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1 Introduction
Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let A :
C — H be a nonlinear mapping and let F: C x C — R be a bifunction. A mapping 7" of H
into itself is called nonexpansive if ||Tx - Ty|| < ||x - y|| for all x, y € H. We denote by F
(7) the set of fixed points of T (i.e. F(T) = {x € H: Tx = «x}). Goebel and Kirk [1] showed
that F(7) is always closed convex and also nonempty provided 7T has a bounded trajectory.
The problem for finding a common fixed point of a family of nonexpansive map-
pings has been studied by many authors. The well-known convex feasibility problem
reduces to finding a point in the intersection of the fixed point sets of a family of non-
expansive mappings (see, e.g., [2,3]).
A bounded linear operator A on H is called strongly positive with coefficient y if

there exists a constant y > 0 with the property
(Ax,x) = 7 || )%,

A mapping A of C into H is called inverse-strongly monotone, see [4], if there exists a

positive real number ¢ such that
(x =y, Ax — Ay) > a || Ax — Ayl
forall x, ye C.
The variational inequality problem is to find a point # € C such that

(v—u,Au) >0 forallve C. (1.1)
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The set of solutions of (1.1) is denoted by V I(C, A). Many authors have studied
methods for finding solution of variational inequality problems (see, e.g., [5-8]).
In 2008, Qin et al. [9] introduced the following iterative scheme:

Yn = Pc(I — spA)xy,

(1.2)
X1 = oV (Whn) + (I — anB)WyPc(I — 1,A)yn,  Vn e N,

where W, is the W-mapping generated by a finite family of nonexpansive mappings
and real numbers, A : C — H is relaxed (u,v) cocoercive and p-Lipschitz continuous, and
P is a metric projection H onto C. Under suitable conditions of {s,,}, {r,}{c,}, ¥ they
proved that {x,} converges strongly to an element of the set of variational inequality pro-
blem and the set of a common fixed point of a finite family of nonexpansive mappings.

In 2006, Marino and Xu [10] introduced the iterative scheme as follows:

xo € H,xp11 = (I — @pA)Sxy + anyf(xn), VYn=>0, (1.3)

where S is a nonexpansive mapping, fis a contraction with the coefficient a € (0, 1),
A is a strongly positive bounded linear self-adjoint operator with the coefficient y, and
v is a constant such that 0 <y < ¥. They proved that {x,} generated by the above
iterative scheme converges strongly to the unique solution of the variational inequality:

((A—yf)x*,x —x*) > 0,x € F(S).
We know that a mapping B : H — H is said to be monotone, if for each x, y € H, we have
(Bx — By,x —y) > 0.

A set-valued mapping M : H — 2" is called monotone if for all x, y € H, fe Mx and
g€ My imply {x - y, f - g) > 0. A monotone mapping M : H — 2" is maximal if the
graph of Graph(M) of M is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping M is maximal if and only if for (x, f) €
Hx H, (x -y, f-g 20 for every (y, g) € Graph(M) implies fe Mzx.

Next, we consider the following so-called variational inclusion problem:

Find a u € H such that

0 € Bu+ Mu (1.4)

where B : H — H, M : H — 2" are two nonlinear mappings, and @ is zero vector in H
(see, for instance, [11-16]). The set of the solution of (1.4) is denoted by V I(H, B, M).

Let C be a nonempty closed convex subset of Banach space X. Let {T;};°; be an infi-
nite family of nonexpansive mappings of C into itself, and let A1, A,,..., be real numbers
in [0, 1]; then we define the mapping K, : C — C as follows:

Upo =1

Un1 = 2 TilUpo + (1 — A1)Uno,
Upz =22ToUy + (1 = A2)Up 1,
Upsz =2A3T3Up2 + (1 — A3)Up2,

Unpe = M TelUp—1 + (1 — M) Up i1
Upnier1 = Aee1 Tre1 Une + (1 — A )Un ke

Upn-1 = 1Tp1Upn—z + (1 - )\n—l)un,n—Z
Ky =Upy = ATUp 1 + (1 - )\n)Un,nfl-
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Such a mapping K,, is called the K-mapping generated by Ty, Ty,..., T,, and 11, Ay,..., A,..
Let x; € H and {x,} be the sequence generated by

Xne1 = AnVf(xn) + Brxn + (1 — Bu)] — anA)(YnKnxn + (1 — ¥1)Sxn), (1.5)

where A is a strongly positive linear-bounded self-adjoint operator with the coeffi-
cient0 <y <1, §:C— Cis the S - mapping generated by G;, G,,..., Gy and vy, vs,..,
vn , where G; : H — H is a mapping defined by Ju;, (I — 1Bi)x = Gix for every x € H,
and 1 € (0, 20, for every i = 1, 2,..., N, f: H— H is contractive mapping with coeffi-

cientde (0,1)and 0 <y < g, {0}, {B,), {7} are sequences in [0, 1].

In this article, by motivation of (1.3), we prove a strong convergence theorem of the
proposed algorithm scheme (1.5) to an element z € (N2, F(Ti) (N ﬂﬁl V(H, Bi, M;),

under suitable conditions of {o.,.}, {8}, {7.}-

2 Preliminaries
In this section, we provide some useful lemmas that will be used for our main result in
the next section.

