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Tensile stress-strain curve of metallic materials can be determined by the representative stress-strain curve from the spherical
indentation. Tabor empirically determined the stress constraint factor (stress CF), ψ, and strain constraint factor (strain CF), β, but
the choice of value for ψ and β is still under discussion. In this study, a new insight into the relationship between constraint factors
of stress and strain is analytically described based on the formation of Tabor’s equation. Experiment tests were performed to
evaluate these constraint factors. From the results, representative stress-strain curves using a proposed strain constraint factor can
fit better with nominal stress-strain curve than those using Tabor’s constraint factors.

1. Introduction

+e instrumented indentation technique consists of applying
load to the sample by means of an indenter of known ge-
ometry, while the applied load and the penetration depth of
the indenter are recorded simultaneously during a loading
and unloading cycle.+e load-penetration data can be used to
determine the mechanical properties of the material without
having to image the residual impression left on the material’s
surface. Consequently, this technique can be applied at dif-
ferent scales, from macro to nano. +e main mechanical
properties measured by this technique are Young’s modulus,
E, and hardness,H, by sharp indenter [1, 2].+ismethodology
could also measure material properties like yield stress, creep
property, and fracture [3–6]. However, these properties are
not sufficient to characterize a material. +e present work
focuses on the methodology to determine the stress-strain
curve of metallic materials by the depth-sensing indentation
technique using a spherical indenter. Sharp indenters like
Berkovich or Vicker are characterized by inducing a constant
strain on the indented materials. +is deformation depends

on the indenter angle. Consequently, if the complete stress-
strain curve is needed, the sharp indenters are not the best
option because they would give only a point of such curve.
+is is the reason why the interest for the spherical indenter
has been recently grown. +e experimental curve from
spherical indenter provides more information, as this type of
indenter has a smooth transition from elastic to elastic-plastic
contact [7].

+ere were many methodologies for the extraction of
flow stress with the spherical indentation technique. One
category belongs to mathematical and numerical methods
(e.g., dimensionless method and artificial neural network
(ANN)). After running many finite element models within
certain range of material properties, the indentation curves,
contact stiffness, or the work of loading-unloading is ob-
tained, which are verified by corresponding experimental
indentation and establish a relation between the indentation
characteristics and material properties [8–15]. However,
these methods consume great computational effort. +e
unique solution of these methods is still under discussion
[16, 17]. Moreover, the contamination in the experimental
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process like deficient indenter tip, roughness of specimen, or
intrinsic noise of instrument machine is not considered in
these methods.

Another category is to determine the material parameters
from spherical indentation by defining the representative
strain and stress. Regarding the experimental measurements,
these methods are more convenient and can be used directly.
Following the work of Meyer [18], Tabor defined the repre-
sentative indentation strain, εr, at contact edge of the spherical
indenter as εr � 0.2(a/R), where the values of ψ and β
empirically were determined as 2.8 and 0.2, respectively,
based on the quantity of tensile tests on common metals [19].
Most of the researchers agreed with Tabor’s indentation strain
but emerge with the controversy on the choice of values of ψ
and β [5, 20–25]. Richmond et al. [21] predicted that themean
pressure was approximately equal to 3 times the yield stress
and that the representative strain was approximately equal to
0.32 times the impression to ball diameter ratio. Herbert et al.
[23] had used higher stress constraint factor of 3.7 to obtain
the representative stress-strain curve for Al 6061-T6 by
spherical indentation with a radius of 385 nm. Based on the
work of Matthews [22], Tirupataiah and Sundararajan [26]
derived an expression for the indentation stress factor, ψ,
which was related with hardening exponent, n. Similarly,
Yetna N’Jock et al. [27] determined the tensile property by
spherical indentation by simply using the expression of mean
pressure to stress ratio as a function of hardening exponent
which was derived from the FEM works of Taljat et al. [28].
Using the representative strain under spherical indentation,
Ahn and Kwon [29] developed a shear strain definition by
differentiating the displacement in the depth direction, in
which the ratio of mean pressure to representative stress was
equal to 3 in the fully plastic period by conducting instru-
mented spherical indentation on the steel specimen. By
carrying out extensive forward analyses in FEM, Xu and Chen
[24] using the indentation strain by Ahn and Kwon [29]
found the indentation stress constraint factors, ψ, depended
almost linearly on hardening exponent, n. Additionally, the
corresponding indentation strain constraint factor β depen-
ded on both n and the ratio of Young’s modulus to yield
stress. Milman et al. [30] assumed that the fully plastic zone
beneath indenter was incompressible and proposed a new
representative strain which was related with contact radius
and contact depth. Fu et al. [31] used the Milman repre-
sentative strain [30] and proposed a novel iterative process to
determine the tensile stress-strain curve. Recently, Kalidindi
et al. [32, 33] argued that the definition of indentation strain as
a/R lacks any physical interpretation as ameasure of strain and
proposed a new definition of the indentation strain con-
sistent with the Hertz theory, which was evaluated from
several FEM simulations as well as from the analysis of
experimental measurements.

