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The extent to which exchange rates of four major currencies against the Greek Drachma
exhibit long-term dependence is investigated using a R[S analysis testing framework. We
show that both classic R]S analysis and the modified R[S statistic if enhanced by
bootstrapping techniques can be proven very reliable tools to this end. Our findings support
persistence and long-term dependence with non-periodic cycles for the Deutsche Mark and
the French Franc series. In addition a noisy chaos explanation is favored over fractional
Brownian motion. On the contrary, the US Dollar and British Pound were found to exhibit a
much more random behavior and lack of any long-term structure.
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1 INTRODUCTION

The long-term behavior of discrete time dynamical
systems in Economics and Finance has increased
much attention in the recent literature. In this
framework extensive mathematical research over
the last few years has focused on important issues
such as stock exchange and foreign currency
exchange rates. In the latter case especially, where
a pure trading market is involved, time evolution of
data is more inclined to follow fads and fashions.
This type of behavior follows from the fact that
currencies are bought and sold in order to invest e.g.
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in short-term interest rates securities, in each
country involved.
The main behavior of the currencies is generally

manipulated by the corresponding government’s
economic policy expressed by the central bank, in
the following two ways:

(i) Raising or lowering interest rates, thus making
the country’s securities more or less attractive.

(ii) Allowing the national currency to depreciate
for some period of time (by supplying the
foreign exchange market with massive quanti-
ties of its own currency), or causing it to
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appreciate (by buying and thus absorbing large
quantities from the market).

In each case, the objective is to stimulate either its
exports (depreciation) or its imports (appreciation).
Depending on the economic conditions, both
objectives could be desirable and mirror each
country’s economic expectations. They induce,
however, a considerable amount of noise in the
data series of foreign currencies against the local
one, which makes their mathematical analysis a
difficult task.

Because of the factors mentioned above, a cur-

rency market is quite different from other traded
markets. It is quite possible, if not certain, that this
difference holds between currency markets of
different countries.

Understanding exchange rates dynamics has
important economic implications since flows and
prices of tradable goods and international asset
portfolios are closely related to these dynamics.
However, the relevant literature examining the
nature of price dependence in the foreign exchange
spot, forward or futures markets has been contra-
dictory. Standard time series (ARIMA) models and
tests for unit roots are employed in some of these
works (e.g. [16,17,38]) to show that exchange rates
follow martingale processes. In a similar study
Hsieh [24] finds no significant serial dependence in
4 different spot exchange rates series.
On the other hand, in another set of papers (e.g.

[25,26]) the statistical properties of exchange rate
changes are examined, the iid null hypothesis is
rejected, thus putting in question a random walk
explanation.

Finally, some studies look for long-range depen-
dence in the data, in the form of irregular or

nonperiodic cycles that cannot be captured by
techniques assuming linear dependence (e.g. auto-
correlation analysis). Long-term dependence of this
form has been found in many time series in the
fields of hydrology, meteorology and geophysics
[13,37]. Similar dependence in financial series is
incompatible with martingale models like random
walks and according to Lo [30] can have important

implications for many of the prevailing paradigms
in financial economics.
A suitable framework for detecting long-range

dynamics in time series is provided by rescale range
analysis (R/S), originated by Hurst [27,28] and
further developed by Mandelbrot [33]. One of its
valuable features is robustness to noise that renders
it a very useful tool in analyzing noisy time series
like exchange rates.
The empirical literature of R/S analysis includes

different studies with contradictory results. Classic

R/S analysis has been applied to employment series
[4], gold market [6], stock market indices [43-47],
common stock returns [19] and agricultural futures
[21]. In all the above cases long-term memory has
been reported.
On the other hand, a modified version of the R/S

statistic proposed by Phillips [48] and Lo [30] has
been applied to macroeconomic data [20,39], gold
market prices [10], stock indices [11,12,30,40] and
common stock returns [22]. Weak (or absence) of
long-term dependence has been reported by all of
the above studies.

In the same context, studies using exchange
rate data have also been contradictory. Booth
et al. [5,7] and Peters [44] use classic R/S analysis
and find long memory or persistence in spot
exchange rate data. On the contrary, Kao and Ma
[29] find no long-term dependence in currency
futures markets.
What is not clear is whether this controversy is

due to the nature ofthe different data sets employed
in terms of currencies, markets, sample size, noise
level, etc., or to the testing framework that has been
adopted. With respect to the latter it is interesting
to notice that studies using classical R/S analysis
seem to support a long-term dependence hypothesis
while the opposite seems to be the case for the
modified R/S statistic. Both these tests have certain
advantages and disadvantages and suffer from
problems that can seriously affect their results, in
specific applications.
The purpose of this research is twofold. First, we

shall try to provide a more complete framework for
R/S testing, enhanced by bootstrapping techniques
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that increase significantly the reliability of the
empirical results.

Second, we shall use this framework to analyze
four foreign exchange rate currencies against the
Greek Drachma (GRD), namely the US Dollar
(USD), the Deutsche Mark (DM), the French
Franc (FF) and the British Pound (BP). Our goal
is to detect long-term dynamics, i.e. to characterize
each currency series in terms of its persistence, to
reveal any existing cycles and estimate their average
duration. Moreover, we shall exploit the ability of
the R/S method to distinguish between fractal noise
processes and noisy chaos. Taking into account
that, so far, the results of similar research have not
yet established a general character of currency
markets, this analysis is expected to be useful for
comparison purposes as well.

statistical artifact or it corresponds to a true cycle,
using bootstrapping techniques against the Gaus-
sian and the iid null hypotheses. In a last step, the
modified R/S test is applied to each currency and the
results of this test are used to verify or put into

question our findings from the classic R/S analysis.
The rest of the paper is organized as follows:

Section 2 includes a briefdiscussion ofthe classic R/S
analysis. Section 3 refers to some application prob-
lems that had to be dealt in order to have reliable
results. A description of the modified R/S analysis
follows in Section 4 and its improved robustness over
the classical test. Section 5 focuses on the empirical
evidence of each currency separately. The results of
the tests mentioned above are reported and their
significance is evaluated. Finally, Section 6 presents
a discussion on conclusions and remarks derived.