Let C be a closed convex subset of a real Hilbert space H, and let Pc be the metric
projection of H onto C, i.e., for x € H, Pcx satisfies the property:

| x—Pcx |l=min || x—y | .
yeC

The following characterizes the projection Pc.
Lemma 2.1. (see [17]) Given x € H and y € C. Then Pcx = y if and only if there
holds the inequality

(x—y,y—2) >0 VzeC.
Lemma 2.2. (see [18]) Let {s,} be a sequence of nonnegative real number satisfying
Sne1 = (1 —op)sy + By, Yn >0

where {a,,}, {B,} satisfy the conditions:

(1) {an} C [0, 1], f a, = 00;
n=1

[e.¢]
(2) limsup B, < Oor Z lonBn| < o0.

=00 n=1

Then lim,,_,., s,, = 0.

Lemma 2.3. (see [19]) Let C be a closed convex subset of a strictly convex Banach
space E. Let {T,, : n € N} be a sequence of nonexpansive mappings on C. Suppose
(Moe1 F(Ty)is nonempty. Let {A,,} be a sequence of positive numbers with oo Ay = 1.
Then a mapping S on C defined by

S(x) = X2 Ay Tnxn

for x € C is well defined, nonexpansive and F(S) = (o, F(Tp)hold.

Lemma 2.4. (see [20]) Let E be a uniformly convex Banach space, C be a nonempty
closed convex subset of E, and S : C — C be a nonexpansive mapping. Then I - S is
demi-closed at zero.
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Lemma 2.5. (see [21]) Let {x,} and {z,} be bounded sequences in a Banach space X
and let {B,} be a sequence in [0,1] with 0 <lim inf,_,., B, < lim sup,_,.. B, < 1.
Suppose x,,1 = Bx,+(1 - B,)z, for all integer n > 0 and lim sup, ..(||z,:1 - 24| - ||
Xye1 - %y||) 0. Then lim,, .. ||x, - z,|| = 0.
In 2009, Kangtunykarn and Suantai [5] introduced the S-mapping generated by a
finite family of nonexpansive mappings and real numbers as follows:
Definition 2.1. Let C be a nonempty convex subset of real Banach space. Let {T;}Y be
a finite family of nonexpanxive mappings of C into itself. For each j = 1, 2,..., N, let
o = (ajl,aé,ozé) el x I x Iwhere e [0, 1] and O‘jl +a£ + 3 = 1, define the mapping S :
C — C as follows:
Up=1
Uy = a;T1Up + ayUp + a3
u, = a%TzUl +a§'U1 + aé"[

U3 = O[%T3U2 +013_U2 + O[g’[ (21)

N—1 N—1 N—1
Un-1=ay InaUno+a, Uvo+oaz

S=UN= ajl\ITNUN,l +a§IUN,1 +a§11.

This mapping is called the S-mapping generated by Ty,..., Ty and y, Oy,..., Oy
Lemma 2.6. (see [5]) Let C be a nonempty closed convex subset of strictly convex. Let

(T be a finite family of nonexpanxive mappings of C into itself with
N . . .
mi:l E(T;) # Pand let o; = (o), 0b,05) € IxIx L j = 1,2,3,..., N, where I = [0, 1],

otjl €(0,1) 0/1 € (0,1) forallj = 1,2,.., N-1, ¥ € (0, 1](%, 0/3 e[o,1)forallj=12,.,

N. Let S be the mapping generated by Ti,.., Tn and oy, 0,..., On . Then
N

F(S) = Mizy F(T3)

Lemma 2.7. (see [5]) Let C be a nonempty closed convex subset of Banach space. Let
(T \be a finite family of nonexpansive mappings of C into itself and
o= (o, d)eIxIxl, o= (,a),d)elxIx], where I = [0]1],
otjl +O[j2+0lé = land 0‘]1 +ocj2+ot?3 = 1such that a?’j — otg e |0, 1jas n — e for i = 1,3
and j = 1,2,3,.., N. Moreover, for every n € N, let S and S,, be the S-mappings generated
by Ty, T,..., Ty and oy, Qy,..., O and Ty, Ts,..., Ty and a&"),agn), " o:[(\?), respectively.
Then lim,,_,.. ||S,x - Sx|| = 0 for every x € C.

Definition 2.2. (see [11]) Let M : H — 2" be a multi-valued maximal monotone

mapping, then the single-valued mapping Jy;, : H — H defined by
Jua(u) = I+ AM) " (u), VueH,

is called the resolvent operator associated with M, where A is any positive number
and 1 is identity mapping.

Lemma 2.8. (see [11]) u € H is a solution of variational inclusion (1.4) if and only if
u = Jpr 2(u - 2Bu), VA >0, i.e.,

VI(H, B,M) = F(Ju,.(I — AB)), VA > 0.
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Further, if A € (0, 20, then V I(H, B, M) is closed convex subset in H.

Lemma 2.9. (see [22]) The resolvent operator Jur; associated with M is single-valued,
nonexpansive for all A >0 and 1-inverse-strongly monotone.

