

)r

ext =
∞∑
j=

(
–r
j

)(
et – 


)j

ext

=
∞∑
n=

( n∑
j=

(
–r
j

)(
et – 


)j

xn
)
tn

n!
. (.)
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From (.) and (.), we have

E(r)
n (x) =

n∑
j=

(
–r
j

)
–j

(
et – 

)jxn. (.)

By (.) and (.), we get

(
et – 

)jxn = n–j∑
k=

〈tk|(et – )jxn〉
k!

=
n–j∑
k=

〈(et – )j|tkxn〉
k!

xk

= j!
n–j∑
k=

(
n
k

) 〈(et – )j|xn–k〉
j!

xk = j!
n–j∑
k=

(
n
j

)
S(n – k, j)xk

= j!
n∑
k=j

(
n
k

)
S(k, j)xn–k . (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n ≥ , we have

E(r)
n (x) =

∑
≤j≤n

∑
j≤k≤n

(
n
k

)(
–r
j

)
j!
j
S(k, j)xn–k

=
∑

≤k≤n

(
n
k

)[ ∑
≤j≤k

(
–r
j

)
j!
j
S(k, j)

]
xn–k .

By (.), we easily see that

E(r)
n (x) =

n∑
k=

(
n
k

)
E(r)
k xn–k . (.)

Therefore, by Theorem . and (.), we obtain the following corollary.

Corollary . For k ≥ , we have

E(r)
k =

k∑
j=

(
–r
j

)
j!
j
S(k, j).

Let us take p(x) = E(r)
n (x) ∈ Pn. Then, by (.), we get

E(r)
n (x) =

n∑
k=

CkHk(x). (.)

From (.), we can derive the computation of Ck as follows:

Ck =
(–)k

kk!
√

π

∫ ∞

–∞

(
dke–x

dxk

)
E(r)
n (x)dx, (.)
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where

∫ ∞

–∞

(
dke–x

dxk

)
E(r)
n (x)dx

= (–n)
(
–(n – )

) · · · (–(n – k + )
)∫ ∞

–∞
e–x


E(r)
n–k(x)dx

=
(–)kn!
(n – k)!

∫ ∞

–∞
e–x


n–k∑
l=

(
n – k
l

)
E(r)
n–k–lx

l dx

=
(–)kn!
(n – k)!

n–k∑
l=

(
n – k
l

)
E(r)
n–k–l

∫ ∞

–∞
e–x


xl dx

= (–)kn!
√

π
∑

≤l≤n–k,l:even


(n – k – l)!l( l )!

n–k–l∑
j=

(
–r
j

)
j!
j
S(n – k – l, j). (.)

From (.) and (.), we can derive the following equation:

Ck = n!
∑

≤l≤n–k,l:even

E(r)
n–k–l

k!(n – k – l)!k+l( l )!

= n!
∑

≤l≤n–k,l:even

n–k–l∑
j=

(–r
j
)
j!S(n – k – l, j)

k!(n – k – l)!k+l+j( l )!
. (.)

Therefore, by Corollary ., (.) and (.), we obtain the following theorem.

Theorem . For n≥ , we have

E(r)
n (x) = n!

n∑
k=

{ ∑
≤l≤n–k,l:even

E(r)
n–k–l

k!(n – k – l)!k+l( l )!

}
Hk(x)

= n!
n∑

k=

{ ∑
≤l≤n–k,l:even

n–k–l∑
j=

(–r
j
)
j!S(n – k – l, j)

k!(n – k – l)!k+l+j( l )!

}
Hk(x).

By (.), we easily see that

(
t

et – 

)r

=
(
 +

et – t – 
t

)–r

=
∞∑
j=

(
–r
j

)(
et – t – 

t

)j

. (.)

Thus, by (.), we get

(
t

et – 

)r

ext =
∞∑
n=

( n∑
j=

(
–r
j

)(
et – t – 

t

)j

xn
)
tn

n!
. (.)