From the literature, there is not uniform agreement
among investigations concerning the representative stress
and strain equations and also the values for the factors
involved in the expressions. +e main purpose of the
present investigation is to systematically study Tabor’s
indentation strain and propose the possibility to develop an
analytical procedure to extract the stress-strain curve using

experimental data from spherical indentations, which
would be comparable to that obtained from a uniaxial test
(i.e., tensile test).

2. Theoretical Background

2.1. 4e Analytical Relationship between Stress and Strain
Factors. In 1908, Meyer had found that for many materials,
the mean pressure increased with a/R according to the
simple power law [18]

pm � k
a

R
􏼒 􏼓

m

, (1)

in which pm is the mean pressure, a/R is the ratio of
indentation radius to the ball radius, and m is the Meyer
index.

In (1), k and m are constants. +e Meyer equation was
verified by further experimental studies [19, 34], and they
suggested that the Meyer index, m, was related with the
hardening exponent, n. Following Meyer’s work, Tabor had
proposed the concept of representative strain or stress, by
which the mean pressure in Meyer’s equation and the a/R
ratio can be converted into the true stress-strain curve. He
assumed that the mean pressure, pm, at the fully plastic
regime was proportional to the representative stress, σr, and
the impression radius was proportional to the corresponding
representative strain, εr. Consequently, the representative
stress and strain can be expressed as [19]

εr � β
a

R
,

σr �
F

ψπa2,

(2)

where β is the indentation strain constraint factor, a is the
contact radius, R is the radius of the indenter, ψ is the in-
dentation stress constraint factor, and F is the indentation
load.

Tabor determined the parameters β and ψ from em-
pirically experimental data from spherical indentations
under the fully plasticity regime. Generally, the indentation
strain constraint factor β is considered to be equal to 0.2, and
the indentation stress constraint factor ψ ranges from 2.8 to
3.2 [35]. It should be emphasized that the representative
strain and stress defined by Tabor are an average value of the
stress and strain states induced inside the material [36, 37].
+e stress and strain constraint factors allow us to establish
equivalence between the stress-strain indentation curve and
the corresponding one obtained from a uniaxial test. +e
true stress-strain curve from uniaxial tensile or compression
test can be expressed as

σ � Eε for σ ≤ σy elastic regime, (3)

σ � Kεn for σ ≥ σy Hollomon’s equation for plastic regime,

(4)

where E is the elastic modulus, σy is the yield’ stress, K is the
strength coefficient, and n is the strain-hardening exponent.
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Substituting (2) into the Hollomon equation:
F

ψπa2
� K β

a

R
( )[ ]

n

, (5)

which represents the relationship between load, F, and the
ratio of contact radius to indenter radius according to the
power law at the fully plastic regime. Transforming (5) into
the natural logarithm as

ln F � ln
Kπψβn

Rn
[ ] +(n + 2) ln a. (6)

According to Hertz equation under the elastic regime,
the loading and contact radius can be expressed as

F �
4Er
3R
a3, (7)

where 1/Er � (1− ]2/E) + (1− ]2i /Ei), E, ] and Ei and ]i are
Young’s modulus and Poisson’s ratio for the bulk material to
be measured and for the indenter, respectively.

Transforming (7) into the natural logarithm

lnF � ln
4Er
3R
[ ] + 3ln a. (8)

Most metals have an n value between 0.10 and 0.50,
plotting (6) and (8) in the ln a versus ln F coordinate, as
shown in Figure 1. Inversely extending the two lines, there
should be an intersectional point “e” for di�erent linear
slopes.