Lemma 2.10. In a strictly convex Banach space E, if

[l =1yl = HAx+ (1 =)yl

forall x,ye Eand A e (0, 1), then x = y.

Lemma 2.11. Let C be a nonempty closed convex subset of a strictly convex Banach
space. Let {T;}5\be an infinite family of nonexpanxive mappings of C into itself with
Nic, F(T:) # Yand let Ay, As,..., be real numbers such that 0 < A; <1 for every i = 1, 2,...,
and Y 2, Ai < 0o. For every n € N, let K,, be the K-mapping generated by T, T,..., T),
and Ay, Aayeey M. Then for every x € C and ke N, lim,,_,.. K,x exits.

Proof. Let x € C. Then for k, n € N, we have

Il Unsrex = Ungex | =l AT Unsr 1% + (1 = A Unst 16 — 2Tl e—1 — (1 = M) U1 ||
=l Ae(Tielns1 —1% — Telnge—1%) + (1 — A) (Uns1,e—1% — Upj—1x) ||
< M | TeUner 1% — TilUpp—1x || +(1 - Ak) | Une1 1% — Uppe—1x ||
< M Il Unsre—16 = Up—1 | +(1 = ) | Upgr e—1 — Upe—rx ||
=l Unsre—1% — Upe—1x ||
=1 Akm1 Tt Unr 2% + (1 = A1) U1 —2X — Aem1 T 1 Uy em2X — (1 — A1) Uy -2 ||
< M1 | Tt Unire—2x — T Une—ax || +(1 = A1) || Unsre—2X — Uppe—ax || (2.2)
<|| Uns1e—2% — Upp—2x ||

<l Ups1x — Upax ||

=l M T1Ups1,0% + (1 = A)Uns1,06 — A1 T1Up,0x — (1 — A1) Upox ||
= MTix+ (1 —A)x— A Tix — (1 —Aq)x ||

-0,

which implies that U,,,1x = U, i for every k, n € N. Hence, K, = U, ,, = U1,
Since K11 & = U118 = A1 Tl K + (1 - 4,,41) K%, we have

Kpi1x — Kpx = Ayar (Tn+1Knx - Knx)‘ (2.3)
Let x* € (N2, F(T;) and x € C. For each n € N, we have

I Knx —x* || =l e TuUpn—12+ (1 = An)Upn—1x — x* ||
< | TuUpn—1x = & || +(1 = An) | Upp—1x —x* ||
<l Upp1x—x* ||
= 1T Upnax + (1 = Ap—1)Upp2x — x* ||
< hnot | TocaUppox — 6" | +(1 = An—1) || Upn—2x — x* ||
< Uppox —x* ||
(2.4)

< N Upax—x" |
= [ AT Upox + (1 — A1)Upox — x* ||
< Ml Tix—a" | +(1—21) T x—x" |

= Jx—x"1,

Page 5 of 16



Kangtunyakarn Fixed Point Theory and Applications 2011, 2011:38
http://www fixedpointtheoryandapplications.com/content/2011/1/38

which implies that {K,x} is bounded, and so is {7,,K,x}. For m > n, by (2.3) we have

|| Kinx — Kpx || =]l Kmx — Kip—1xX + Kjpm1x — Ko X + Kjp—pxx — + - -+
— Kpi1x + Kpaax — Kyx ||
<|l Kinx — Km—1x || + || Kin—1X — KX || + || Kip—2% — Kpp—3x || + - -
+ || Knsa — Knsax | + || Knsrx — Ky ||
=Am || TiKim—1x — Kip—1x || +Am—1 || Tn—1Km—2x — Kjp—ox || + - -
+ Aot || Toe1 Knx — Kyx ||

m
SMZM,

k=n+1

(2.5)

where M = sup,cn{|| T, 1Kx - Kx||}. This implies that {K,x} is Cauchy sequence.
Hence lim,,_,., K,x exists.

From Lemma 2.11, we can define a mapping K : C — C as follows:

Kx=lim K,x, xeC.
n—oo

Such a mapping K is called the K-mapping generated by Ty, Ts,..., and 14, A,,.....

Remark 2.12. It is easy to see that for each n € N, K}, is nonexpansive mappings. Let
x, y € C, then we have

| Kx — Ky [l= lim || Kpx = Kpy [ | x =y | . (2.6)
n=00

By (2.6), we have K : C — C is nonexpansive mapping. Next, we will show that
lim,, .., supyep||K,x - Kx|| = 0 for every bounded subset D of C. To show this, let «, y
€ Cand D be a bounded subset of C. By (2.5), for m > n, we have

m
I Konx = Kpx < MY e
k=n+1

By letting m — oo, for any x € D, we have

oo
| Kx = Kux <M )~ e
k=n+1

Since Y 72, An < 00, we have

lim sup || Kx — K,x ||= 0.
n—0o0 xeD

By the next lemma, we will show that F(K) = (N} F(T;)

Lemma 2.13. Let C be a nonempty closed convex subset of a strictly convex Banach
space. Let {T;}%\be an infinite family of nonexpansive mappings of C into itself with
Nic, F(Ti) # ¥, and let Ay, As,..., be real numbers such that 0 <A; < 1 for every i = 1, 2,...
with Y ) Ai < 0o. Let K,, and K be the K-mapping generated by T, To,... T, and Ay,
Aoyeee Ay and Ty, To,... and Ay, As,..., respectively. Then F(K) = (N2, F(T;).