From (.) and (.), we have

B(r)
n (x) =

n∑
j=

(
–r
j

)(
et – t – 

t

)j

xn. (.)
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By (.), we easily get

(
et – t – 

t

)j

xn =
n–j∑
k=

〈tk|( et–t–t )jxn〉
k!

xk

=
n–j∑
k=

〈( et–t–t )j|tkxn〉
k!

xk =
n–j∑
k=

(
n
k

) j∑
l=

(
j
l

)
(–)j–l

〈(
et – 
t

)l∣∣∣xn–k〉xk

=
n–j∑
k=

(
n
k

) j∑
l=

(
j
l

)
(–)j–l

〈
t

∣∣∣(et – 
t

)l

xn–k
〉
xk . (.)

From (.), (.) and (.), we have

(
et – t – 

t

)j

xn =
n–j∑
k=

j∑
l=

(
n
k

)(
j
l

)
(–)j–l

(n – k)!l!
(n – k + l)!

S(n – k + l, l)xk . (.)

Thus, by (.) and (.), we get

B(r)
n (x) =

n∑
j=

n–j∑
k=

j∑
l=

(
–r
j

)(
n
k

)(
j
l

)
(–)j–l

S(n – k + l, l)(n–k+l
l

) xk

=
n∑

k=

(
n
k

)[ k∑
j=

j∑
l=

(
–r
j

)(
j
l

)
S(k + l, l)(k+l

l
) (–)j–l

]
xn–k . (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n≥ , we have

B(r)
n (x) =

n∑
k=

(
n
k

)[ k∑
j=

j∑
l=

(
–r
j

)(
j
l

)
S(k + l, l)(k+l

l
) (–)j–l

]
xn–k .

By (.), we easily get

B(r)
n (x) =

n∑
k=

(
n
k

)
B(r)
k xn–k . (.)

Therefore, by Theorem . and (.), we obtain the following corollary.

Corollary . For k ≥ , we have

B(r)
k =

k∑
j=

j∑
l=

(–)j–l
(
–r
j

)(
j
l

)
S(k + l, l)(k+l

l
) .

Let us consider p(x) = B(r)
n (x) ∈ Pn. Then, by (.), B(r)

n (x) can be written as

B(r)
n (x) =

n∑
k=

CkHk(x). (.)

http://www.advancesindifferenceequations.com/content/2013/1/73
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Now, we compute Ck ’s for B(r)
k (x) as follows:

Ck =
(–)k

kk!
√

π

∫ ∞

–∞

(
dke–x

dxk

)
B(r)
n (x)dx, (.)

where

∫ ∞

–∞

(
dke–x

dxk

)
B(r)
n (x)dx

= (–n)
(
–(n – )

) · · · (–(n – k + )
)∫ ∞

–∞
e–x


B(r)
n–k(x)dx

=
(–)kn!
(n – k)!

n–k∑
l=

(
n – k
l

)
B(r)
n–k–l

∫ ∞

–∞
e–x


xl dx

= (–)kn!
√

π
∑

≤l≤n–k,l:even

B(r)
n–k–l

(n – k – l)!l( l )!
. (.)

By Corollary . and (.), we get

∫ ∞

–∞

(
dke–x

dxk

)
B(r)
n (x)dx

= (–)kn!
√

π
∑

≤l≤n–k,l:even

s
n–k–l∑
j=

j∑
m=

(–)j–m
(–r
j
)( j

m
)
S(n – k – l +m,m)

(n – k – l)!l( l )!
(n–k–l+m

m
) . (.)

From (.) and (.), we have

Ck = n!
∑

≤l≤n–k,l:even

B(r)
n–k–l

(n – k – l)!k!k+l( l )!

= n!
∑

≤l≤n–k,l:even

n–k–l∑
j=

j∑
m=

(–)j–m
(–r
j
)( j

m
)
S(n – k – l +m,m)

(n – k – l)!k!k+l( l )!
(n–k–l+m

m
) . (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n≥ , we have

B(r)
n (x) = n!

n∑
k=

{ ∑
≤l≤n–k,l:even

B(r)
n–k–l

(n – k – l)!k!k+l( l )!