�erefore, the representative strain and stress at the
point “e” can be expressed as

εr � Eβ
ae
R
( ), (9)

σr �
Fe

ψπaee
. (10)

Combining (9) and (10), we can obtain

ψ ∗ β �
R

πE
·
Fe
a3e
. (11)

Comparing (10) with Hertz equation in (7), we can obtain

ϕ � ψ ∗ β �
4
3π

·
Er
E
. (12)

In (12), the product, ϕ, of stress constraint factor ψ
and strain constraint factor β is constant, which is dependent
on the ratio of reduced Young’s modulus Er to Young’s
modulus E. According to (12), the constraint factors can be
determined if one of them is known.

It should be noted that Tabor’s representative method is
restricted within the fully plastic regime. In this study, the
procedure assumes that elastic-plastic transition is negligi-
ble, and the relationship between stress and strain con-
straint factors is a�rmed from Hertz’s theory. In Kalidindi
et al.’s [32, 33] work, they utilized indentation strain derived
from the Hertz theory for extracting the full stress-strain
curve of metallic materials. Similarly, we utilize the Hertz
equation to study the relationship between the stress and
strain constraint factors to extract the stress-strain curve
based on Tabor’s representative method. For the soft metallic
materials with high E/σy which has very short elastic-
plastic transition, the intersection point “e” can be con-
sidered as a simplistic interpretation of the elastic-plastic
transition regime. Especially, in experimental practice, when
performing the nanoindentation test on the soft metallic

ln F

ln Fe

e

ln F = ln[4Er/3R] + 3ln a

ln F = ln[Kπψβn/Rn] + (n + 2)ln a

ln ae

ln a

Figure 1: Equations (6) and (8) are in the same ln a-ln F coordinate, and “e” is the intersectional point.

Table 1: Mechanical properties of steel F114, brass, and Al alloy.

Materials E (GPa) Yield stress
(MPa)

Hardening
exponent n

Hardening exponent
n determined by indentation

Grain size
(µm)

Steel F114 210 820 0.26 0.20 15
Brass alloy 100 320 0.15 0.19 20
Al alloy 70 220 0.1 0.15 10
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Aa 1 = 59.2°

EHT = 5.00 kV
WD = 12.9 mm

Signal A = SE2
Mag = 7.50 K X

2 µm∗
Conical-01

Da 1

Aa R1

+

Aa 1

Da 1 = 18.44 µm
Db 1 = 267.1 µm2

Figure 2: Scanning electron microscope image of a worn diamond conical-spherical indenter.
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Figure 3:�e load versus penetration depth curves for the three indentedmaterials performedwith spherical tip. (a) Al-1050, (b) brass, and (c) steel.
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materials, the penetration depth is very shallow to turn into
the fully plastic regime. Consequently, this assumption is
reasonable only for certain soft metallic materials. �e ex-
perimental veri�cation will be discussed later.

In Tabor’s equation, the value of stress constraint factor
is selected as 3 for common engineering metals in literature
[5, 31, 38]. However, there are few studies on the analytical
solution for the stress constraint factor. �e indentation
pressure is found to be proportional to the yield strength of
thematerial by the constraint factor,C.�emagnitude of the
constraint factor has been found to be depended on the
material properties, particularly on the ratio of the modulus
to the yield stress. For most metals, E/σy> 100, and the
constraint factor is approximately equal to 3 (C≈ 3) [19]. For
polymers, the ratio of E/σy< 10 and the constraint factor is
less than 3 [39]. An approach to large strain plasticity
problems in which the material is considered to behave in
a plastic-elastic fashion, instead of as a plastic-rigid body, is
applied to the axisymmetric blunt indenter. �e ratio of the
mean stress on the punch face to the uniaxial �ow stress of
the material (constraint factor C) is found to be 2.82 for an
extensive specimen. However, it is shown that a small part of
the punch face is elastically loaded, and if the loaded punch
area is assumed to be equal to the size of the plastic im-
pression, then the constraint factor to be used is 3 instead of
2.82. �is is the value to be used in interpreting the ordinary
Brinell test[40]. Additionally, Shield found the exact solution
for the axisymmetric �at punch. He found a maximum
pressure under the punch of 2.8σy at the centre [41]. Von
Mises yield conditions are more representative of engi-
neering materials than Tresca. Although the slip line �eld
theory can be applied to both types of yield conditions,
Tresca is generally selected as it leads to a simpler equation
that can be solved analytically. However, Von Mises yield
can give up to 15.5% higher limit load value than Tresca,
which would lead to C� 3.2 [42]. Unlike the punch indenter,
where the contact area is constant, the spherical one o�ers
a gradual transition of the contact area. It could be assumed
that the spherical indenter is corresponding to a punch
indenter at a given penetration depth. As a result, the value
of stress constraint factor is taken as 3.2, which is consistent
with the analytical solution by Shield [41]. As the product of
stress and strain constraint factors is constant, according to
(12), the strain constraint factor can be determined.