1.1 Methodology and Data

Our time series data consist of the first differences
of the natural logarithms of daily exchange rate
prices of the four currencies mentioned in the
Introduction, against Greek Drachma, which give
returns in continuous time. The rates are those
determined during the daily "fixing" sessions in the
Bank of Greece, central bank of the country.
The data cover an 11-year period, from the 1st

of January 1985 to the 31st of December 1995,
consisting of 2660 daily observations. This amount
of data is relatively small when compared to the
time series used in the Natural Sciences, but large
enough compared to other studies in Economics
and Finance, for most of which the data used are
much smaller.

Methodologically, a statistical description of the
properties of the data is performed. Next, partial
autocorrelograms and Schwartz’s [51] information
criterion are employed to test for the need of pre-
filtering.
Each currency is then tested for the existence of

periodic or non-periodic cycles, through the applica-
tion ofthe Rescaled Range and V-statistics analysis.
Once an indication of a cycle is revealed, it is further
tested to investigate whether its presence is a

2 THE R/S ANALYSIS

Technically, the origins of R/S analysis are related
to the "T to the one-half rule", that is, to the
formula describing the Brownian motion (BM):

R- T5, (1)

where R is the distance covered by a random particle
suspended in a fluid and T a time index. Equation
(1) is commonly used in Finance to annualize
volatility of e.g. monthly returns by multiplying
monthly standard deviation by 125. It is also
obvious that (1) shows how R is scaling with time
T in the case of a random system, and this scaling is

given by the slope of the log(R) vs. log(T) plot,
which is equal to 0.5. Yet, when a system or a time
series is not independent (i.e. not a random BM), (1)
cannot be applied, so, Hurst gave the following
generalization of (1) which can be used in this case:

(2)

where (R/S)n is the Rescaled Range statistic
measured over a time index n, c is a constant and
H the Hurst exponent, which shows how the R/S
statistic is scaling with time.
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The objective of the R/S method is to estimate
the Hurst exponent, which, as we shall see, can
characterize a time series. This can be done by
transforming (2) to:

log(R/S). log(c)+ H log(n) (3)

and H can be estimated as the slope of the log/log
plot of (R/S)n vs. n.

Given a time series {Xt: t= 1,...,N}, the R/S
statistic can be defined as the range of cumulative
deviations from the mean of the series, rescaled by
the standard deviation. The analytical procedure to
estimate the (R/S), values, as well as, the Hurst
exponent by applying (3), is described in the
following steps:

Step 1 The time period spanned by the time
series of length N is divided into m contiguous sub-
periods of length n such that rn,n=N. The
elements in each subperiod X;,./have two subscripts,
the first (i= 1,...,n) to denote the number of
elements in each subperiod and the second
(j= 1,...,m) to denote the subperiod index. For
each subperiod j the R/S statistic is calculated as:

s[ max- j i=
<k<.

min (Xu (4)
l<k<n

where s is the standard deviation for each sub-
period.

In (4), the k deviations from the subperiod mean
have zero mean, hence the last value of the
cumulative deviations for each subperiod will
always be zero. Due to this, the maximum value
of the cumulative deviations will always be greater
or equal to zero, while the minimum value will
always be less or equal to zero. Hence the range
value (the bracketed term in (4)) will always be non-

negative.
Normalizing (rescaling) the range is important

since it permits diverse phenomena and time

periods to be compared, which means that R/S
analysis can describe time series with no charac-
teristic scale.

Step 2 The (R/S)n, i.e. the R/S statistic for
time length n, is given by the average of the (R/S).
values for all the m contiguous subperiods with
length n as:

m
j= j

Step 3 Equation (5) gives the R/S value which
corresponds to a certain time interval of length n.

In order to apply Eq. (3), steps and 2 are repeated
by increasing n to the next integer value, until n-

N/2, since, at least two subperiods are needed, to
avoid bias.
From the above procedure, it becomes obvious

that the time dimension is included in the R/S
analysis by examining whether the range of the
cumulative deviations depends on the length oftime
used for the measurement. Once (5) is evaluated for
different n periods, the Hurst exponent can be
estimated through an ordinary least square regres-
sion from (3).
The Hurst exponent takes values from 0 to

(0_< H< 1). Gaussian random walks, or, more

generally, independent processes, give H 0.5.
If 0.5 <_ H_< 1, positive dependence is indicated,

and the series is called persistent or trend reinforc-
ing and in terms of Eq. (1), the system covers more
distance than a random one. In this case the series is
characterized by a long memory process with no
characteristic time scale. The lack of characteristic
time scale (scale invariance) and the existence of a
power law (the log/log plot) are the key charac-
teristics of a fractal series.

