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We discuss stochastic multi-item capacitated lot-sizing problems with and without setup carryovers (also known as link lot size),
S-MICLSP and S-MICLSP-L. The two models are motivated from a real-world steel enterprise. To overcome the nonlinearity
of the models, a piecewise linear approximation method is proposed. We develop a new fix-and-optimize (FO) approach to
solve the approximated models. Compared with the existing FO approach(es), our FO is based on the concept of “𝑘-degree-
connection” for decomposing the problems. Furthermore, we also propose an integrative approach combining our FO and variable
neighborhood search (FO-VNS), which can improve the solution quality of our FO approach by diversifying the search space.
Numerical experiments are performed on the instances following the nature of realistic steel products. Our approximation method
is shown to be efficient. The results also show that the proposed FO and FO-VNS approaches significantly outperform the recent
FO approaches, and the FO-VNS approaches can be more outstanding on the solution quality with moderate computational effort.

1. Introduction

The stochastic multi-item capacitated lot-sizing problem (S-
MICLSP) and its setup carryover extension (also known as
linked lot size extension, in [1], abbreviated to “-L” ), S-
MICLSP-L, are designed to map an industrial optimization
problem in a realistic steel enterprise. The problem setting
is as follows: there are several types of steel products. These
products differ in various attributes: chemical composition
(mixture), width, thickness, shape (bar, rod, tube, pipe, plate,
sheet, etc.), microstructure (ferritic, pearlitic, martensitic,
etc.), physical strength, and other attributes. Usually, each
type of steel products should be used for only one particular
purpose, and each purpose can be satisfied by one or several
steel products. Hence, in this steel enterprise, a typical
production schedule is made based on the need of one
particular purpose, rather than the need of one particular
customer.There are two categories of production scheduling,
solid scheduling and flexible scheduling, applied in different

factories in this steel enterprise. The solid one schedules all
types of products simultaneously with a high frequency of
restarting production states, while the flexible one schedules
parts of the types simultaneously with a low frequency of
restarting production states. All of the production schedules
are made before the whole planning horizon. The problems
with these settings can be suitably mapped to S-MICLSP and
S-MICLSP-L.

Both S-MICLSP and S-MICLSP-L are stochastic gener-
alizations of the capacitated lot-sizing problems (CLSP, see
[2]) and they consider backlogging and setup carryovers
jointly. The deterministic CLSPs with backlogging or setup
carryovers individually have been tackled by various models
in the literature. We refer the interested readers to [3, 4] for
the most recent review on CLSPs. For the lot-sizing prob-
lems considering backlogging and setup carryovers jointly,
models were treated in [5–7]. Their problem formulations
were similar to [8], who first solved problems with setup
carryovers. All of the above studies focused on how to
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solve the lot-sizing problems by designing heuristics. As the
authors highlighted, although there is a significant amount of
research literature on CLSPs, the literature on problems that
consider backlogging and setup carryover jointly is rather
scarce.

In this paper, we assume that demand is continuously
stochastic which can cover majority of demand environ-
ment. Due to the model uncertainty, approximationmethods
are applied to reformulate the lot-sizing models for per-
forming deterministic mixed integer programming (MIP)
in the literature. Haugen et al. [9] generated subproblems
for each scenario solved heuristically to capture the nature
of demand uncertainty and specify a reasonable number
of representative scenarios. Brandimarte [10] modeled the
demand uncertainty through generating scenario trees. They
made the generated scenario trees match the first, second,
third, and fourth moments of the given distribution. The
scenario method or scenario-generated method can also be
found in [11–14]. Almost all approximation methods for lot-
sizing problems are scenario methods. Nevertheless, Miet-
zner and Reger [15] stated the advantages and disadvantages
of scenario methods. One of the crucial disadvantages is as
follows: to capture more properties of the uncertainty, the
approximated models should ensure an adequate number of
scenarios, but the practice of scenario methods can be very
time-consuming. This leads to the contradiction between
computational time and approximation accuracy. In the
following part, we will propose our approximation method
to overcome this drawback.

Since the approximated models can perform determin-
istic MIP, the methods used for deterministic CLSP and its
extensions can be also applied to the approximated models.
Historically, exact methods (branch & bound technique,
Lagrangian relaxation, cut-generation technique, etc.) and
metaheuristics (genetic algorithm, particle swarm optimiza-
tion, tabu search, etc.) are adopted in the deterministic lot-
sizing models. We refer interested readers to [16] for further
review. Recently, MIP-based heuristics are developed to solve
lot-sizing models since they combine the advantages of exact
methods and (meta-)heuristics. An MIP-based heuristic
shown to be outstanding is called fix-and-optimize (FO)
approach,which is proposed by Sahling et al. [17].The authors
presented three types of decomposition method: product
decomposition, resource decomposition, and time periods
decomposition. Based on the work of [17], variants of FO are
developed by [18–20]. However, all of the variants follow the
decomposition framework of [17].

Although FO exhibits its efficiency and effectiveness in
the literature, it follows a prespecified trajectory and hence
it is a local search method. This may result in low solution
quality. To enhance the search space of FO approach, one
can apply variable neighborhood search (VNS) proposed by
[21]. VNS is a metaheuristic which involves two key steps.
The first key step is using a local search method to obtain
local optimum and the second is systematically changing
the neighborhood structure of each local search. Unlike
other metaheuristics, VNS does not follow a prespecified
trajectory but explores increasingly distant neighborhoods
of the current incumbent solution. Since VNS can enhance

the search space, many integrative frameworks with VNS
are proposed to solve lot-sizing problems. Hindi et al. [22]
proposed an integrative Lagrangian relaxation- (LR-) VNS
framework for the CLSP with setup times and got good
feasible solutions. Zhao et al. [23] and Seeanner et al. [24]
developed another type of VNS, the so-called variable neigh-
borhood decomposition search (VNDS) to solve multilevel
lot-sizing problems, and provided promising computational
results. All of the above studies throw light upon solving lot-
sizing problems by combining VNS.

Newly, Chen [25] proposed an excellent integrative
framework combining FO and VNS for deterministic lot-
sizing problems. Since our models have “many-to-one”
demand structure, his framework cannot be applied to our
models. However, motivated from his work, we propose our
FO and integrative FO-VNS for our stochastic lot-sizing
problems. Compared with the work of [25], our proposed
FO allows capacity-infeasible (overtime cost is not zero)
solutions and can be applied to “many-to-one” demand
structure, while he prohibited capacity-infeasible solutions
and his framework was only valid for one-to-one demand
structure.Thus,we apply the integrative framework tomodels
without setup carryovers, S-MICLSP, and successfully extend
it to our setup carryovers version, S-MICLSP-L, while Chen
[25] only applied his framework to models without setup
carryovers.

In this paper, we follow a similar analytical procedure
of solving stochastic lot-sizing problems to the reviewed
literature. However, despite the above, our paper demon-
strates other unique characteristics which distinguish from
the existing related literature as follows:

(1) Derived from realistic industrial problems, we for-
mulate S-MICLSP and S-MICLSP-L models consid-
ering backlogging, production overtime, and initial
inventory at the same time, which is much more
complicated than the existingmodels in the literature.

(2) Wepropose a piecewise linearmethod to approximate
S-MICLSP and S-MICLSP-L models. This method
is simple and easy-to-implement, providing a good
trade-off between computational time and approxi-
mation accuracy. This method overcomes the draw-
back of scenarios generating on the computational
end.

(3) A new FO approach is proposed for our approx-
imated models. Differing from the decomposition
framework of [17], this approach decomposes the
main problem based on the combined information of
products, resources, demands, and time periods.

(4) An integrative VNS heuristic which uses FO as the
local search engine is proposed to solve our approx-
imated models. This combined approach is running
on a specially designed neighborhood structure.

The outline of this paper is structured as follows: we for-
mulate our S-MICLSP and S-MICLSP-L models and propose
our piecewise linear approximationmethod in Section 2. Our
proposed FO approach and combinedmethod (FO-VNS) are
described in Sections 3 and 4. Numerical experiments of
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the two approaches on instances generated from a realistic
case are presented in Section 5. In Section 6, the concluding
remarks as well as discussions on future research are pro-
vided. The generating method is lengthy and is relegated to
Appendix.