2.2. Estimation of Contact Radius. In order to calculate the
representative stress and strain, an accurate measurement of
the contact radius at de�ned indentation load would be
obtained. In the case of a �at punch indenter, Sneddon’s
analysis proposed an estimation expression of contact ra-
dius, a:

a � Su
2Er

, (13)

where Su is the contact sti�ness.
From Eq. (13), the contanct radius and Young’s modulus

can be extracted from the initial unloading slope [43].
According to (13), the contact radius could be determined

when reduced Young’s modulus and initial unloading slope
of the unloading are known. �e procedure to estimate the
contact radius is consistent with Kalidindi et al.’s [32, 33]
work.

3. Experimental Procedure

Depth-sensing indentation (DSI) tests were performed on
a Nanoindenter XP (Nanoinstruments Innovation Center,
MTS systems, TN, USA) by using the continuous sti�ness
measurement (CSM) methodology. A conical (angel 60°)
spherical diamond indenter with a tip radius of 10 µm was
selected. To verify the radius of the indenter, scanning
electron microscope was used to measure the radius of the
tip before the test. Continuous loading and unloading cycles
were conducted during the loading branch by imposing
a small dynamic oscillation of 2 nm and 45Hz on the dis-
placement signal and measuring the amplitude and phase of
the corresponding force [44, 45]. Consequently, the contact
sti�ness was continuously measured as a function of the
penetration depth during the experiment. A tip calibration
procedure was carried out using the fused silica in accor-
dance with the CSM methodology [46]. Prior to the in-
dentation tests, the samples were ground and polished in two
steps, using a mechanical polisher (Labopol-5, Struers,
Copenhagen, Denmark) and �nished with colloidal sus-
pension of silica of 0.05 µm. A total of 25 indentations were
performed in displacement control on three samples of
commercial metallic alloys: a carbon steel (F-114), a brass
alloy, and an aluminum alloy (Al-1050). �e penetration
depth was selected according to the grain size of indented
materials: 3000 nm for Al-1050 and brass and 2000 nm
for steel. �e average of these curves is selected to determine
the representative stress-strain curve by spherical indenta-
tion which can be comparable with the true stress-strain
curve by tensile tests [3]. Tensile tests were also conducted

Al-1050

Steel

Al-1050
Brass
Steel

ln a (m)

ln
 F

 (N
)

0

–15 –14 –13 –12

–3

–6
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ln F = 24.31 + 2.19 × ln a R = 0.999
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Linear fit of steel
Brass

Linear fit of Al-1050
Linear fit of brass

Figure 4: Linear regression of ln(F) versus ln(a) for the experi-
mental materials.
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on carbon steel (F-114), aluminum (Al-1050), and brass
alloy samples. �ey were performed on a universal testing
machine INSTRON 8501 with a 10 kN load cell at room
temperature under displacement control by using a dis-
placement rate of 0.5mm/min. Cylindrical specimens were
machined according to the ASTM E8 standard [47]. �e
gage length was 12.5mm for the samples.

4. Results and Discussion

In the tensile test, according to Hollomon’s equation, the
mechanical properties can be obtained from the stress-strain
curve. Young’s modulus, yield stress which is determined by
means of the 0.2% strain rule, and the hardening exponent
are shown in Table 1.

In order to check the radius of the spherical indenter, as
shown in Figure 2, the best �tting spherical radius is found to
be about 9.2 µm from SEM measurement which is smaller
than the nominal value. From the zoomed-in �gure, the
spherical indenter is worn at shallow penetration depth. In
addition, inherent noise of continuous sti�ness measure-
ment and the roughness of specimen could scatter the
representative stress-strain curve. Consequently, penetra-
tion depths less than 10 nm will not be utilized for the
extraction of representative stress-strain curve.

Figure 3 shows the load versus penetration depth
curves for the three indented materials performed with
spherical tip. �e indenter curves of brass exhibit con-
siderable scatter, as the diameter of the indenter is com-
parative to the grain size of brass listed in Table 1. On the
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Figure 5: Curve plots for the representative stress-strain curve, Tabor’s stress-strain curve, and the true stress-strain curve extracted from
the tensile test. (a) Steel, (b) brass, and (c) aluminum.
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contrary, the indenter curves of steel and Al-1050 are
much more reproducible for the multiple grain indents.
+e average of these curves is selected to determine the
representative stress-strain curve. +e procedure is con-
sistent with the previous work [3].