If 0 < H< 0.5, negative dependence is indicated,
yielding anti-persistent or mean-reverting behav-
ior. In terms of Eq. (1), the system covers less
distance than a random series, which means that it
reverses itself more frequently than a random
process.

lOnly if the system under study is assumed to have stable mean.
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A Hurst exponent different from 0.5 may
characterize a series as fractal. However, a fractal
series might be the output of different kinds of
systems. A "pure" Hurst process is a fractional
Brownian motion [34-36], also known as biased
random walk or fractal noise or colored noise, that
is, a random series the bias of which can change
abruptly but randomly in direction or magnitude.

Chaotic systems have also Hurst exponents
H> 0.5, and in chaotic terms long memory effects
correspond to sensitive dependence on initial
conditions. Actually, the latter property combined
with fractality characterizes chaotic systems. Pure
chaotic processes have Hurst exponents close to 1.
When dealing, however, with real data the

problem of distinguishing between the above
alternatives becomes more difficult due to the
existence of noise. Most series are contaminated
by either additive or dynamical (system) noise.
Hence, in most cases, including financial data, the
problem is to distinguish between fractal noise and
noisy chaos.

R/S analysis provides a very useful tool to solve
the above problem since it is extremely robust to
both additive and system noise [47]. Noise lowers
the H value of a series and obscures the difference,
e.g. between a fractional Brownian motion with
H=0.70 and a chaotic process which originally
has H 0.92 but noise contamination reduces it to
0.70, as well. However, R/S analysis is able to
detect, even when noise is present, the existence of
cycles in the series and thus to characterize it.

Cycles can either be periodic or non-periodic in
the sense that the system has no absolute frequency.
Non-periodic cycles can be further divided to
statistical cycles and chaotic cycles. Fractal noises
exhibit statistical cycles, i.e. cycles with no average
cycle length. Actually, they are random cycles of
different length due to long-run correlations and
randomly changing bias; of the system. On the
contrary, deterministic systems like chaotic flows or

noisy chaotic processes have chaotic cycles which
have an average frequency.

In general, fractal noises will have no discernible
cycles, but in practice and in a certain time scale,
fractional Brownian motion might exhibit a finite
memory effect, which is usually a statistical artifact
due to the limited length of the series examined. In
this case, fractal noise can be distinguished from a
chaotic alternative by examining whether the cycle
is independent of the time scale used. Cycles
independent of the time scale indicate the (noisy)
chaos alternative. Detection of cycles and estima-
tion of their length can be accomplished by the use
of the V-statistic [28,47] defined as:

r, (R/s (6)

The Vn vs. log(n) plot gives a fiat line for an

independent random process and an upwardly
sloping curve in the case of persistent series. The
existence of a cycle and its length can be discerned
(even when noise is present) from the "break-point"
in this plot occurring when Vn reaches a peak and
then flattens out, an indication that the long-
memory process has dissipated.

3 APPLICATION PROBLEMS

Some problems should be discussed with respect to
the application of classic R/S analysis. A first
problem is related to the procedure of step
described above. In order to create the m sub-
periods, the series of N-length, should be divided
by n (the length of each subperiod) as:

m

In (7), m should always be an integer, since all the
subperiods must have the same length n. Since N is
fixed and n is changing, some points should be left
out when (7) gives no integer m. Obviously, the
number of these "left-out" points depends on the
length of the data N, and the divisor n, and in some
cases exceeds 30% or more of the total points in the

*Abrupt changes in direction due to exogenous events, predictable or not.
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data resulting to significant bias and unreliable H
estimates. To account for this, Peters [47] suggests
that only the time increments that include both the
beginning and the ending points of the data should
be used i.e. only the n values that produce integer m
values. However, these n values might be very few,
especially when the N-length is small which means
that there are not enough regressors to estimate H
in (3). Hence, for small data sets there is a "trade-
off" between adequate number of regressors and
bias induced by "left-out" points. To account for
this, the N-length is adjusted in each case, to give
the maximum number of perfect divisors and a

very small number of "left-out" points (less than
2%), in order to minimize bias.
A second problem is the evaluation of the H

exponent from a statistical point of view. Specifi-
cally, we should be able to assess whether an H
value is statistically significant in comparison to a
random null, i.e. to the H exponent exhibited by
an independent random system. Peters [47] shows
that under the Gaussian null, a modification of
a formula developed by Anis and Lloyd [2] allows
for hypothesis testing by computing E(R/S)n
and E(H), the expected variance of which will
depend only on the total sample size N, as

Var(H) 1/N.
However, if the null is still iid randomness but

not Gaussianity, the formal hypothesis testing is
not possible. To overcome this problem we used
bootstrapping [14] to assess the statistical signifi-
cance of the H exponents of our series, against
both the Gaussian and the iid random null
hypotheses.
To test against the Gaussian random null, the H

exponent from 5000 random shuffles of a Gaussian
random surrogate, having the same length, mean
and variance with our return series is calculated and
compared to the test statistic i.e. the actual H
exponent of our series. If the latter is found to be
greater than 0.5, and persistence of the series is
possible, then the null hypothesis tested is formed
as: Ho:H He and the alternative Hi :H > He or

in words: "The actual H estimate from the series

tested is significantly dlerent (greater) than the He

estimatefrom a Gaussian random data with the same
length, mean and std as the series tested".
The significance level of the test is constructed as

the frequency with which the pseudostatistic (the
He estimate) from the Gaussian shuffles is greater
than or equal to the actual statistic for the tested
(unshuffled) data [42]. The null hypothesis is
rejected if the significance level is smaller than the
conventional rejection levels of 1%, 2.5% or 5%.
When the actual H statistic is found to be lower

than 0.5 and anti-persistence is possible, the null
can be formed again as: Ho:H=H but the
alternative this time is H:H < He. In this case,
the significance level of the test is constructed as the
frequency with which the pseudostatistic He is
smaller than or equal to the actual statistic and the
null is rejected if the significance level is smaller
than the conventional rejection levels of 1%, 2.5%
or 5%.
To test against the lid null, the same procedure is

followed but this time we randomize the series
tested to produce 5000 lid random samples having
the same length and distributional characteristics as
the original series. In this case, rejection of the null
means that the actual H exponent calculated from
the original series is significantly different (greater
or smaller depending on the hypothesis tested) from
the one calculated from an iid random series.
Hence, this is also a test for non-iid-ness.