2. Models Formulation and Approximation

In this section, we first formulate S-MICLSP and S-MICLSP-
L models. To overcome the nonlinearity and intractability of
the models, we then propose a piecewise linear approxima-
tion method to reformulate the models. These approximated
models are deterministic and hence can be tractably solved
by our following proposed algorithms.

2.1. Model Description. In ourmodels, demands have no one-
to-one correspondence to products. Demands can be satisfied
by multiple products and categorized into different classes by
the purposes.We can use the term “demand class” to describe
one demand for purpose. The term “demand class” can help
readers recognize the unique structure of demands in our
models. But to avoid ambiguity, we equate the term “demand”
to the term “demand class” and use “demand” mostly in
the context. For detailed description, we make additional
assumptions as follows:

(i) General capacitated lot-sizing problems assumptions:

(a) lot-sizing for multiple products
(b) finite time of planning horizon
(c) initial inventories
(d) capacitated production resource
(e) decision before planning horizon

(ii) Demands assumptions:

(a) continuously randomized on a known distri-
bution with a finite support, independent, and

identically distributed from period to period for
each demand (class)

(b) many-to-one structure: each product can only
satisfy one demand (class), while each demand
(class) can be satisfied by multiple products

(iii) Big-bucket assumption (see [26]):

(a) permit the production of multiple products
during a single period

(iv) Linked lot sizes assumption (see [1]):

(a) the setup state of a resource to be carried over
from the current period to the next period

(v) Other assumptions:

(a) overtime production and backlogging setting
are allowed, with high penalty costs.

(b) no lead times
(c) expected cost minimization objective
(d) continuous variables for lot sizes

Note that the overtime production is allowed since the
requirement of flexibility. This assumption is often used
in practice if no feasible production plan could be found
otherwise the following two facts: one is the production
capacity limits are frequently “soft” as machines could run
longer than the planned daily operating time, the other one
is the total volume of production could be increased slightly
if machines could run below their technical limits by default.

Using the symbols given in Notations, the S-MICLSP can
be formulated as given below.

min ∑
𝑡∈T

(∑
𝑖∈P

(𝑓𝑖𝑋𝑖𝑡 + 𝑝𝑖𝑄𝑖𝑡 + ℎ𝑖𝐸 [𝐼𝑖𝑡]) + ∑
𝑗∈D

𝑏𝑗𝐸 [𝐵𝑗𝑡] + ∑
𝑟∈R

oc𝑟𝑂𝑟𝑡) (1)

subject to constraints

𝐼𝑖𝑡 = 𝐼𝑖,𝑡−1 + 𝑄𝑖𝑡 − ∑
𝑗∈D𝑖

𝑆𝑖𝑗𝑡, 𝑖 ∈ P, 𝑡 = 1, . . . , 𝑇, (2)

𝐵𝑗𝑡 = [[∑𝑖∈P𝑗
𝑆𝑖𝑗𝑡𝑒𝑖𝑗 − 𝐷𝑗𝑡 − 𝐵𝑗,𝑡−1]]

−

,
𝐵𝑗0 = 0, 𝑗 ∈ D, 𝑡 = 1, . . . , 𝑇,

(3)

∑
𝑗∈D𝑖

𝑆𝑖𝑗𝑡 ⩽ 𝑄𝑖𝑡 + 𝐼𝑖,𝑡−1, 𝑖 ∈ P, 𝑡 = 1, . . . , 𝑇, (4)

∑
𝑖∈P𝑟

(𝑐𝑖𝑄𝑖𝑡 + st𝑖𝑋𝑖𝑡) ⩽ 𝑘𝑟 + 𝑂𝑟𝑡,
𝑟 ∈R, 𝑡 = 1, . . . , 𝑇,

(5)

𝑐𝑖𝑄𝑖𝑡 ⩽ 𝑚𝑖𝑋𝑖𝑡, 𝑖 ∈ P, 𝑡 = 1, . . . , 𝑇, (6)

𝑆𝑖𝑗𝑡, 𝑄𝑖𝑡, 𝑂𝑟𝑡 ⩾ 0,
𝑖 ∈ P, 𝑗 ∈ D𝑖, 𝑟 ∈R, 𝑡 = 1, . . . , 𝑇, (7)

𝑋𝑖𝑡 ∈ {0, 1} , 𝑖 ∈ P, 𝑡 = 1, . . . , 𝑇. (8)

The objective function (1) to beminimized is the sum of setup
costs, production costs, inventory holding costs, backlogging
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penalty costs, and overtime costs. Constraints (2) and (3)
are the inventory-balanced equations that each demand
(class) can be satisfied by multiple products. Additionally,
constraints (4) imply that the quantity of one product used
to fulfill one demand (class) should not exceed the sum
of inventory and production quantity. Constraints (5) give
the capacity constraint of each resource in each period with
overtime. Constraints (6) are the coupling constraints linking
each production variable 𝑄𝑖𝑡 with its corresponding setup
variables𝑋𝑖𝑡, where the choice of each large positive number𝑚𝑖must not limit any feasible production quantity of product𝑖 in period 𝑡. The coupling constraints imply that 𝑄𝑖𝑡 = 0 if

𝑋𝑖𝑡 = 0 for all 𝑖 and 𝑡. The nonnegative real or binary nature
of each variable in the model is indicated by constraints (7)
and (8).

The S-MICLSP-L allows the setup state of each resource
to be carried over from the current period to the next
period. To formulate the S-MICLSP-L, additional binary vari-
ables indicating setup carryovers and additional constraints
linking the setup state variables with the setup carryover
variables are required. We adopt the formulation of [27]
with overtime. Additional variables can also be found in
Notations. The S-MICLSP-L can be formulated as given
below.

min ∑
𝑡∈T

(∑
𝑖∈P

(𝑓𝑖 [𝑋𝑖𝑡 − 𝑍𝑖𝑡] + 𝑝𝑖𝑄𝑖𝑡 + ℎ𝑖𝐸 [𝐼𝑖𝑡]) + ∑
𝑗∈D

𝑏𝑗𝐸 [𝐵𝑗𝑡] + ∑
𝑟∈R

oc𝑟𝑂𝑟𝑡) (9)

subject to constraints (2)∼(4), (6)∼(8), and constraints

∑
𝑖∈P𝑟

(𝑐𝑖𝑄𝑖𝑡 + 𝑠𝑡𝑖 [𝑋𝑖𝑡 − 𝑍𝑖𝑡]) ⩽ 𝑘𝑟 + 𝑂𝑟𝑡,
𝑟 ∈R, 𝑡 = 1, . . . , 𝑇,

(10)

∑
𝑖∈P𝑟

𝑍𝑖𝑡 ⩽ 1, 𝑟 ∈R, 𝑡 = 1, . . . , 𝑇, (11)

𝑍𝑖𝑡 ⩽ 𝑋𝑖𝑡,
𝑍𝑖𝑡 ⩽ 𝑋𝑖,𝑡−1,

𝑖 ∈ P, 𝑡 = 1, . . . , 𝑇,
(12)

󵄨󵄨󵄨󵄨P𝑟󵄨󵄨󵄨󵄨 (2 − 𝑍𝑖𝑡 − 𝑍𝑖,𝑡+1) + 1 ⩾ ∑
𝑖󸀠∈P𝑟

𝑋𝑖󸀠𝑡,
𝑖 ∈ P𝑟, 𝑡 = 1, . . . , 𝑇,

(13)

𝑍𝑖𝑡 ∈ {0, 1} ,
𝑍𝑖1 = 0,

𝑖 ∈ P, 𝑡 = 1, . . . , 𝑇.
(14)

Constraints (10) are similar to constraints (5). Constraints (11)
imply that, in each period, the setup carryover of a resource
is possible only for at most one product. Constraints (12)
indicate that the setup carryover of a resource for product 𝑖
occurs in period 𝑡 only if the resource is set up for the item in
both periods 𝑡−1 and 𝑡. Constraints (13) indicatemultiperiod
setup carryovers. Constraints (14) specify the binary nature of
setup carryover variables.