Proof. 1t is easy to see that () F(T;) € F(K). Next, we show that F(K) € (N} F(T;).
Let %9 € F (K) and x* € (X F(T;). Let k € N be fixed. Since

Page 6 of 16
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| Knxo — x* || =)l AnTnUpn—1X%0 + (1 — An)Upnn—1%0 — & ||
=[| An(Tulpn—1x0 — x*) + (1 — An)(Up,n—1%0 — x*) ||
< A | Talpn-1%0 — & || +(1 = An) | Upn—1x0 — x* ||
<Il Unn-1%0 — x* |
=[| An—1(Tu1Unp—axo — &%) + (1 = An—1)Upn—2(x0 — x*) ||
< A1 I Tam1Upn—axo — x* || +(1 = Ap—1) || Upn—2xo — x* |

<|| Upn—2x0 — x* |

<|| Upjxo — x* | 2.7)
=) (Tl pe—1%0 — x*) + (1 — ) (U p—1X0 — x) |l
< Ak | Tl pe—1%0 — x* || +(1 — Ag) || Uppe—1X0 — & ||

<IF Upe—1%0 — x* |

<l Upaxo — x* |l
=|| )\1(T1X0 — X*) + (1 — )\1)(960 — X*) ||
<Al Tixo — ™ | +(1 = A1) | xo —x™ ||

<l xo —x" I,
we have
[ X0 —x* || = lim || Kpxo — x* || < [| A1(T1x0 — ™) + (1 — A1) (x0 — x¥) |
n—oo
<Al Tixo =" || +(1 — A1) [ xo — x* ||
<l xo —x"II,
this implies that
%0 —x* || = || Tixo —x* || = | A1(T1x0 — &™) + (1 — A1) (x0 —x*) || .
By Lemma 2.10, we have Tixy = x, that is xg € F (T1). It follows that U, 1x9 = xo. By
(2.7), we have
I Knxo —x* || Il Up2xo —x* |I= | A2(ToUp,1x0 — x*) + (1 — A2) (Un,1x0 — x*) |
=[l 22(Taxo — x*) + (1 — A2) (%0 — x*) |l
< Aa |l Taxo — ™ || +(1 — A2) [l xo — &™ ||
<[l xo —x" |
It follows that
| X0 — & || = lim || Kyxo —x* ||
n—oo
<l A2(Toxo — &™) + (1 — A2)(x0 — &) ||
< A |l Taxo — & || +(1 — A2) [l xo — x™ ||

<l xo —x* I,
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which implies
%0 — x* ll= Il Toxo — x* [I= | A2(Toxo — x*) + (1 — A2) (%0 — x*) || -

By Lemma 2.10, we obtain that Thoxg = xo, that is xg € F (T5). It follows that U, »xg =
Xo. By using the same argument, we can conclude that T = x9 and Uy = xq for i =
1, 2,.., k - 1. By (2.7), we have

| Knxo —x* || <[l Unpxo — x* ||
=l Ae(TeUnp-1%0 — x*) + (1 — Ae) (Un—1x0 — ™) ||
=l Ae(Thxo — x*) + (1 — M) (x0 — x*) ||
< Ak Il Texo — x* || +(1 — Ax) Il xo — x™ |

<l xo —x" Il .
It follows that
[ xo —x" Il = lim || Kpxo — x* ||
n—oo
=l 2e(Texo — x%) + (1 = Ax) (x0 — x7) |l (2.8)
< A || Tixo — x* || +(1 — Ar) [l x0 — x* ||
<l xo —x* I,
which implies
[l xo —x* [I= | Tixo — x™ ll= Il A(Tixo — x*) + (1 — Ax)(xo — x) || . (2.9)

By Lemma 2.10, we have Tixq = xo, that is xg € F (T}). This implies that
X0 € m?:l F(T,’).

3 Main result

Theorem 3.1. Let H be a real Hilbert space, and let M; : H — 2" be maximal mono-
tone mappings for every i = 1, 2,..., N. Let B; : H — H be a J; - inverse strongly mono-
tone mapping for every i = 1, 2,..., N and {T;}5,an infinite family of nonexpansive
mappings from H into itself. Let A be a strongly positive linear-bounded self-adjoint
operator with the coefficient 0 <y <1 Let G; : H — H be defined by
]Mi,rz(I — 1B;i)x = Gixfor every x € H and 1 € (0, 26;) for every i = 1, 2,..., N and let
vj= (o), o) eIxIxL j = 1,2 3., N, where I = [0, 1], &} +dy+d}, = 1
ocjl € (0, 1)or all j = 1,2,.., N-1, oY € (0, 1]aj2, 0/3 e[0,1)orallj=1,2,., N.Let S: C
— C be the S-mapping generated by G, G,,..., Gy and vy, va,..., vy . Let 11, As,..., be
real numbers such that 0 < A; <1 for every i = 1, 2,..., with fol Ai < 00, and let K, be
the K-mapping generated by T1, Ts,.., T, and A1, A,..., A, and let K be the K-mapping
generated by Ty, Ts,..., and Ay, As,..., i€,