Finally, a third problem is related to the
sensitivity of R/S analysis to short-term depen-
dence which can lead to unreliable results [3,4,20,
30,31,41]. Peters [47] shows that Autoregres-
sive (AR), Moving Average (MA) and mixed
ARMA processes exhibit Hurst effects, but once
short-term memory is filtered out by an AR(1)
specification, these effects cease to exist. On the
contrary, ARCH and GARCH models do not
exhibit long-term memory and persistence effects
at all. Hence, a series should be pre-filtered for
short-term linear dependence before to apply the R/
S analysis. In our analysis, we use partial auto-
correlograms and Schwartz’s information criterion
to indicate the best-fit time series linear model to
our data.
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4 THE MODIFIED R]S STATISTIC

An alternative way to account for short-term
dependence is to use the R/S test statistic modified
by Lo [30]. In Lo’s modification, short-range
dependence is incorporated into the partial sum
variance estimator to the denominator of the
classical Mandelbrot’s [33] R/S statistic as:

k

Qq ’ (q) max (Xt u)
<k<N

t-1

min .__..(X,-
<k<N

t--1

where
q

2N(q) s + 2

w,(q) q < N,
q+l’

(9)

N

v(q) Z(X 2N)2

+:1 :+1

^2 and being the variance and autocovarianceands
estimators of X.

According to (9) and (10), if {Xt} is subject to

short-range dependence, the estimator u(q) in-
volves the sums of squared deviations of X and
its weighted autocovariances up to lag q. This
latter term consists the modification of the original
(R/S)N statistic.

This test, unlike classic R/S analysis described
above, does not have to rely on subsample analysis.

The test’s null is short-term dependence which
operationally is defined by Lo as a "strong-mixing"
process, a notion due to Rosenblatt [50] in order to
derive the asymptotic distribution of Qq.
Lo shows that under certain conditions which

place restrictions on the maximal moments, the
degree of distributional heterogeneity and the
maximal degree of dependence in {Xt}, the statistic

Vq- N-(1/2)Qq converges to the range of a "Brow-
nian bridge" on the unit interval, a well defined
random variable with mean (rr/2){1/2), variance rr2/
6-rr/2 and a positively skewed distribution function.
The critical values of the test derived by the

asymptotic cumulative distribution function are

given in Table I.
The main advantage ofthe test is that it allows for

formal statistical testing and is robust against serial
correlation and some forms of non-stationarity. It
is specifically designed to distinguish between
weakly dependent processes (e.g. ARMA) and
strongly dependent processes (e.g. fractionally
integrated (ARFIMA) models [18,23]). Notice that
the main characteristic of these strongly dependent
processes is the slowly decaying autocorrelation
functions and non-periodic cyclical patterns. More-
over, the test’s null is wide enough to include models
with longer-term correlations like the stochastic
models of persistence proposed by Campbell and
Mankiw [9], Fama and French 15] and Poterba and
Summers [49].
The main disadvantage of the test is that unlike

the classic R/S analysis is not able to specify the
cycle length of the series tested. There are, in
addition, certain shortcomings related to the test
"per se". Lo [30] shows that there are forms of
short-term dependence violating the assumptions
of the test’s null. He also reports low power of

TABLE Asymptotic critical values of the modified R/S statistic

Probability level 0.5% 2.5% 5% 10% 90% 95% 97.5% 99.5%
Critical value 0.721 0.809 0.861 0.927 1.620 1.747 1.862 2.098

Strong mixing requires that the maximal dependence between two events becomes trivially small as their separation time increases
without bound.
For example, the test has no power against processes with maximal moments less than 4 violating the moment condition of the test,

or the first difference of a stationary process violating the heterogeneity condition.
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the test against chaotic processes like the "tent-
map", a long-range dependent process with very
low autocorrelation.

Hiemstra and Jones [22] find that right- and
left-tailed bootstrapped critical values of the modi-
fied R/S statistic, fall below their asymptotic
counterparts, resulting to higher right-tailed and
lower left-tailed rejection rates. According to their
analysis, this is due to the test sensitivity to moment
condition failure, i.e. to the magnitude of the max-
imal moment of their series which is less than 4.
Brock and de Lima [8] use Monte Carlo simulation
to find also that the sampling distribution of the test
is shifted to the left, relatively to the asymptotic
distribution.
Another problem is related to the sensitivity of

the test to the truncation lag-parameter q in Eq. (8).
Lo [30] employs Monte Carlo simulations to assess
the power of the test which declines with increasing
q and decreasing sample size. In fact, even for
sample sizes of N= 1000, the empirical rejection
rates were much lower than nominal sizes for q
values exceeding N1/3.

Little is known about the optimal choice of q,
although Andrews [1] suggests a data-dependent
formula given by:

where, N is the data length and ? the estimated first
order autocorrelation of the data. However, the
truncation lag given by this formula is optimal only
for an AR(1) data generating process.