2.2. Piecewise Linear Approximation. Both 𝐸[𝐼𝑖𝑡] and 𝐸[𝐵𝑗𝑡]
in S-MICLSP and S-MICLSP-Lmodels are nonlinear stochas-
tic functions. We have specified the continuous nature of
demand uncertainty. Thus it is intractable to solve these
models. We could apply scenario method to approximate the
models. However, we have discussed in Section 1 that the

computational efforts can be unacceptable and the precision
of approximation can be low. Fortunately, it is possible to
replace the functions of 𝐸[𝐼𝑖𝑡] and 𝐸[𝐵𝑗𝑡] by suitably chosen
piecewise linear functions. The functions of 𝐸[𝐼𝑖𝑡] and 𝐸[𝐵𝑗𝑡]
can be approximated as follows. Let 𝑞𝑗𝑡 denote the total
amount available to fill the cumulated demand 𝑗 from period1 to period 𝑡 (cumulated quantity produced up to period𝑡 plus initial inventory in period 1). Let 𝑦𝑗𝑡 denote the
cumulated demand from period 1 up to period 𝑡 and let 𝑓𝑦𝑗𝑡
denote the associated density function. Denote 𝐸[𝐼𝑗𝑡](𝑞𝑗𝑡) the
expected physical inventory on hand at the end of period 𝑡 for
demand 𝑗 corresponding to 𝑞𝑗𝑡. Then consequently 𝐸[𝐼𝑗𝑡](𝑞𝑗𝑡)
is equal to

𝐸 [𝐼𝑗𝑡](𝑞𝑗𝑡) = ∫
𝑞𝑗𝑡

0
(𝑞𝑗𝑡 − 𝑦𝑗𝑡) ⋅ 𝑓𝑦𝑗𝑡 (𝑦𝑗𝑡) d𝑦𝑗𝑡

= 𝑞𝑗𝑡 − 𝐸 [𝑦𝑗𝑡] + ∫∞
𝑞𝑗𝑡

(𝑦𝑗𝑡 − 𝑞𝑗𝑡)
⋅ 𝑓𝑦𝑗𝑡 (𝑦𝑗𝑡) d𝑦𝑗𝑡

= 𝑞𝑗𝑡 − 𝐸 [𝑦𝑗𝑡] + 𝑃𝑦𝑗𝑡 (𝑞𝑗𝑡) ,

(15)

where 𝑃𝑦𝑗𝑡(𝑞𝑗𝑡) is the well-known expected loss function or
the failure function of the random variable 𝑦𝑗𝑡 with respect
to the quantity 𝑞𝑗𝑡. Figure 1 illustrates the function 𝑃𝑦𝑗𝑡(𝑞𝑗𝑡).

A backlog of demand 𝑗 occurs at the end of period 𝑡, if
the cumulated demand up to period 𝑡, 𝑦𝑗𝑡, is greater than the
cumulated production quantity up to period 𝑡, 𝑞𝑗𝑡. Hence the
expected backlog of demand 𝑗 at the end of period 𝑡, denoted
by 𝐸[𝐼end𝑗𝑡 ](𝑞𝑗𝑡), is

𝐸 [𝐼end𝑗𝑡 ](𝑞𝑗𝑡) = ∫
∞

𝑞𝑗𝑡

(𝑦𝑗𝑡 − 𝑞𝑗𝑡) ⋅ 𝑓𝑦𝑗𝑡 (𝑦𝑗𝑡) d𝑦𝑗𝑡
= 𝑃𝑦𝑗𝑡 (𝑞𝑗𝑡) .

(16)

Consider the backlog just after production but before demand
occurrence in period 𝑡. This backlog cannot be affected by
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Figure 1: Illustration of piecewise linear approximation for 𝑃𝑦𝑗𝑡 (𝑞𝑗𝑡) with segments number 𝐿 = 3.
demand since demand does not occur. Hence the expected
backlog just after production but before demand occurrence
of demand 𝑗 corresponding to 𝑞𝑗𝑡 in period 𝑡, denoted by

𝐸[𝐼prod𝑗𝑡 ](𝑞𝑗𝑡), is
𝐸 [𝐼prod𝑗𝑡 ]

(𝑞𝑗𝑡)
= ∫∞
𝑞𝑗𝑡

(𝑦𝑗,𝑡−1 − 𝑞𝑗𝑡)
⋅ 𝑓𝑦𝑗,𝑡−1 (𝑦𝑗,𝑡−1) d𝑦𝑗,𝑡−1 = 𝑃𝑦𝑗,𝑡−1 (𝑞𝑗𝑡) .

(17)

The expected backlog number of demand 𝑗 in period 𝑡 can be
expressed as the difference between the backlog at the end of
period 𝑡 and the expected backlog just after production but
before demand occurrence of period 𝑡.

𝐸 [𝐵𝑗𝑡](𝑞𝑗𝑡) = 𝐸 [𝐼end𝑗𝑡 ] − 𝐸 [𝐼prod𝑗𝑡 ]
= 𝑃𝑦𝑗𝑡 (𝑞𝑗𝑡) − 𝑃𝑦𝑗,𝑡−1 (𝑞𝑗𝑡) .

(18)

Define 𝐿 line segments with interval limits 𝑢𝑙𝑗𝑡 for demand𝑗 that mark the cumulated production up to period 𝑡. Let𝑢0𝑗𝑡 be the lower limit of the relevant region for demand 𝑗.
Accordingly, the slope of the inventory on hand function for
the line segment 𝑙 is
𝑎𝑙𝐼𝑗𝑡 =

[𝐸 [𝐼𝑗𝑡](𝑢𝑙𝑗𝑡) − 𝐸 [𝐼𝑗𝑡](𝑢𝑙−1𝑗𝑡 )][𝑢𝑙𝑗𝑡 − 𝑢𝑙−1𝑗𝑡 ]
= [𝑢𝑙𝑗𝑡 − 𝐸 [𝑦𝑗𝑡] + 𝑃𝑦𝑗𝑡 (𝑢𝑙𝑗𝑡)] − [𝑢𝑙−1𝑗𝑡 − 𝐸 [𝑦𝑗𝑡] + 𝑃𝑦𝑗𝑡 (𝑢𝑙−1𝑗𝑡 )]𝑢𝑙𝑗𝑡 − 𝑢𝑙−1𝑗𝑡
= [𝑢𝑙𝑗𝑡 + 𝑃𝑦𝑗𝑡 (𝑢𝑙𝑗𝑡)] − [𝑢𝑙−1𝑗𝑡 + 𝑃𝑦𝑗𝑡 (𝑢𝑙−1𝑗𝑡 )]𝑢𝑙𝑗𝑡 − 𝑢𝑙−1𝑗𝑡 .

(19)

Similar to the above calculation, the nonlinear function of
backlogging in period 𝑡 can be approximated, whereby the
slope can be calculated as

𝑎𝑙𝐵𝑗𝑡
= [𝑃𝑦𝑗𝑡 (𝑢𝑙𝑗𝑡) − 𝑃𝑦𝑗,𝑡−1 (𝑢𝑙𝑗𝑡)] − [𝑃𝑦𝑗𝑡 (𝑢𝑙−1𝑗𝑡 ) − 𝑃𝑦𝑗,𝑡−1 (𝑢𝑙−1𝑗𝑡 )]𝑢𝑙𝑗𝑡 − 𝑢𝑙−1𝑗𝑡 . (20)