Kx = lim K,x

n—oo

for every x € C. Assume that § = (2 F(T;) N ﬂf\il V(H, Bi, M;) # (. For every n €
N, i=1,2,..,N,let x; € Hand {x,} be the sequence generated by

Xn+l = Oln)/f(xn) + Brxn + (1 = Bu)l — anA)(¥uKnxn + (1 — yu)Sxn), (3.1)

where f: H — H is contractive mapping with coefficient 0 € (0, 1) and 0 <y < Jg/

Let {a,.}, {B,.}, {7} be sequences in [0, 1), satisfying the following conditions:
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(@) nlgglo o = Ognd £°2° oy = 00

(if) 0 < liminfB, <limsup B, < 1,
n—oo

n—oo

(iii) im v, =c € (0,1)

Then {x,} converges strongly to z € §, which solves uniquely the following variational
inequality:

((A—yf)z,z—x") <0, Vx* € 3. (3.2)

Equivalently, we have Pg(I1 — A + yf)z = z.
Proof. Let z be the unique solution of (3.2). First, we will show that the mapping G,; is
a nonexpansive mapping for every i = 1, 2,..., N. Let x, y € H, since B; is J; - inverse

strongly monotone mapping and 0 < 1) <20; , for every i = 1, 2,..., N, we have

I (I = nBi)x — (I—nByII* =l x — y — n(Bix — By)|I?
=l x—yI* = 2n{x—y, Bix — By) + n* || Bx — By|?
<l x—ylI> — 28 || Bxx — Byyll* + n* | Bix — Byl|>  (3.3)
=l x—yI?+ n(n —28) Il Bix — Biy|I?
<l x—yl*.
Thus, (I - nB;) is a nonexpansive mapping for every i = 1, 2,.., N . By Lemma 2.9, we
have G; = Ju;,, (I — nB;) is a nonexpansive mappings for every i = 1, 2,..., N. Let x* € &;
by Lemma 2.8, we have

x* = Gix* = ]MMIU — ﬂBi)X*,Vi = 1, 2, ...N. (3.4)

Let e, = y,K,x, + (1 - ¥,)Sx,. Since G; is a nonexpansive mapping for every i = 1,
2,..., N, we have that S is a nonexpansive mapping. By nonexpansiveness of K,, we have
I en —x* || =] Y (Knxn — x*) + (1 — yn)(Sxn — x*) ”
< Vo |l Kndn — & || +(1 = ) || Sxn — x* |
< ¥n ll%n =2 [ +(1 = va) | 20 — x|

<l —x" || .

(3.5)

Without loss of generality, by conditions (i) and (ii), we have a,, < (1 - B,)||A|| ™.
Since A is a strongly positive linear-bounded self-adjoint operator, we have

I Al = sup{|{(Ax, x)| :x € H, || x || = 1}. (3.6)
For each x € C with ||x|| = 1, we have
(1= B —anA)x,x) =1 — By — an(Ax,x) > 1 = B —ay [ A]| 2 0, (3.7)

then (1 - 8,)I -a,A is positive. By (3.6) and (3.7), we have
(1= Bu)l —anA |l = sup{{((1 — Bu) — anA)x,x) :x € C, || x || = 1}
=sup{(1 — B —an(Ax,x) :x € C, || x || = 1}
<1— By — an(Ax, x)
<1-Bu—ay.

(3.8)

We shall divide our proof into six steps.
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Step 1. We will show that the sequence {x,} is bounded. Let x* € F, by (3.5) and
(3.8), we have

Il Xner = x* N =l ctnyf(xn) + Buxn + (1 — Bu)] — cnA)e, — x* ||

=|| anyf(xn) — ¥nAX* + 0y AX* — Bpx* + Bux™ + Bnxn
+((1 =B ) — ayA)e, —x* ||

<ap | yf(xn) —Ax™ || +Bu l xn — 2" || + | (1 = Bu)] — cnA)(en — x*) ||
<an | yf(xn) = Ax* || +Bu [l xn — & || + (1 = Bu)l — etny) | %0 — x* ||
< an(ll vf () = v () I+ 1 yf(x7) = Ax™ 1) + (1 —any) [ 20 —x" |
<oyt | xn =" |+ o | yf(x*) — A" |+ (1 —otmy) | xn — " |l
= oy || yf(x") = AX" || + (1 —an(y — ¥0)) | 20 — x" ||

, I 7f(x*) — Ax* II}.

< max({|| x, —x* ||
y —vyo

By induction, we can prove that {x,} is bounded, and so are {e,}, {Kx,}, {Sx,} and {G;

(x,)} for every i = 1, 2,.., N. Without loss of generality, we can assume that there exists
a bounded set D € H such that

en, Xn, Sxn, Knxpn, Gix, € D,Vn € Nandi=1,2,...,N. (3.9)
Step 2. We will show that lim,,_, o [|Xp.1 — %ull = 0.