Although R/S analysis combined with boot-
strapping for assessing the statistical significance
of the H exponent provides a powerful tool for
detecting persistent behavior and long-term cycles,
we employed also the modified R/S statistic to
cross-check our findings. In our application of the
modified R/S statistic, we used different q-lengths
equal to qn- INT [N1/4 ], INT [N1/3], INT [N1/2], as
well as, the q values derived from the data-
dependent formula in (11). In addition, to assess
the test’s results, we have used the asymptotic and
bootstrapped critical values of our series. The latter
are based on the test statistics derived from 5000
time-scrambled shuffling of our data, producing iid
series consistent with the test’s null and robust to
violations of the moment condition of the test.

5 EMPIRICAL EVIDENCE

I The USD/GRD Exchange Rate

The basic statistical properties and the time series
plot# of the Dollar/Drachma exchange rate return
series are listed in Table II and Fig. respectively.

This statistical profile shows a non-normal
skewed and leptokurtic series. Partial autocor-
relogram and Schwartz’s information criterion
indicate no significant autocorrelation, hence no

pre-filtering is necessary and R/S analysis can be
applied to the original return series.

In Fig. 2(a) and (b), the log-log plot of the R/S
statistic versus time (N-days) and the semi-log plot
of the V-statistic respectively show a possible cycle
with a length of 870 trading days. The Hurst

TABLE II Statistical description of the USD/GRD daily return series

Sample size 2659 Range 0.085509
Average 0.000101 Lower quartile -0.00159
Median 0.000026 Upper quartile 0.001715
Variance 0.00001 Skewness 3.85
Standard deviation 0.003223 Standardized skewness 81.19
Minimum -0.01735 Kurtosis 76.81
Maximum 0.068159 Standardized kurtosis 3186.65

#Notice that the spike in the time series plot corresponds to an abrupt and state controlled devaluation of the Greek Drachma against
all foreign currencies in the early 1985. So, the same spike appears in the time series plots of all the currencies analyzed in this paper.
Notice that this outlayer does not affect our results which hold even ifwe use for our analysis the time period after the devaluation date.
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FIGURE Time series plot of the daily returns for the USD/GRD exchange-rate.
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FIGURE 2 R/S analysis of the USD/GRD daily returns (a) Hurst exponent estimation through the R/S statistic plot (b) Cycle-
length estimation through the V-statistic plot.

exponent corresponding to this cycle length is 0.57,
a low value indicating noisy series. Indeed, by using
bootstrapping to assess the statistical significance
of this Hurst estimate, we found that the null
hypotheses including the Gaussian random and

the random iid alternatives are not rejected since the
significance level of the test in both cases was

greater than 5%, as Table III shows. This means
that the alleged cycle was just a statistical artifact
and not a true cycle.
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TABLE III Hurst estimates and test of significance against two random alternatives of the daily USD/
GRD returns

A. R/S analysis results 4 < n < 870 4 < n < 1320
(Cycle length) (Total data length)

Hurst (H) exponent 0.567 0.549

B. Bootstrapping results 4 < n < 870 4 < n < 1320
(Cycle length) (Total data length)

B1. Ho." H > HG (Gaussian random alternative)
Mean HG value 0.548 0.541
Significance level 24.4% 40.1%

B2. Ho: H > HR (lid random alternative)
Mean H( value 0.546 0.540
Significance level 22.3% 38.1%

TABLE IV The modified R/S statistic of the daily USD/GRD returns and bootstrapped critical values of
the test statistic

q Andrew’s N 1/4 N 1/3 N1/2
7 14 51

Vq-statistic 0.940 0.924 0.934 0.958

Bootstrapped critical values
Significance level
1.0% 1.949 1.939 1.888 1.875
2.5% 1.817 1.790 1.780 1.765
5.0% 1.720 1.708 1.710 1.682
10.0% 1.572 1.565 1.571 1.556

However, fractality, long-term memory (with
no average cycle) and persistence of the series
cannot be ruled out, unless the Hurst estimate of
the total series is tested too against the random iid
null. As Table II! shows the Hurst exponent
corresponding to the total length of the series is
0.55, a value which is not significantly different

(at a significant level less than 1%) from the mean
bootstrapped value of the Hurst exponent derived
from 5000 random shuffles of the original series.
Hence, the null of a random series with no long-
term memory effects cannot be rejected and
the alternative of a fractional Brownian motion

(black noise) with an infinite memory seems

implausible.
The results from the modified R/S statistic seem

to confirm the above findings. Table IV, presents
the estimates of the Vq statistic for different q
values. We used both the asymptotic values, as well
as, the bootstrapped critical values to assess the
statistical significance of the test statistic. The right-
tail bootstrapped critical values (at the 1%, 2.5%,
5% and 10% significance levels) corresponding to

each one of the q values are also presented in the
lower part of Table IV. These values are lower than
the asymptotic ones, confirming the findings of
Hiemstra and Jones [22]. It is obvious that for all the
q values the Vq estimates do not reject the test’s
short-range dependence null when compared to
either the asymptotic or the bootstrapped critical
values of the test.

II The BP/GRD Exchange Rate

The statistical properties of the British Pound/
Drachma exchange rate return series presented in
Table V, exhibit similar distributional character-
istics to the USD/GRD returns, with even larger
values for skewness and kurtosis. The time series
plot of the series in Fig. 3 also shows no apparent
structure.