Both 𝑎𝑙𝐼𝑗𝑡 and 𝑎𝑙𝐵𝑗𝑡 are calculated from the function 𝑃𝑦𝑗𝑡(𝑞𝑗𝑡)
when 𝐿 segments are defined (see Figure 1). Once slope values
of expected inventories and backlogging can be found from
the distribution of the random variable 𝑦𝑗𝑡, 𝑗 ∈ D, 𝑡 ∈ T,
we can approximate the original model in the following. Let𝑤𝑙𝑖𝑗𝑡 be the production quantity of product 𝑖 for demand 𝑗
in period 𝑡 associated with interval 𝑙. As 𝑃𝑦𝑗𝑡(𝑥) is convex,∑𝑖∈P𝑗(𝑤𝑙𝑖𝑗𝑡/𝑒𝑖𝑗) ⩽ 𝑢𝑙𝑗𝑡 − 𝑢𝑙−1𝑗𝑡 should be satisfied. Also, 𝑞𝑖𝑗𝑡 =∑𝐿𝑙=1 𝑤𝑙𝑖𝑗𝑡 is the cumulated production quantity of product𝑖 for demand 𝑗 up to period 𝑡 and 𝑞𝑖𝑗𝑡 = 𝑞𝑖𝑗𝑡 − 𝑞𝑖𝑗,𝑡−1
(see Figure 1). Thus constraints (2)∼(4) can be rewritten. We
introduce the slope values into the model. Let 𝑎0𝐼𝑗𝑡 be the
expected inventory and 𝑎0𝐵𝑗𝑡 be the expected backlogging at
point 𝑢0𝑗𝑡. In that sense, the physical inventory of product 𝑖
in period 𝑡 can be approximated as 𝐸[𝐼𝑖𝑡] ≈ ∑𝑗∈D𝑖(𝑎0𝐼𝑗𝑡 +∑𝐿𝑙=1 𝑎𝑙𝐼𝑗𝑡𝑤𝑙𝑖𝑗𝑡), and the backlog number can be approximated
as 𝐸[𝐵𝑗𝑡] ≈ ∑𝑖∈P𝑗(𝑎0𝐵𝑗𝑡 +∑𝐿𝑙=1 𝑎𝑙𝐵𝑗𝑡(𝑤𝑙𝑖𝑗𝑡/𝑒𝑖𝑗)). All the additional
symbols in this section are listed in Notations. The following
linear approximated S-MICLSP is obtained:

min ∑
𝑡∈T

(∑
𝑖∈P

(𝑓𝑖𝑋𝑖𝑡 + 𝑝𝑖 ∑
𝑗∈D𝑖

𝑞𝑖𝑗𝑡) + ∑
𝑖∈P

ℎ𝑖
⋅ ∑
𝑗∈D𝑖

[𝑎0𝐼𝑗𝑡 +
𝐿∑
𝑙=1

𝑎𝑙𝐼𝑗𝑡𝑤𝑙𝑖𝑗𝑡]

+ ∑
𝑗∈D

𝑏𝑗 ⋅ ∑
𝑖∈P𝑗

[
[𝑎
0
𝐵𝑗𝑡
+ 𝐿∑
𝑙=1

𝑎𝑙𝐵𝑗𝑡 𝑤
𝑙
𝑖𝑗𝑡𝑒𝑖𝑗 ]] + ∑𝑟∈Roc𝑟𝑂𝑟𝑡)

(21)

subject to constraints (8) and constraints

𝐿∑
𝑙=1

𝑤𝑙𝑖𝑗,𝑡−1 ⩽ 𝐿∑
𝑙=1

𝑤𝑙𝑖𝑗𝑡, 𝑗 ∈ D, 𝑖 ∈ P𝑗, 𝑡 = 2, . . . , 𝑇, (22)

∑
𝑖∈P𝑗

𝑤𝑙𝑖𝑗𝑡𝑒𝑖𝑗 ⩽ 𝑢𝑙𝑗𝑡 − 𝑢𝑙−1𝑗𝑡 ,
𝑗 ∈ D, 𝑙 = 1, . . . , 𝐿, 𝑡 = 1, . . . , 𝑇,

(23)
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𝐿∑
𝑙=1

𝑤𝑙𝑖𝑗𝑡 − 𝐿∑
𝑙=1

𝑤𝑙𝑖𝑗,𝑡−1 = 𝑞𝑖𝑗𝑡,
𝑗 ∈ D, 𝑖 ∈ P𝑗, 𝑡 = 1, . . . , 𝑇,

(24)

∑
𝑖∈P𝑟

(𝑐𝑖 ∑
𝑗∈D𝑖

𝑞𝑖𝑗𝑡 + st𝑖𝑋𝑖𝑡) ⩽ 𝑘𝑟 + 𝑂𝑟𝑡,
𝑟 ∈R, 𝑡 = 1, . . . , 𝑇,

(25)

𝑐𝑖 ∑
𝑗∈D𝑖

𝑞𝑖𝑗𝑡 ⩽ 𝑚𝑖𝑋𝑖𝑡, 𝑖 ∈ P, 𝑡 = 1, . . . , 𝑇, (26)

𝑂𝑟𝑡, 𝑤𝑙𝑖𝑗𝑡 ⩾ 0,
𝑗 ∈ D, 𝑖 ∈ P𝑗, 𝑙 = 1, . . . , 𝐿, 𝑟 ∈R, 𝑡 = 1, . . . , 𝑇. (27)

Constraints (22)∼(24) are approximated constraints of (2)∼
(4) by piecewise linear approximation. Constraints (25)∼(27)
are similar to constraints (5)∼(7).

The linear approximated S-MICLSP-L is as follows:

min ∑
𝑡∈T

(∑
𝑖∈P

(𝑓𝑖 [𝑋𝑖𝑡 − 𝑍𝑖𝑡] + 𝑝𝑖 ∑
𝑗∈D𝑖

𝑞𝑖𝑗𝑡) + ∑
𝑖∈P

ℎ𝑖 ⋅ ∑
𝑗∈D𝑖

[𝑎0𝐼𝑗𝑡 +
𝐿∑
𝑙=1

𝑎𝑙𝐼𝑗𝑡𝑤𝑙𝑖𝑗𝑡] + ∑
𝑗∈D

𝑏𝑗 ⋅ ∑
𝑖∈P𝑗

[
[𝑎
0
𝐵𝑗𝑡
+ 𝐿∑
𝑙=1

𝑎𝑙𝐵𝑗𝑡 𝑤
𝑙
𝑖𝑗𝑡𝑒𝑖𝑗 ]] + ∑𝑟∈Roc𝑟𝑂𝑟𝑡) (28)

subject to constraints (22)∼(24), (26)∼(27), (8), and (11)∼(14)
and constraints

∑
𝑖∈P𝑟

(𝑐𝑖 ∑
𝑗∈D𝑖

𝑞𝑖𝑗𝑡 + st𝑖 (𝑋𝑖𝑡 − 𝑍𝑖𝑡)) ⩽ 𝑘𝑟 + 𝑂𝑟𝑡,
𝑟 ∈R, 𝑡 = 1, . . . , 𝑇.

(29)

Constraints (29) are similar to constraints (25).
Models (21) and (28) are both deterministic models;

hence these models can be tractably solved by our next
proposed algorithms.

3. New Fix-and-Optimize (FO) Approach

In the FO approach of [17], a series of MIP subproblems is
solved in each of which most of the binary setup variables are
tentatively fixed to 0 or 1. Only a subset of binary variables
of the original model is treated as decision variables and
“optimized” by a run of an MIP solver. MIP subproblems are
generated using three types of basic decompositions, product
decomposition, resource decomposition, and time periods
decomposition. The authors also proposed three more com-
bined decomposition methods: (1) product decomposition
first and then resource decomposition, (2) product decom-
position first and then time periods decomposition, and (3)
product decomposition first, then resource decomposition,
and finally time periods decomposition. Figure 2 exemplifies
the FO approach of product decomposition with 4 products.
In this section, we will propose our FO approach, which
differs from [17]. In the following, we first define the so-called
“𝑘-degree-connection” to combine the decision of resources,
products, demands, and time periods. Then the subproblems
of the fix-and-optimize approach can be redefined based on
the concept “𝑘-degree-connection” (as we have discussed
before, our models have “many-to-one” demand structure;
we need to state that, in the work of [25], a similar concept
“Interrelatedness” is defined; however, his concept is for
one-to-one demand structure and cannot be applied to our
models). Finally, we present our FO approach for both the S-
MICLSP and S-MICLSP-L models.

3.1. Definition of “𝑘-Degree-Connection”. In S-MICLSP, the
binary setup variables are closely connected to other decision
variables. We can infer from constraints (26) that if the
setup variable 𝑋𝑖𝑡 is set to be zero, no production can be
planned in this period. If the setup variable 𝑋𝑖𝑡 is set to be
one, the corresponding production 𝑞𝑖𝑗𝑡 can be made. If the
value of 𝑞𝑖𝑗𝑡 changes, the value of 𝑞𝑖,𝑗,𝑡−1 and 𝑞𝑖,𝑗,𝑡+1 may also
change due to constraints (24). The change of 𝑋𝑖𝑡 may also
cause the change of 𝑞𝑖󸀠 ,𝑗,𝑡, whereby D𝑖󸀠 = D𝑖 = 𝑗, due to
constraints (23). Similarly, the change of 𝑋𝑖𝑡 may also cause
the change of 𝑞𝑖󸀠󸀠 ,𝑗,𝑡, whereby 𝑖, 𝑖󸀠󸀠 ∈ P𝑟, 𝑟 ∈ R, due to
constraints (25).