Define sequence {z,} by z, = (%ns1 — Bnxn).
n

1-8
Then Xn+l = ﬁnxn + (1 - ﬁn)zn'
Since {x,,} is bounded, we have

Iz 2| = ||xn+2 — Brs1Xns1 (xn+1 - ,ann) I
1 - - _
" " 1- /Sn+1 1- /311
_ ||an+lyf(xn+l) + ((1 - ,6n+1)1 - an+1A) €n+1
1- :3n+1
3 anyf(xn) + ((1 — Bn)l — anA) e | (3.10)
1- IBn
X — Ae
San+1||yf( n+1) n+1|| + |lens1 — enl|
1- /Sn+1
vf(xn) — Aen
+ | IE
1- :371

By definition of e, and nonexpansiveness of S, we have

lent — enll = || Vo1 KnerXner + (1 = ¥e1)S%ne1 — YaKndn — (1 — ) S |
= || Y1 KnerXner + (1 = ¥na1)S%ne1 — Vaa1 Kndn + Vo1 Ky
—(1 = Yne1)S%n + (1 = Via1)Sxn — YuKnxn — (1 — 1) Sxn |
= [ ¥ne1 (Kns1Xne1 — Knxn) + (1 = ¥ina1) (Stne1 — Sxn)
+(Vns1 = Yn)Knxn + (Vn — Vna1)Sxn||
< Vne1 1Kni1Xner — KaXnll + (1 — Yna1) X001 — Xl
+ [ Vne1 — Vul 1KnXnll + V0 — Vaer | 11S% ]
< Vus1 IKne12ns1 — KnXnll + (1 = Vae1) 16041 — 2l
+2|Yn1 — vulM,
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where M = max,c n{||Kxul|5 ||Sx,||}. Substituting (3.11) into (3.10), we have

VI (%ne1) — Aepia yf(x,) — Ae
ner — zall < a7 1) = Al v () = Al
1_,Bn+1 1_,Bn
Vf(%ne1) — Alpsr vf(xn) — Ae
< | ) = Acns ||+ el J ) "l
1_ﬂn+1 1_/3"
+ Va1 1 Kns1Xne1 — Kl + (1 - )/n+1) l%n1 — xnll
+2|Yne1 — yulM
yf(x — Aeyi yf(x,) — Ae
< o VT ) =AY ) = A
1_,Bn+1 1_13"

+ Vne1 (IKns1Xne1 — KX || + 1K1 — K |l)
+ (1 - yn+1) 1Xne1 = Xnll + 2[Yne1 — yulM
)/f(xml) — Aepy )/f(xn — Aey
[l + onll
1- :Bn+1 1- ,Bn
+ | Kns1xn — KnXpll + 2| Yne1 — valM.

< apl

It implies that

yf(xn+l) — Aep
|+ an

[2ns1 = 2nll = IXne1 — Xnll < el
+ |Kns1xn — KnXull + 2|Vne1 — valM.
By (2.3), it implies that
Kio1xn — Knxn = Ana1 (Tis1 KnXn — KnXn),

since 1,, = 0 as 7 — o, we have

lim ”Kn+1xn - Knxn” = 0.
n—oo

By (3.13), (3.14) and conditions (i), (iii), we have

lim sup (llzne1 — znll — ll%pe1 — xall) < 0.

n—o0
By Lemma 2.5, we have
lim ||z, — x,|| = 0.
n—o00
By condition (ii) and (3.16)
lim (%1 — x40l = lim (1 — B,) llzn — xall = 0.
n—oo n—oo
Step 3. We will show that
lim |le, — x,|| = 0.
n—oo
Since x,,,1 = oY + Bx, + (1 - B)I - o0, A) e,, we have

lxne1 — enll = ”an(yf(xn) — Aey) + Bn(xn — en)”
=y || vf(xn) — Aey “ + Bu (%0 — Xne1 |l + 01 —enll),

it implies that

(1 - ﬂn) lxne1 — enll <y ” Vf(xn) — Aey, “ + Bu 1% — xpe1ll

|+ llens1 — enll

[+ lxne1 — Xl

||)/f(xn) — Aey
1- /Sn+1 1- /311

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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and it follows that

Oy

B

= < —A " — Xns1ll -

s —enll <) g |f(xn) — Aeu | + (1 p,) I =zl

By conditions (i), (i) and (3.17), we have
lim I|xn+1 - en” =0. (319)
n—o00

Since ||e, - x,|| < |len - %petl| + |[%ns1 - %], by (3.17) and (3.19), we have

lim |le, — x,|| = 0.
n—oo

Step 4. Define a mapping Q : H - H by
Qx=cKx+(1—c)Sx, Vxe H. (3.20)
We will show that

lim |]Qx, — x| = 0. (3.21)
n—oo

Since

1Qxn — enll = [[cKxn + (1 — €)Sxn — YuKnXn — (1 = ¥2) Sy |
< leKxn — YuKnXnll + |y — ¢l | Sxall
= [lcKxy — ynKxn + yuKxn — yuKuXnll + [yn — ¢l | Sxnl
< ¢ — val IKxnll + yn IKxn — KnXnll + [yn — ¢l | Sxll
< lc— yul IKxnll + ilelp {I1Kx — Knx|I} + [yn — ¢l [ISxall -