In this case too, partial autocorrelogram and
Schwartz’s information criterion indicate no signi-
ficant autocorrelation and the data is not

pre-filtered.
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TABLE V Statistical description of the BP/GRD daily return series

Sample size
Average
Median
Variance
Standard deviation
Minimum
Maximum

2659 Range 0.082554
0.00015 Lower quartile -0.00085
0.000139 Upper quartile 0.001084
0.000006 Skewness 7.97
0.002455 Standardized skewness 167.88

-0.01434 Kurtosis 224.29
0.068214 Standardized kurtosis 2360.83
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0.02

0

-0.02
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

Time(days)

FIGURE 3 Time series plot of the daily returns for the BP/GRD exchange-rate.

The structure of the two series looks the same in
terms of R/S analysis as well. The log-log plot of
the R/S statistic versus time (N-days) and the semi-
log plot of the V-statistic in Fig. 4(a) and (b)
respectively show again a possible cycle of approxi-
mately 870 trading days with a slightly larger Hurst
estimate of 0.573. However, bootstrapping results
in Table VI, show that this estimate is not a
significant one, compared to both the Gaussian
and lid random nulls although the significance
levels are lower than the previous case. The fractal
Brownian motion alternative is also not accepted
since the Hurst estimate of the total series (H=
0.571) was not found to be significant as Table VI
presents.

Results from the modified R/S statistic are

presented in Table VII. The short-term depen-
dence null is not rejected even at a 10% signifi-
cance level by the use of both the asymptotic
and the bootstrapped critical values of the test
statistic, for all the different q values used.

IIl The DM/GRD Exchange Rate

The statistical properties of the series are presented
in Table VIII showing, as in the previous cases,
deviation from the normal distribution. However,
in this case standard deviation of the series is lower,
while skewness and kurtosis are much more

pronounced. These structural differences are
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BP/GRD One day returns

2(a)

1.5

0.5

n=870
H=0.573 ""/"
/

(b) 1.6

1.4

0.8

0.6
00 2 3 4 2 3 4

Log(n) Log(n)

FIGURE 4 R/S analysis of the BP/GRD daily returns (a) Hurst exponent estimation through the R/S statistic plot (b) Cycle-
length estimation through the V-statistic plot.

TABLE VI Hurst estimates and test of significance against two random alternatives of the daily BP/GRD
returns

A. R/S analysis results 4 < n < 870 4 < n < 1320
(Cycle length) (Total data length)

Hurst (H) exponent 0.573 0.571

B. Bootstrapping results 4 < n < 870 4 < n < 1320
(Cycle length) (Total data length)

B1. H0: H > HG (Gaussian random alternative)
Mean HG value 0.549 0.542
Significance level 19.6% 18.2%

B2. H0: H > HR (lid random alternative)
Mean Ha value 0.545 0.539
Significance level 14.6% 13.1%

TABLE VII The modified R/S statistic of the daily BP/GRD returns and bootstrapped
critical values of the test statistic

q Andrew’s N 1/4 N1/2 N 1/2

7 14 51

Vq-statistic 1.309 1.301 1.296 1.235
Bootstrapped critical values
Significance level
1.0% 1.875 1.853 1.837 1.788
2.5% 1.770 1.757 1.760 1.684
5.0% 1.672 1.652 1.647 1.603
10.0% 1.560 1.559 1.541 1.511

discernible in the time series plot in Fig. 5, where the
maximum value, as in the previous cases, corre-

sponds to the abrupt devaluation of drachma
mentioned before.

Both the partial autocorrelogram and
Schwartz’s information criterion indicate first

order autocorrelation, so an AR(1) specification is
employed to pre-filter the series.

R/S analysis is performed to the filtered series
and the log-log plot of the R/S statistic versus time
(N-days) and the semi-log plot of the V-statistic are
shown in Fig. 6(a) and (b), respectively. This time a
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TABLE VIII Statistical description of the DM/GRD daily return series

Sample size
Average
Median
Variance
Standard deviation
Minimum
Maximum

2659 Range
0.00023 Lower quartile
0.000108 Upper quartile
0.0000028 Skewness
0.001682 Standardized skewness

-0.02059 Kurtosis
0.067572 Standardized kurtosis

0.088162
-0.00016
0.00051

24.53
516.38
986.96

10388.60
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FIGURE 5 Time series plot of the daily returns for the DM/GRD exchange-rate.

DM/GRD One day returns
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FIGURE 6 R/S analysis of the DM/GRD AR(1)-filtered daily returns (a) Hurst exponent estimation through the R/S statistic
plot (b) Cycle-length estimation through the V-statistic plot.
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much shorter cycle of 330 trading days is clearly
discernible with a Hurst estimate of H=0.639.
Bootstrapping results in Table IX show that this
estimate is highly significant (at 1% significance
level), compared to both the Gaussian and iid
random nulls. The third column in Table IX
presents the Hurst estimate for the remaining data
length i.e. the slope of the R/S curve in Fig. 6(a)
after the break point. The estimated Hurst expo-
nent drops to H=0.535 and as bootstrapping
results show, it cannot be distinguished from
the Hurst estimate of a random process either
Gaussian or iid. So, after the 330-day cycle the
process becomes (the slope crosses over to) a

random walk.
When the modified R/S statistic is applied, the

long-term dependence alternative is not ruled out

especially when the bootstrapped critical values
are used. As Table X shows, the null of short-term
dependence is not rejected (at the conventional
significance levels) only when q=n1/2 and the

asymptotic critical values are used to assess the
significance of the Vq statistic.
The remaining step is to investigate whether the

cycle that has been found is a true non-periodic
cycle compatible with a noisy chaos explanation or

a stochastic boundary due to data size compatible
with fractional Brownian motion with finite mem-
ory. A cycle independent of the sample size is a clear
indication towards the first alternative [47]. So, R/S
analysis is performed to 5-day and 20-day returns

produced from our daily data. Both series were not
pre-filtered since no autocorrelation was found.