First we define “1-degree-connection.” Let Ω̃ = {𝑋𝑖𝑡 | 𝑖 ∈
P, 𝑡 ∈ T} denote the set of all binary setup variables. We say
two setup variables 𝑋𝑖𝑡 ∈ Ω̃ and 𝑋𝑖󸀠𝑡󸀠 ∈ Ω̃ have “1-degree-
connection” or 𝑋𝑖𝑡 is “1-degree-connected” to 𝑋𝑖󸀠𝑡󸀠 if one of
the following conditions holds:

(1) Period time 𝑡 and period time 𝑡󸀠 are consecutive; that
is, 𝑖󸀠 = 𝑖 and 𝑡󸀠 ∈ {𝑡 − 1, 𝑡 + 1};

(2) Product 𝑖 and 𝑖󸀠 both satisfy demand 𝑗; that is, D𝑖󸀠 =
D𝑖 = 𝑗 and 𝑡󸀠 = 𝑡;

(3) Product 𝑖 and 𝑖󸀠 are produced by the same resource 𝑟;
that is, 𝑖, 𝑖󸀠 ∈ P𝑟 and 𝑡󸀠 = 𝑡;

then we can define the set of binary setup variables that are
“1-degree-connected” to𝑋𝑖𝑡, denoted by DC(𝑋𝑖𝑡), as follows:

DC (𝑋𝑖𝑡) = {𝑋𝑖,𝑡−1, 𝑋𝑖𝑡, 𝑋𝑖,𝑡+1}
∪ {𝑋𝑖󸀠𝑡 | D𝑖󸀠 = D𝑖 = 𝑗}
∪ {𝑋𝑖󸀠𝑡 | 𝑖, 𝑖󸀠 ∈ P𝑟} .

(30)

For any 𝑋𝑖𝑡 ∈ S ⊆ Ω̃, whereby S is a subset of all binary
setup variables Ω̃, the set of binary setup variables that are
“1-degree-connected” to S, denoted by DC(S), is given by

DC (S) = {{𝑋𝑖,𝑡−1, 𝑋𝑖𝑡, 𝑋𝑖,𝑡+1} ∪ {𝑋𝑖󸀠𝑡 | D𝑖󸀠 = D𝑖 = 𝑗}
∪ {𝑋𝑖󸀠𝑡 | 𝑖, 𝑖󸀠 ∈ P𝑟} | 𝑋𝑖𝑡 ∈ S} . (31)
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Figure 2: Example of fix-and-optimize with product decomposition.

(1) Set an initial feasible solution of the model,𝑋𝑖𝑡 = 1 for all 𝑖 and 𝑡
(2) 𝑖𝑡𝑒𝑟 = 0
(3) repeat
(4) 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1
(5) Choose a pair (𝑖, 𝑡) from (N ×T) randomly with the same probability for each element inN ×T

(6) Solve the subproblem SP𝑘𝑖𝑡: Fix DC
𝑘(𝑋) and re-optimized DC𝑘(𝑋).

(7) if the solution of SP𝑘𝑖𝑡,𝑋SP𝑘
𝑖𝑡
has lower costs than the current solution𝑋 then

(8) 𝑋 = 𝑋SP𝑘
𝑖𝑡

(9) 𝑖𝑡𝑒𝑟 = 0
(10) end if
(11) until 𝑖𝑡𝑒𝑟 ⩾ 𝑛

Algorithm 1: Fix-and-Optimize algorithm with parameters (𝑘, 𝑛).

Now we can continue to define “2-degree-connection” based
on “1-degree-connection.” We say two binary setup vari-
ables 𝑋𝑖𝑡 and 𝑋𝑖󸀠𝑡󸀠 have “2-degree-connection” or 𝑋𝑖𝑡 is “2-
degree-connected” to 𝑋𝑖󸀠𝑡󸀠 if there exists a setup variable𝑋𝑖1 ,𝑡1 ∈ Ω̃ such that both 𝑋𝑖𝑡 and 𝑋𝑖󸀠𝑡󸀠 are “1-degree-
connected” to 𝑋𝑖1 ,𝑡1 . Based on the previous definitions, “3-
degree-connection,” “4-degree-connection”,. . ., “𝑘-degree-
connection” can be defined by induction. Then the sets
DC2(𝑋𝑖𝑡), DC3(𝑋𝑖𝑡), . . . ,DC𝑘(𝑋𝑖𝑡) can be defined.

Similar to “1-degree-connection”, we can define the set
of binary setup variables that are “𝑘-degree-connected” toS,
denoted by DC(S), as follows:

DC𝑘 (S) = DC (DC𝑘−1 (S)) , 𝑘 ⩾ 1. (32)

Without ambiguity, we define “0-degree-connection” for
completeness as follows, if two binary setup variables𝑋𝑖𝑡 and 𝑋𝑖󸀠𝑡󸀠 are “0-degree-connected” or have “0-degree-
connection” if and only if 𝑖󸀠 = 𝑖 and 𝑡󸀠 = 𝑡. Hence, the
definition of “𝑘-degree-connection” is reflexive, transitive,
and symmetric.

3.2. New FO Approach for S-MICLSP. Note that our FO
approach solves a series of subproblems iteratively.The key to
defining subproblems of our FO approach is to clarify which𝑋𝑖𝑡 should be reoptimized and which 𝑋𝑖𝑡 should be fixed
in each iteration. In the following, we apply the concept of
“𝑘-degree-connection” to decompose S-MICLSP and define
subproblems of our FO approach. However, we also need
some complementary definitions of “𝑘-degree-connection.”

Recall the set of all binary setup variables, Ω̃ = {𝑋𝑖𝑡 | 𝑖 ∈
P, 𝑡 ∈ T}. For any binary setup variable, 𝑋𝑖𝑡 ∈ Ω̃, we define
the complement set of DC𝑘(𝑋𝑖𝑡) denoted by DC𝑘(𝑋𝑖𝑡) =Ω̃ \ DC𝑘(𝑋𝑖𝑡), which is the set of binary setup variables that
are not “𝑘-degree-connected” to𝑋𝑖𝑡.

The subproblems of level 𝑘 associated with 𝑋𝑖𝑡, denoted
by SP𝑘𝑖𝑡, are simple and are defined in the following: DC𝑘(𝑋𝑖𝑡)
is fixed and DC𝑘(𝑋𝑖𝑡) is reoptimized. In this definition, we
need to point out 𝑘 is a control parameter and the bigger the
level 𝑘 is, the more binary setup variables are reoptimized in
the corresponding subproblem SP𝑘𝑖𝑡. Due to this reason, we
limit the maximum number of 𝑘 to 3 for each subproblem
SP𝑘𝑖𝑡 in the following numerical experiments of Section 5.

To describe our FO approach, we denote 𝑋 = {𝑋𝑖𝑡, 𝑖 ∈
P, 𝑡 ∈ T} a setup plan or a setup solution of the model. Also,𝑋 is called the values of all setup variables at a solution of
the model. Note that our FO approach allows the capacity-
infeasible solutions in each loop of solving subproblems,
while Chen [25] only selected capacity-feasible solutions. We
present the pseudocode of our FO approach in Algorithm 1.