By remark 2.12 and condition (iii), we have
lim [|Qx, — e, = 0. (3.22)
n—-oo
Since ||Qwx,, - x,|| < ||Qu,- €| + ||en %,||, from (3.22) and (3.18), we have
lim [|Qx,; — xul| = 0.
n—oo
Step 5. We will show that

limsup{(yf — A)z, x, —z) <0, (3.23)

where z = PF(I — (A — yf))z. Let {xn;} be subsequence of {x,} such that

lim sup{(yf — A)z, x, —2) = jlirg((yf — A)z, xp, — 2). (3.24)

n—oo

Without loss of generality, we may assume that {*n;} converses weakly to some g €
H. By nonexpansiveness of S and K, (3.20) and Lemma 2.3, we have that Q is nonex-
pansive mapping and

F(Q) = F(K) [)F(S). (3.25)
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Since Ju;,(I — nB;)x = Gix for every x € Hand i = 1, 2,.. N, by Lemma 2.8, we have
VI(H, Bi, M;) = F(Ju,, (I — 1B:)) = F(G), Vi=1,2,..N. (3.26)

By Lemma 2.6 and Lemma 2.9, we have

N N
F(S) = (| F(Gi) = (| VI(H, Bi, M;) (3.27)

i=1 i=1

By Lemma 2.13, we have

F(K) = () F(Ty). (3.28)

i=1

By (3.25), (3.27), and (3.28), we have
00 N
F(Q) = F(K) (F(S) = [ F(T:) ([ VI(H. Bi, My). (3.29)
i=1 i=1
Since Xn; = { as j — oo, nonexpansiveness of Q, (3.21) and Lemma 2.4, we have
[ee) N
g€ FQ) = FT) ([ VIH, B, M) =3 (3.30)
i=1 i=1

By (3.24) and (3.30), we have

limsup{(yf — A)z, x, —2) = nli)rglo((yf —A)z, xn, —2) = ((vf —A)z,q—z) < 0.

n— 00

Step 6. Finally, we will show that x,, - z as n — o, where z = P§(I — (A — yf))z.
Since

et — 212 = [y f () + Butn + (1 — )] — ctwA) e — 2
= om(f(xn) = A2Z) + Bultn — 2) + (1 — Bu)] — @nA) (0 — 2)|*
< [|Bulxa —2) + (1 = Bu)] — @A) (en — 2)|* + 200 (¥ f () — AZ, Xpi1 — 2)
= (| Buloxn —2) + ((1 = Bu)I — nA) (€0 — z)”)2 + 20, (Y f (%) — Az, Xpa1 — 2)
< (|Balxn = 2] + [ (1 = Bu)l — ctuA] llew — 2ll)?
+ 20 (yf(xn) — vf(2), Xns1 — 2) + 200 (v f(2) — Az, Xps1 — 2)
< (| Balxn = 2] + (1 = B — tn?) llen — 2l1)°
+ 20,70 %0 — 2l %001 — 21l + 20 (Y f(2) — AZ, X1 — 2)
< (| Baln = 2] + (1 = Bu — etn?) 1 — 2l1)°
+ 20,y 0 |60 — 2|l [1Xne1 — 2l + 200 (yf(2) — Az Xpe1 — 2)
< ((1 = @) lxn = 201)* + @0 (Ixn — 2% + [x0e1 — 211%)
+ 200 (yf(2) — Az, xn1 — 2)
< (1 =207 + 0y 0)l1xn — 2lI* + a7 — 2l1> + 2ty 0 xns — Il
+ 2000 (v f(2) — Az, xpa1 — 2),
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it implies that

1 — 2,y 0 252
T A0 R COL ) A ME
1—oa,y0 1—anyd
2ay
—AZ, —
b (vf(=) Xns1 — 2)
1 —a,y6 0 — 20,7 0 22
_ (1 —anyb +anyf — 20y +any )len ENER A
1—ayyd 1—anyo
2a
" (vf(2) — Az, xp1 —2)
1—a,y6
1 —a,y0 — 2a,(y — y0 252
(el 2y =y e A
1—oayy0 1—a,y0
2a
— Az, _
+ 1 — a6 (vf(2) Z, Xpe1 — Z)
20,(y — y0 aly?
=(1- nl ) s — 22+ "0 llxy —zl|?
1 —oa,y0 1 —anyd
2o
] _a:ye(yf(Z) — Az Xp41 — 2)
20(y — v0 o _
=(1- nl ) [y — zI|% + ! (a7l — I

1—oa,y6 1 —auyd

+2(yf(z) — Az, X441 —z))

20(y — v0 2(y — y0 o
7=y 27O e

=(1-— o
0 e 20} 1 g (7 =1
+2(yf(2) — Az, X1 — 2))

20,(y — y0 20.(7 — 10 a2
_(1- n(7 —v ))len—z||2+ n(y —v0) P
1 —anyt 1—ayy8 \2(y —y0)
2
o (@)~ Azt —z)),
2(y —v9) "

from condition i, step 5 and Lemma 2.2, we can conclude that x,, > z as 1 — oo,
where z = P (I -(A - vf))z. This completes the proof.