When Young’s modulus was confirmed by the tensile
test and the contact stiffness can be measured by CSM, the
contact radius can be estimated by Sneddon’s equation [48].
It should be noted that, when using (13) to estimate the
contact radius, Young’s modulus is assumed as a constant
during the indentation process [32, 49]. Tabor had con-
cluded that the slope of the linear regression is Meyer’s index
m which is equal to n+ 2, where n is the hardening exponent
in the Hollomon equation. Figure 4 shows the linear re-
gression of Log(F) versus Log(a) for the experimental ma-
terials. +e values of hardening exponent from the slope are
in good agreement with those obtained from the tensile
experiments in Table 1.

In order to check the reasonable determination of
constraint factors in Tabor’s equation, the tensile stress-
strain curves are compared with representative stress-strain
curves from a different constraint factor (CF): stress CF� 3.2
in this study and stress CF� 3 according to Tabor’s equation.
In the experimental analysis, the value of stress constraint
factor is taken as 3.2, and the strain constraint factor is
confirmed from (12). In order to verify the reasonability of
the confirmation of constraint factors from experimental
data, the representative stress-strain curve extracted from
this study will be compared with the curve extracted from
Tabor’s method.

Figure 5 shows the plots for the indentation stress-strain
curve using the constraint factors in the study, the in-
dentation stress-strain curve using the constraint factors in
Tabor’s equation, and the true stress-strain curve extracted
from the tensile test. +e values of E/σy for studied materials
range from 250 to 320. Although the initial part of the true
stress-strain curve and the representative stress-strain curves
shows little derivation between them, the representative
stress-strain curve using the constraint factors in the study
shows well agreement with the true stress-strain curve from
the tensile test in the fully plastic regime. In this study, the
product ϕ is attained from the intersection between the
elastic regime and the fully plastic regime, in which the effect
of the transition from the elastic to plastic regime is ignored.
+is assumption is only suitable for the soft metal which has
short transition of the elastic-plastic regime, and the fully
plastic regime is developed at shallow penetration depth. For
metals with longer transition of the elastic-plastic regime, it
can be seen that there is significant derivation in the initial
part of the representative stress-strain curve regarding the
true stress strain curve obtained from tensile test. As noted
in literature [32, 33, 50, 51], it is very difficult to make
a comparable stress-strain curve with the tensile test in the
elastic-plastic transition by Tabor’s representative method
for the metallic materials with low E/σy. +e FEM simula-
tions also showed that representative stress-strain from
Kalidindi’s equation led to large deviation for somematerials
with large transition of the elastic-plastic regime [52].
However, in the study, utilizing the proposed procedure to

determine the constraint factors could make a comparable
stress-strain curve in the fully plastic regime.

5. Conclusion

+e main conclusion in the paper can be summarized as
follows:

(1) In this study, a new insight into the constraint factors
in the formation of Tabor’s equation is analytically
described. +e product ϕ of strain constraint factor β
and stress constraint factor ψ is constant at the
transition position between the elastic regime and
fully plastic regime, which is related to Young’s
modulus of contact materials.

(2) An experimental procedure is performed to evaluate
the analytical analysis for extracting the represen-
tative stress-strain curve from the spherical in-
dentation. +e representative stress-strain curve
using the proposed constraint factors in the study
shows well agreement with the nominal true stress-
strain curve.

(3) Due to the drawback of the formation of Tabor’s
equation, the representative stress-strain curve de-
rived from the Tabor’s formation could have large
deviation at the initial strain period for the materials
with longer elastic-plastic transition. In future, for-
mation of new representative strain for spherical
indentation needs more study.

Nomenclature

pm: Mean pressure
a: Contact radius
R: Indenter radius
m: Meyer’s index
k: Coefficient in Meyer’s equation
εr: Representative strain
σr: Representative stress
β: Indentation strain constraint factor
ψ: Indentation stress constraint factor
E: Elastic modulus
σy: Yield stress
K: Strength coefficient in Hollomon’s equation
n: Strain-hardening exponent
]: Poisson’s ratio
ϕ: Product of stress constraint factor ψ and strain

constraint factor β
e: Elastic component.
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