Note that, from the pseudocode of Algorithm 1, we only
choose a pair (𝑖, 𝑡) fromN ×T in each iteration. Hence, the
number of possible subproblems is 𝑁 × 𝑇, where 𝑁 is the
number of the items and 𝑇 is the number of periods. The
number of iterations, 𝑛, is another control parameter of the
approach. Since 𝑁 × 𝑇 may be very big and it may be too
time-consuming for the approach to terminate after 𝑁 × 𝑇
iterations, we need to take an appropriate 𝑛 that is equal to or
smaller than𝑁 × 𝑇 in the numerical simulation.
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3.3. New FO Approach for S-MICLSP-L. Before we propose
the new FO approach for S-MICLSP-L, we need to define the
“𝑘-degree-connection” of the setup carryover variables𝑍𝑖𝑡 in
a similar way and extend the scope of “𝑘-degree-connection”
of 𝑋𝑖𝑡. If 𝑍𝑖𝑡 changes, it may cause the change of the setup
carryover variable 𝑍𝑖󸀠𝑡, whereby D𝑖󸀠 = D𝑖 = 𝑗. The change
of 𝑍𝑖𝑡 can also cause the change of the consecutive setup
carryover variables 𝑍𝑖−1,𝑡 and 𝑍𝑖+1,𝑡 by the consecutive setup
carryover constraints. From the resource constraints, we can
infer that if 𝑍𝑖𝑡 changes, 𝑍𝑖󸀠𝑡 may change, whereby 𝑖, 𝑖󸀠 ∈ P𝑟.

An observation shows that 𝑍𝑖𝑡 is restricted by 𝑋𝑖𝑡.
Conversely, if 𝑍𝑖𝑡 changes, 𝑋𝑖𝑡 may change according to the
constraints of the model.The change of𝑍𝑖𝑡 can also influence𝑋𝑖󸀠 ,𝑡 and 𝑋𝑖󸀠 ,𝑡−1 whereby D𝑖󸀠 = D𝑖 = 𝑗 or 𝑖, 𝑖󸀠 ∈ P𝑟.
Now we can define DC𝑍(𝑍𝑖𝑡) (the subscript 𝑍 indicates the
approach for S-MICLSP-L), the set of binary variables that
are “1-degree-connected” to𝑍𝑖𝑡, or the set of binary variables
that have “1-degree-connection” with 𝑍𝑖𝑡 as follows:

DC𝑍 (𝑍𝑖𝑡) = {𝑍𝑖,𝑡−1, 𝑍𝑖𝑡, 𝑍𝑖,𝑡+1}
∪ {𝑍𝑖󸀠𝑡 | D𝑖󸀠 = D𝑖 = 𝑗}
∪ {𝑍𝑖󸀠𝑡 | 𝑖, 𝑖󸀠 ∈ P𝑟} ∪ {𝑋𝑖,𝑡−1, 𝑋𝑖𝑡}
∪ {𝑋𝑖󸀠 ,𝑡−1, 𝑋𝑖󸀠𝑡 | D𝑖󸀠 = D𝑖 = 𝑗}
∪ {𝑋𝑖󸀠 ,𝑡−1, 𝑋𝑖󸀠𝑡 | 𝑖, 𝑖󸀠 ∈ P𝑟} .

(33)

The definition of “𝑘-degree-connection” for 𝑍𝑖𝑡, DC𝑘𝑍(𝑍𝑖𝑡) is
similar. We say that 𝑍𝑖𝑡 and 𝑍𝑖󸀠𝑡󸀠 have “connection” or 𝑍𝑖𝑡 is
“connected” to 𝑍𝑖󸀠𝑡󸀠 if there is a finite integer 𝑘 ⩾ 1 such that
they are “𝑘-degree-connected.”

Respectively, we need to redefine DC(𝑋𝑖𝑡) (we use
another denotation DC𝑍(𝑋𝑖𝑡) for S-MICLSP-L), the set of
binary variables that is “1-degree-connected” to 𝑋𝑖𝑡, or the
set of binary variables that have “1-degree-connection” with𝑋𝑖𝑡 as follows:

DC𝑍 (𝑋𝑖𝑡) = {𝑋𝑖,𝑡−1, 𝑋𝑖𝑡, 𝑋𝑖,𝑡+1}
∪ {𝑋𝑖󸀠𝑡 | D𝑖󸀠 = D𝑖 = 𝑗}
∪ {𝑋𝑖󸀠𝑡 | 𝑖, 𝑖󸀠 ∈ P𝑟} ∪ {𝑍𝑖𝑡, 𝑍𝑖,𝑡+1}
∪ {𝑍𝑖󸀠𝑡, 𝑍𝑖󸀠 ,𝑡+1 | D𝑖󸀠 = D𝑖 = 𝑗}
∪ {𝑍𝑖󸀠𝑡, 𝑍𝑖󸀠 ,𝑡+1 | 𝑖, 𝑖󸀠 ∈ P𝑟} .

(34)

With the “1-degree-connection” of𝑋𝑖𝑡 defined above, we can
similarly derive the new definition of “𝑘-degree-connection”
for 𝑋𝑖𝑡 as previously described. Based on the new defini-
tion of “𝑘-degree-connection” for 𝑋𝑖𝑡, we can define the
subproblems for S-MICLSP-L, with defining the fix binary
variables set DC𝑍(𝑋𝑖𝑡) and the reoptimized binary variables
set DC𝑍(𝑋𝑖𝑡), for any binary setup variable𝑋𝑖𝑡 or pair (𝑖, 𝑡) ∈
N×T.The fix-and-optimize approach for S-MICLSP-L is the

same as S-MICLSP, except that their definitions of DC𝑍(𝑋𝑖𝑡)
and DC𝑍(𝑍𝑖𝑡) are different.
4. Integrative FO and Variable Neighborhood
Search (VNS) Approach

We have stated that FO is a local method in Section 1.
Since the structure of the feasible-solution set defined by
the concept “𝑘-degree-connection” can be relatively large,
the solution searched by the FO approach can only be a
local optimum in most cases. In order to find a global
optimum, or a solution close to the global optimum, Chen
[25] proposed an excellent framework which integrates FO
and VNS. In his paper, the integrative framework empha-
sized great performances comparing to his FO approach.
In this section, we partly adopt the framework and pro-
pose our integrative FO-VNS approach for the S-MICLSP
and S-MICLSP-L. The main novelty in contrast to [25] is
that our FO-VNS can be extended to models with setup
carryovers.

4.1. Integrative FO-VNS for S-MICLSP. To describe our FO-
VNS approach, we will use symbols as shown in Notations.
To integrate VNS with our FO approach, we need to pre-
define a finite set of neighborhood structures 𝐺𝑦(𝑋), 𝑦 =1, 2, . . . , 𝑦max, with 𝐺1(𝑋) ⊆ 𝐺2(𝑋) ⊆ ⋅ ⋅ ⋅ ⊆ 𝐺𝑦max

(𝑋), where𝑦 is the neighborhood index. 𝐺𝑦(𝑋) can be defined as (35),
where 𝑞𝑦 is an integer associated with neighborhood index 𝑦.
𝐺𝑦 (𝑋) = {𝑋𝑖𝑡, 𝑖 ∈ P, 𝑡
∈ T | 𝑁∑

𝑖=1

𝑇∑
𝑡=1

(𝑋𝑖𝑡 (1 − 𝑋𝑖𝑡) + 𝑋𝑖𝑡 (1 − 𝑋𝑖𝑡)) ⩽ 𝑞𝑦} .
(35)

We also define model S-MICLSP(𝑋, 𝑞𝑦, 𝑘), which is a linear
relaxation model allowing 0 ⩽ 𝑋𝑖𝑡 ⩽ 1 derived from the
original model by adding constraint (35) to it, where 𝑘 is
the subproblem level described in Section 3. In the FO-VNS
approach for S-MICLSP, we obtain the local optimum of S-
MICLSP(𝑋, 𝑞𝑦, 𝑘) by applying our proposed FO approach in
Section 3 as local search engine.

To enhance the search space, we need to shake the
starting solution generated by each local search loop. In
the shaking procedure, we apply our proposed FO approach
as the swapping generator. We define the swapping initial
solution 𝑋𝑖𝑡, which can possibly change from 𝑋𝑖𝑡 = 𝑋𝑖𝑡
to 𝑋𝑖𝑡 = 1 − 𝑋𝑖𝑡, and use 𝑋𝑖𝑡 to define the subproblems
of the FO generator. We also use a tabu list to keep the
diversity realized by all previous shaking. Our shaking pro-
cedure is similar to [25] except for the swapping generator.
With the above descriptions and notations, our FO-VNS
approach for the model can be presented in pseudocode (see
Algorithm 2).