By means of our main result, we have the following results in the framework of Hilbert
space. To prove these results, we need definition and lemma as follows:

Definition 3.1. A mapping T : C — C is said to be a k-strict pseudo-contraction
mapping, if there exists k € [0, 1) such that

||Tx— Ty||2 < ||x—y||2 +/<||(I— Tx—(—T)y 2,

Vx,y € C.

Lemma 3.2. (see [23]) Let C be a nonempty closed convex subset of a real Hilbert space
Hand T : C— C a k-strict pseudo-contraction. Define S: C — C by Sx = ox + (1 - )Tk,
foreach x € C. Then, as o € [k, 1), S is nonexpansive such that F(S) = F(T).

Corollary 3.3. Let H be a real Hilbert space and let M; : H — 2" be maximal monotone
mappings for every i = 1, 2,... N. Let B; : H— H be a o; - inverse strongly monotone map-
ping for every i = 1, 2,... N and {T;}°\an infinite family of k; - strictly pseudo-contractive
mappings from H into itself. Define a mapping Ticby Ty, = kix + (1 — k;)Tix, Vxe H,ie N.
Let A be a strongly positive linear-bounded self-adjoint operator with the coefficient
0 <y <1 Let G;: H— H be defined by Jum;,(I — nBi)x = Gixfor every x € H and ne (0,
26,) for every i = 1, 2,.., N and let v; = (a]i,a]é,aé) elxIxLj=123,..,N,wherel =0,

1, o +d) +aé =Lad e (0,1)orallj=1,2..,N-1aN € (0,1] aé €[0,1)forallj=
1,2,.., N.. Let S : C — C be the S - mapping generated by Gy, Gs,..., Gy and vy, vy,..., Vy. Let
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A1, A oy, be real numbers such that 0 < A; < 1 for every i = 1, 2,..., with Y 2} i < 00, and
let K,, be the K-mapping generated by Tc,, Te,, ..., Ty, and Ay, Ao,..., A,,, and let K be the
K-mapping generated by Ty,, Ty, . .. and A1, Ay,..., i.e.,

Kx = lim K,x
n— o0

for every x € C. Assume that § = (2 F(T;) ﬂﬁl V(H, B;, M;) # @. For every n
N, i=1,2,..,N,let x; € Hand {x,} be the sequence generated by

Xns1 = UV f(%n) + BnXn + ((1 — Bn)l — oznA) (YnKnxn + (1 — y4)Sxn), (3.31)

where f: H — H is contractive mapping with coefficient 0 € (0, 1) and 0 <y < Z

Let {0}, B}, {v.} be sequences in [0, 1], satisfying the following conditions:

(i) 10, @ = Qand 2oy = 00,

(ii) 0 < lim inf 8, < lim sup 8, < 1,
n—o00 n—00 ’

(iii) im v =c € (0, 1),

Then {x,} converges strongly to z € §, which solves uniquely the following variational
inequality:

((A—yf)z,z—x") <0, Vx'e3. (3.32)

Equivalently, we have Pgz(I — A + yf)z = z.

Proof. For every i € N, by Lemma 3.2, we have that Ty, is a nonexpansive mapping
and N F(T,) = N, F(T;). From Theorem 3.1 and Lemma 2.13, we can reach the
desired conclusion.

Corollary 3.4. Let H be a real Hilbert space and let M : H — 2" be maximal monotone
mappings. Let B : H — H be a ¢ - inverse strongly monotone mapping and {T;}:2,an infinite
Sfamily of k; - strictly pseudo-contractive map-pings from H into itself. Define a mapping
T = kix + (1 — ki) Tixby Ty, = kix + (1 — ki) Tix, Vx € H,ie N. Let A be a strongly positive
linear-bounded self-adjoint operator with the coefficient 0 < y < 1. Let Ay, Ao,..., be real
numbers such that 0 < A; <1 for every i = 1, 2,..., with Y 2, ki < 00, and let K, be the
K-mapping generated by Ty, Ty, ..., T,and Ay, As,..., A, and let K be the K-mapping
generated by Ty,, Te,, . . . and Ay, Ay,..., ie.,

Kx = lim K,x

n—oo

Jor every x € C. Assume that § = (5, F(T;) (" V(H, B,M) # @. For every n € N, let x,
€ H and {x,} be the sequence generated by

Xne1 = oY f(%n) + Buxn + ((1 = Bu)] — 0tnA) (¥uKnxn + (1 — ¥n)Ja,n (I — nB)xB.33)

where f: H — H is contractive mapping with coefficient 0 € (0, 1) and 0 < y < )9/, n

€ (0, 20), {0}, {B.}, {yn} are sequences in [0, 1], satisfying the following conditions:

(i) n]glolo on = Oand 20 ay = 00,
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(if) 0 < liminfB, <limsup B, < 1,
n—oo n— 00 ’

(iii) im v, =c € (0, 1),

Then {x,} converges strongly to z € §, which solves uniquely the following variational

inequality

((A—yf)z,z—x*) <0, Vx* €3. (3.34)

Equivalently, we have Pg(I — A + yf)z = z.
Proof. Putting N = 1 in Corollary 3.3, we can reach the desired conclusion.
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