Figures 7(a), (b) and 8(a), (b) display that 5-day
returns and 20-day returns exhibit clear cycles of
approximately 65 and 15 observations respectively,
both equivalent to the 330 one-day cycle.
As expected from non-white noise data, the H

exponents corresponding to the above cycles (see
Table XI) are increasing with longer sampling
intervals, due to the less noisy character of lower
frequency data. These cycles are not artifacts since

TABLE IX Hurst estimates and test of significance against two random alternatives of the daily DM/GRD
returns

A. R/S analysis results

Hurst (H) exponent

B. Bootstrapping results

B1. H0: H > Ho (Gaussian random alternative)
Mean Ho value
Significance level

B2. Ho: H > HR (iid random alternative)
Mean HR value
Significance level

4<n < 330 330<n< 1320
(Cycle length) (Remaining data length)

0.639 0.535

4<n < 330 330 <n < 1320
(Cycle length) (Remaining data length)

0.562 0.510
0.1% 40.4%

0.552 0.500
0.1% 38.7%

TABLE X The modified R/S statistic of the daily DM/GRD returns and bootstrapped critical
values of the test statistic

q Andrew’s N1/4 N1/3 N1/2

5 7 14 51

Vq-statistic 1.884 1.861 1.757 1.550
Level of significance (asymptotic values) 2.5% 2.5% 5% > 10%
Level of significance (bootstrapped values) 1% 1% 2.5% 5%

Bootstrapped critical values
Significance level
1.0% 1.755 1.730 1.743 1.680
2.5% 1.672 1.648 1.625 1.602
5.0% 1.541 1.550 1.528 1.505
10.0% 1.443 1.447 1.445 1.411
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DM/GRD Five day returns
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FIGURE 7 R/S analysis of the DM/GRD five-day returns (a) Hurst exponent estimation through the R/S statistic plot (b)
Cycle-length estimation through the V-statistic plot.

DM/GRD- Twenty day returns
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FIGURE 8 R/S analysis of the DM/GRD twenty-day returns (a) Hurst exponent estimation through the R/S statistic plot (b)
Cycle-length estimation through the V-statistic plot.

TABLE XI Hurst estimates and test of significance against the iid random alternative of the five-day and 20-day
DM/GRD returns

5-day series 20-day series

A. R/S analysis results 4 < n < 65 65 < n < 252 4 < n < 16 16 < n < 60
Hurst (H) exponent 0.664 0.574 0.786 0.565

B. Bootstrapping results 4 < n < 65 65 < n < 252 4 < n < 16 16 < n < 60

B1. Ho: H > Ha (lid random alternative)
Mean Ha value 0.587 0.519 0.633 0.549
Significance level 0.3% 28.7% 0.2% 43.3%

the H exponents corresponding to them are highly
significant at 1% significance level as Table X!
presents. In addition, as in the case of one-day
changes, in both the above cases the log/log plot

crosses over to a random walk since the H
exponents corresponding to the data length after
the cycle are not significantly different than those
from bootstrapped random shuffles.
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IV The FF/GRD Exchange Rate

The statistical properties of the series presented in
Table XII, as well as, the time series plot in Fig. 9,
show a close resemblance to the DM/GRD series.

Unlike the DM series no pre-filtering was

necessary due to the lack of any significant
autocorrelation. However, when R/S analysis was

applied, the same 330-trading day cycle appears
(see Fig. 10(a) and (b)) with a slightly lower H
estimate of 0.610, significant at 1% significance
level, as bootstrapping results in Table XIII show.
After the cycle (330 < n < 1320), the series
becomes a random walk, as in the DM case.

The modified R/S statistic’s results are more

intriguing in this case. As Table XIV shows, Vq
values are lower and marginally significant for
low q values when the asymptotic critical values
are used. Yet, significance is increased (long-term
dependence is not rejected) when the bootstrapped
critical values are considered.
The final step is to distinguish between the fractal

noise and noisy chaos alternatives. Figures l(a),
(b) and 12(a), (b) show that 5-day and 20-day FF
changes exhibit clear cycles of 68 and 15 observa-
tions respectively, both approximately equivalent
to the 330 one-day cycle.

TABLE XII Statistical description of the FF/GRD daily return series

Sample size
Average
Median
Variance
Standard deviation
Minimum
Maximum

2659 Range 0.080023
0.00021 Lower quartile -0.00023
0.000137 Upper quartile 0.00056
0.0000026 Skewness 27.41
0.001617 Standardized skewness 577.06

-0.01241 Kurtosis 1140.01
0.067613 Standardized kurtosis 11999.47
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FIGURE 9 Time series plot of the daily returns for the FF/GRD exchange-rate.
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FF/GRD One day returns
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FIGURE 10 R/S analysis of the FF/GRD daily returns (a) Hurst exponent estimation through the R/S statistic plot (b) Cycle-
length estimation through the V-statistic plot.