4.2. Integrative FO-VNS for S-MICLSP-L. Due to the sophis-
ticated multilevel structure, Chen [25] did not present the
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(1) Set an initial feasible solution𝑋0 of the model
(2) 𝑋 =𝑋0,𝑋∗ =𝑋0, and 𝑦 = 1
(3) repeat
(4) (local search) Apply the new FO approach as local search engine to solve S-MICLSP(𝑋, 𝑞𝑦), with the neighborhood

constraint 𝐺𝑦(𝑋). Then𝑋󸀠 is obtained.
(5) if 𝑋󸀠 is better than the incumbent 𝑋∗ then
(6) 𝑋∗ =𝑋󸀠, 𝑋 =𝑋󸀠, and 𝑦 = 1
(7) else
(8) 𝑋 =𝑋∗, and 𝑦 = 𝑦 + 1
(9) if 𝑦 ⩾ 𝑦max then
(10) 𝑦 = 1
(11) end if
(12) end if
(13) (shaking) Use the new FO approach and the tabu list to generate a new starting solution 𝑋󸀠󸀠 from the current solution𝑋. If the solution𝑋󸀠󸀠 is better and does not exist in the tabu list, insert it into the list and let𝑋 = 𝑋󸀠󸀠.
(14) Check the current computation time CT.
(15) until CT ⩾ CTmax

Algorithm 2: FO-VNS for S-MICLSP.

integrative framework for models with setup carryovers.
However, in this paper, ourmodel is single-level and hencewe
can extend our integrative FO-VNS to S-MICLSP-L. Similar
to FO-VNS for S-MICLSP, the effective extension of FO-VNS
for S-MICLSP-L also has two main parts, local search and

shaking. Using symbols given in Notations, we now propose
the FO-VNS for S-MICLSP-L.

We denote 𝑋𝑍 = {𝑋𝑖𝑡, 𝑍𝑖𝑡} the setup and carryover plan.
To construct a local searching engine for S-MICLSP-L, we
first define the neighborhood structure of 𝐺𝑦𝑍(𝑋𝑍) as

𝐺𝑦𝑍 (𝑋𝑍) = {𝑋𝑖𝑡, 𝑍𝑖𝑡 |
𝑁∑
𝑖=1

𝑇∑
𝑡=1

[(𝑋𝑖𝑡 (1 − 𝑋𝑖𝑡) + 𝑋𝑖𝑡 (1 − 𝑋𝑖𝑡)) + 𝑋𝑖𝑡𝑋𝑖,𝑡−1𝑍𝑖𝑡 (1 − 𝑋𝑖𝑡𝑋𝑖,𝑡−1𝑍𝑖𝑡) + (𝑋𝑖𝑡𝑋𝑖,𝑡−1𝑍𝑖𝑡 (1 − 𝑋𝑖𝑡𝑋𝑖,𝑡−1𝑍𝑖𝑡))] ⩽ 𝑞𝑦𝑍} ;
(36)

then the linear relaxation S-MICLSP-L(𝑋𝑍, 𝑞𝑦𝑍 , 𝑘) can be
defined by adding the following constraint to the S-MICLSP-
L model where 0 ⩽ 𝑋𝑖𝑡 ⩽ 1, 0 ⩽ 𝑍𝑖𝑡 ⩽ 𝑋𝑖𝑡 and 0 ⩽ 𝑍𝑖𝑡 ⩽𝑋𝑖,𝑡−1. We predefine that𝑋𝑖,0 = 𝑋𝑖,0 = 1 for all 𝑖 ∈ P.

The swapping of the current setup and carryover plan𝑋𝑍
means that its value is possibly changed from 𝑋𝑖𝑡 = 𝑋𝑖𝑡 and𝑍𝑖𝑡 = 𝑍𝑖𝑡 to 𝑋𝑖𝑡 = 1 − 𝑋𝑖𝑡 and 𝑍𝑖𝑡 = 𝑋𝑖𝑡𝑋𝑖,𝑡−1(1 − 𝑍𝑖𝑡). The
tabu list contains the setup and carryover plans which will be
prevented from being selected by any future swap.

With the above statements, our FO-VNS approach for S-
MICLSP-L is similar as Algorithm 2 for S-MICLSP and we
neglect the pseudocode.

5. Numerical Experiments

In this section, we evaluate the performances of our proposed
FO and FO-VNS approaches.

5.1. Experimental Design. We generate problem instances
based on the attributes of real-world steel products. The

developed instance generator is documented in Appendix,
as well as the instance settings. The experimental design
structure is as follows: we generate 100 instances with 10
products, 5 demands (or demand classes), 5 resources, and50 periods. Both S-MICLSP and S-MICLSP-L are tested on
the same instances.

All algorithms are coded in C++ in the environment of
Microsoft Visual Studio 2012, and all instances are tested
on a PC with Intel Core-i5 3.20GHz CPU, 4GB RAM. We
compare our approaches with the fix-and-optimize approach
of [17]. All LP and MIP subproblems involved are solved by
calling theMIP solver of ILOGCPLEX 12.7. All problems and
subproblems use a relativeMIP gap tolerance of 10−4; the time
for ILOG CPLEX 12.7 to solve each subproblem is limited to
2 s for S-MICLSP and 4 s for S-MICLSP-L.

As the results depend on the number of line segments
used in the approximated models (see (21) and (28) in
Section 2.2) as well as the computational times, we solved
each of the 100 problem instances with 5, 10, and 15 line
segments. The numerical experiment shows that 10 line
segments provide a good compromise between accuracy and
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Table 1: Algorithm variants.

Algorithm Decomposition order Maximum subproblems 𝑛 Decomposition level 𝑘
FO1-P P — —
FO1-R R — —
FO1-T T — —
FO1-PR P→ R — —
FO1-PT P→ T — —
FO1-PRT P→ R→ T — —
FO2-𝑛1-L1 — 𝑁 × 𝑇 1
FO2-𝑛1-L2 — 𝑁 × 𝑇 2
FO2-𝑛1-L3 — 𝑁 × 𝑇 3
FO2-𝑛2-L1 — 0.5 × 𝑁 × 𝑇 1
FO2-𝑛2-L2 — 0.5 × 𝑁 × 𝑇 2
FO2-𝑛2-L3 — 0.5 × 𝑁 × 𝑇 3
FO2-𝑛3-L1 — 0.25 × 𝑁 × 𝑇 1
FO2-𝑛3-L2 — 0.25 × 𝑁 × 𝑇 2
FO2-𝑛3-L3 — 0.25 × 𝑁 × 𝑇 3
FO-VNS-L1 — — 1
FO-VNS-L2 — — 2
FO-VNS-L3 — — 3
CPXstd — — —
CPX30std — — —

computational times.Hencewewill choose 10 as the segments
number in all other tests and comparisons.

Table 1 lists the algorithm variants compared in the
computational experiments. We describe Table 1 in the
following four aspects. (1) FO1 is referred to the fix-and-
optimize approach proposed by [17], in which they presented
three decomposition methods. They defined the subprob-
lems, respectively, by product-, resource-, and time period-
oriented decomposition (we refer to P-type, R-type, and T-
type decomposition for short in the context). Further, they
combined the three decomposition types and presented three
more variants: P-type first and then R-type, P-type first and
then T-type, and P-type first and then R-type ending with T-
type. (2) FO2 is referred to our newly proposed FO approach,
in which each variant is entitled with FO2-𝑛-L𝑘. Recall that𝑛 is the control parameter of FO2 introduced in Section 3,
and FO2 terminates if 𝑛 subproblems are consecutively solved
without improvement; that is, at most 𝑛 subproblems are
solved in each iteration. Otherwise, the solution of one
subproblem is better than the current best solution of the
main problem, and FO2 will proceed to a new iteration after
the update of the best solution. The decomposition level 𝑘
is another control parameter described in Section 3. Recall
that a bigger 𝑘 implies that more binary setup variables
are reoptimized in one subproblem. Because considering
subproblems of level larger than 3 is too time-consuming,
we only test FO2 with subproblems of level 𝑘 = 1, 2, 3 (see
Section 3.2). (3) FO-VNS is referred to our integrative FO
and VNS method. We vary the decomposition level 𝑘 and
obtain three variants of FO-VNS. Overall, absolute time limit
for the algorithms is set to 10 minutes for S-MICLSP and
20 minutes for S-MICLSP-L, which can be slightly exceeded

by finalizing code. (4) CPXstd and CPX30std are referred to
standard software (CPLEX, Branch & Cut) as comparisons.
The absolute time limit for CPXstd is set to be same as FO-
VNS, while the time limit of CPX30std is more than CPXstd by
30 times.