}
Hk(x)

= n!
n∑

k=

{ ∑
≤l≤n–k,l:even

n–k–l∑
j=

j∑
m=

(–)j–m
(–r
j
)( j

m
)
S(n – k – l +m,m)

(n – k – l)!k!k+l( l )!
(n–k–l+m

m
)

}
Hk(x).

It is easy to show that

(
 – λ

et – λ

)r

=
(
 +

et – 
 – λ

)–r

=
∞∑
j=

(
–r
j

)(


 – λ

)j(
et – 

)j. (.)

http://www.advancesindifferenceequations.com/content/2013/1/73
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From (.) and (.), we have

H (r)
n (x|λ) =

n∑
j=

(
–r
j

)
( – λ)–j

(
et – 

)jxn, (.)

where

(
et – 

)jxn = j!
∞∑
k=j

S(k, j)
tk

k!
xn

= j!
n∑
k=j

(
n
k

)
S(k, j)xn–k . (.)

Thus, by (.), we get

(
et – 

)jxn = j!
n∑
k=j

(
n
k

)
S(k, j)xn–k . (.)

From (.) and (.), we can derive the following equation:

H (r)
n (x|λ) =

n∑
j=

n∑
k=j

(
n
k

)(
–r
j

)
j!

( – λ)j
S(k, j)xn–k

=
n∑

k=

k∑
j=

(
n
k

)(
–r
j

)
j!

( – λ)j
S(k, j)xn–k

=
n∑

k=

(
n
k

)[ k∑
j=

(
–r
j

)
j!

( – λ)j
S(k, j)

]
xn–k . (.)

By (.), we easily see that

H (r)
n (x|λ) =

n∑
k=

(
n
k

)
H (r)

k (λ)xn–k . (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For k ≥ , we have

H (r)
k (λ) =

k∑
j=

(
–r
j

)
j!

( – λ)j
S(k, j).

Let us take p(x) =H (r)
n (x|λ) ∈ Pn. Then, by (.), H (r)

n (x|λ) is given by

H (r)
n (x|λ) =

n∑
k=

CkHk(x). (.)

http://www.advancesindifferenceequations.com/content/2013/1/73
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By (.), we get

Ck =
(–)k

kk!
√

π

∫ ∞

–∞

(
dke–x

dxk

)
H (r)

n (x|λ)dx, (.)

where

∫ ∞

–∞

(
dke–x

dxk

)
H (r)

n (x|λ)dx

=
(–)kn!
(n – k)!

n–k∑
l=

(
n – k
l

)
H (r)

n–k–l(λ)
∫ ∞

–∞
e–x


xl dx

= (–)kn!
√

π
∑

≤l≤n–k,l:even

H (r)
n–k–l(λ)

(n – k – l)!l( l )!

= (–)kn!
√

π
∑

≤l≤n–k,l:even

n–k–l∑
j=

(–r
j
)
j!S(n – k – l, j)

(n – k – l)!l( – λ)j( l )!
. (.)

By (.) and (.), we get

Ck = n!
∑

≤l≤n–k,l:even

H (r)
n–k–l(λ)

(n – k – l)!k!l+k( l )!

= n!
∑

≤l≤n–k,l:even

n–k–l∑
j=

(–r
j
)
j!S(n – k – l, j)

(n – k – l)!k!k+l( – λ)j( l )!
. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Corollary . For n≥ , we have

H (r)
n (x|λ) = n!

n∑
k=

{ ∑
≤l≤n–k,l:even

H (r)
n–k–l(λ)

(n – k – l)!k!l+k( l )!

}
Hk(x)

= n!
n∑

k=

{ ∑
≤l≤n–k,l:even

n–k–l∑
j=

(–r
j
)
j!S(n – k – l, j)

(n – k – l)!k!k+l( – λ)j( l )!

}
Hk(x).
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