TABLE XIII Hurst estimates and test of significance against two random alternatives of the daily
FF/GRD returns

A. R/S analysis results 4 < n < 330 330 < n < 1320
(Cycle length) (Remaining data length)

Hurst (H) exponent 0.610 0.518

B. Bootstrapping results 4 < n < 330 330 < n < 1320
(Cycle length) (Remaining data length)

B1. H0: H> HG (Gaussian random alternative)
Mean HG value 0.562 0.503
Significance level 1.5% 41.6%

B2. H0: H > Ha (lid random alternative)
Mean Ha value 0.555 0.500
Significance level 0.6% 40.0%

TABLE XIV The modified R/S statistic of the daily FF/GRD returns and bootstrapped critical values of
the test statistic

q Andrew’s N 1/4 N 1/3 N1/2
3 7 14 51

Vq-statistic 1.662 1.62 1.53 1.36
Level of significance (asymptotic values) 10% 10% > 10% > 10%
Level of significance (bootstrapped values) 2.5% 5% 10% > 10%

Bootstrapped critical values
Significance level
1.0% 1.779 1.788 1.701 1.695
2.5% 1.653 1.644 1.639 1.584
5.0% 1.570 1.568 1.559 1.519
10.0% 1.462 1.457 1.445 1.410

The H exponents corresponding the above cycles
shown in Table XV, are increasing with longer
sampling intervals and highly significant at 1%
significance level. Hence, as in the case of the DM
changes, a noisy chaos explanation seems possible.

6 CONCLUSIONS

The behavior of four major exchange rate curren-
cies, namely the USD, DM, FF and BP, against
Greek Drachma was examined to reveal the
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FIGURE ll R/S analysis of the FF/GRD five-day returns (a) Hurst exponent estimation through the R/S statistic plot (b)
Cycle-length estimation through the V-statistic plot.

FF/GRD Twenty-day returns
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FIGURE 12 R/S analysis of the FF/GRD twenty-day returns (a) Hurst exponent estimation through the R/S statistic plot (b)
Cycle-length estimation through the V-statistic plot.

TABLE XV Hurst estimates and test of significance against the iid random alternative of the five-day and 20-day
FF/GRD returns

5-day series 20-day series

A. R/S analysis results 4 < n < 66 66 < n < 252 4 < n < 15 15 < n < 60
Hurst (H) exponent 0.667 0.553 0.747 0.507

B. Bootstrapping results 4 < n < 66 66 < n < 252 4 < n < 15 15 < n < 60

B1. Ho: H > Ha (iid random alternative)
Mean Ha value 0.587 0.510 0.626 0.553
Significance level 0.6% 37% 0.1% 65%

possible existence of long-term dependence. Multi-
ple tests were employed on the time series samples
of these currencies and results were compared.
The basic statistical properties showed non-

normal skewness and leptokurtosis for the USD

and BP, while the DM and FF statistical distribu-
tion exhibited considerably larger skewness and
leptokurtic values.
The application of Rescaled Range and V-

statistics analysis on daily returns revealed evidence
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of cyclical patterns. These results were then tested
with bootstrapped methods and the modified R/S
test, through Monte Carlo simulations. We found
that the alleged cycles for the USD and the BP were
just statistical artifacts and not true cycles. On the
other hand, our simulation findings confirmed that
the cycles of approximately 330 days in length
discerned for the DM and FF series were clearly
true. Our results were highly significant compared
to both the Gaussian and iid random nulls.

Finally we investigated whether these cycles
found in DM and FF series were a result of noisy
chaos or a fractal noise product. The analysis was
repeated for 5-day and 20-day returns. The new
series exhibited clear cycles independent of the
sample size and equivalent to the 330 one-day cycle.
This results in favor of a noisy chaos explanation
over fractional Brownian motion.
An interesting thing to notice is the remarkable

similarity observed in the behavior of the series in
pairs. Both USD and BP on one hand have almost
the same statistical characteristics and Hurst
exponents, no apparent structure and the cycles
found were statistical artifacts. DM on the other
hand shows a very close resemblance to the FF, in
both the statistical structure and the true cyclical
patterns discerned, of 330 days length.

These results seek for further economic inter-
pretation. In the Greek economy exchange rate
policy has a very important role and is been
exercised by setting a target depreciation rate at
the beginning of each planning period in year-end
terms vs. the ECU. For the period under review,
this policy has provided for a dramatic devaluation
ofdrachma in 1985, shown by sharp peaks in all the
time series plots. Since then depreciation rates have
declined and at the end of the testing period annual
depreciation was less than 4% acting as an anti-
inflationary instrument in anticipation of the
drachma participation to the Exchange Rates
Mechanism (ERM). The point is that the policy
that has been followed provides for increased
degree of discipline for the drachma fluctuations
vs. all ECU participant currencies that include DM,
FF and BP. Hence, a more random behavior of the
GRD/USD exchange rate could be justified, as well

as, a more structured one for DM and FF. In this
context the behavior of the BP is intriguing.
A possible explanation in this case could lie with
the additional discipline imposed on the system due
to the participation of DM and FF to ERM. The
BP on the contrary has participated the ERM only
for a short period until its membership suspension
on the 16th of September 1992, a period too short to

provide for a disciplined behavior within the sample
period chosen.
The conclusion, therefore, is that the results

obtained are justifiable and the explanation lies
with the degree of discipline of behavior that
characterizes the fluctuations of each of the
currencies involved vs. GRD.

Finally, we should remark that the DM and FF
time series should be further investigated as to show
whether their behavior conforms with a chaotic
one. Since a noisy chaos explanation has been
supported by this research, tools from the non-
linear dynamics field should be used to verify the
existence of and to reveal chaotic characteristics in
these two series.
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