5.2. Results and Interpretation. Table 2 describes the nota-
tions used to measure the solution quality.

5.2.1. Computational Results on S-MICLSP. Table 3 illustrates
the computational results on S-MICLSP model. From this
table, we can see that FO2 outperforms FO1 in terms of the
solution quality. Among the six variants of FO1, FO1-PRT
obtains the lowest Cost. It can be observed from Table 3 that
the variants of FO2 with bigger 𝑛 and bigger 𝑘 consumemore
computational time than FO1. However, FO2 can reduce Cost
significantly compared with FO1 in general. 7 out of 9 FO2
variants perform a better Cost with respect to FO1 on average,
meanwhile 5 out of 9 FO2 variants are better with respect to
FO1-PRT. Also, another observation from this table is that
FO2 is more efficient than FO1 in general. Taking FO2-𝑛2-
L2 as an example, this FO2 variant can obtain both reduced
Cost and Time compared either with FO1 on average or the
best FO1 variant. Among all the variants of FO2, it seems that
FO2-𝑛2-L2 makes the best trade-off between Cost and Time
since it can provide better solutionswith lower computational
time.

For other measurements of the solution quality, FO2
still performs better than FO1 under most circumstances.
Considering rateot, which describes the proportion of periods
with overtime, all of the FO1 variants are not able to provide
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Table 2: Notations for measuring solution quality.

Notation Definition Quality measure
Cost Average total cost Lower is better
Time Average computational time Lower is better
rateot Average proportion of periods with overtime (in %) Lower is better𝛿 − 𝑆𝐿 Average 𝛿-service level (in %) (see [29]) Higher is better

rateNOB
Proportion of instances for which a feasible solution with neither overtime nor

backlogging has been found by the algorithm (in %) Higher is better

devCostAverage Deviation from the average Cost of FO1 (in %) Lower is better
devCostBest Deviation from the best Cost of FO1 (in %) Lower is better
devTime

Average Deviation from the average Time of FO1 (in %) Lower is better
devTime

Best Deviation from the Time of FO1 variants with best Cost (in %) Lower is better
devCost Deviation from the compared Cost (in %) Lower is better
devTime Deviation from the compared Time (in %) Lower is better

Table 3: Computational results on S-MICLSP.

Algorithm Cost Time rateot 𝛿 − 𝑆𝐿 rateNOB

FO1-P 705103.74 212.41 6.78 96.58 53.00
FO1-R 715294.16 205.67 6.92 95.71 54.00
FO1-T 696034.43 222.19 5.08 97.80 65.00
FO1-PR 700148.81 218.97 5.00 96.41 59.00
FO1-PT 690659.08 232.80 3.20 100.00 80.00
FO1-PRT 689240.75 234.44 3.56 100.00 79.00

devCostAverage devCostBest devTime
Average devTime

Best

FO2-𝑛1-L1 −1.65 −0.20 2.13 −3.69 0.00 100.00 100.00
FO2-𝑛1-L2 −2.27 −0.83 11.40 5.05 0.00 100.00 100.00
FO2-𝑛1-L3 −3.20 −1.77 18.31 11.57 0.00 100.00 100.00
FO2-𝑛2-L1 −0.77 0.70 −8.80 −14.00 4.00 97.75 84.00
FO2-𝑛2-L2 −1.93 −0.48 −0.13 −5.82 3.86 100.00 86.00
FO2-𝑛2-L3 −2.74 −1.30 10.99 4.67 3.92 100.00 86.00
FO2-𝑛3-L1 2.38 3.90 −23.21 −27.58 5.00 95.24 51.00
FO2-𝑛3-L2 0.69 2.18 −13.47 −18.40 5.00 95.15 55.00
FO2-𝑛3-L3 −0.55 0.92 5.87 −0.16 5.22 97.90 52.00
FO-VNS-L1 −4.95 −3.55 172.32 156.81 0.00 100.00 100.00
FO-VNS-L2 −5.62 −4.23 173.06 157.50 0.00 100.00 100.00
FO-VNS-L3 −5.99 −4.60 172.84 157.29 0.00 100.00 100.00
CPXstd 4.08 5.62 171.50 156.03 4.62 95.59 81.00
CPX30std −7.31 −5.95 8141.17 7671.53 0.00 100.00 100.00

solutions completely without overtime. However, when 𝑛 =𝑛1 = 𝑁×𝑇, FO2 canmake rateot at a zero level, which implies
lower overtime cost than FO1. For other FO2 variants, they
can also obtain competitive results against FO1. Considering𝛿 − 𝑆𝐿, only 2 out of 6 FO1 variants obtain 100 percent𝛿-service level while 5 out of 9 FO2 variants can achieve
this goal. We find that, for bigger 𝑛 and 𝑘, FO2 tends
to achieve a high 𝛿-service level from the column 𝛿 − 𝑆𝐿
of Table 3. Consider rateNOB, which indicates the solution
quality by combining rateot and 𝛿 − 𝑆𝐿 in a statistical sense.

The results of FO2-𝑛1-L𝑘 (𝑘 = 1, 2, 3) imply that there exist
solutions without overtime and backlogging for all tested
instances, while FO1 obtain solutions at a relative lower
rateNOB proportion. We can also observe that for a lower𝑛 = 𝑛3, FO2-𝑛3-L2 performs better than FO1-P and FO1-R,
while other FO2-𝑛3-L𝑘 (𝑘 = 1, 3) perform worse than all the
FO1 variants.

The three rows entitled “FO-VNS-L𝑘” of Table 3 report
the solution quality of FO-VNS variants with different 𝑘.
From the results, the three variants of FO-VNS obtain
around 4.95%∼5.99% better solutions compared with FO1
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Table 4: Computational results on S-MICLSP-L.

Algorithm Cost Time rate𝑜𝑡 𝛿 − SL rateNOB

FO1-P 727790.95 436.31 15.36 82.41 37.00
FO1-R 741102.74 414.03 20.48 73.96 23.00
FO1-T 717907.32 429.78 14.52 83.69 33.00
FO1-PR 723629.97 442.17 13.00 80.94 45.00
FO1-PT 716389.74 452.53 13.32 87.00 42.00
FO1-PRT 712618.87 474.03 13.00 91.04 46.00

devCostAverage devCostBest devTime
Average devTime

Best

FO2-𝑛1-L1 −2.40 −0.94 −5.27 −11.77 4.42 96.59 85.00
FO2-𝑛1-L2 −3.17 −1.73 5.20 −2.02 4.20 96.31 87.00
FO2-𝑛1-L3 −3.93 −2.50 13.38 5.59 3.94 95.80 88.00
FO2-𝑛2-L1 −1.10 0.37 −8.28 −14.58 8.90 94.39 63.00
FO2-𝑛2-L2 −2.36 −0.91 0.06 −6.81 8.38 96.03 62.00
FO2-𝑛2-L3 −2.81 −1.36 9.21 1.71 8.00 98.80 68.00
FO2-𝑛3-L1 1.95 3.47 −10.49 −16.63 10.64 85.49 53.00
FO2-𝑛3-L2 0.71 2.22 −3.92 −10.52 9.68 89.13 50.00
FO2-𝑛3-L3 −0.63 0.85 4.70 −2.49 9.00 92.03 56.00
FO-VNS-L1 −6.56 −5.17 172.67 153.95 4.94 100.00 83.00
FO-VNS-L2 −7.32 −5.94 172.74 154.01 4.54 100.00 84.00
FO-VNS-L3 −7.54 −6.16 173.38 154.61 4.02 100.00 84.00
CPXstd 4.14 5.69 172.56 153.84 7.84 93.76 71.00
CPX30std −8.61 −7.25 8187.93 7618.80 0.00 100.00 90.00

on the average, and around 3.55%∼4.60% compared with
the best FO1 significantly, while the computational time can
be considerably larger by 172.32%∼173.06% and 156.81%∼
157.50% compared with the average FO1 and the best FO1.
However, the S-MICLSP (also S-MICLSP-L) considered in
this paper is usually solved weekly or monthly in a tactical
decision for a factory of one steel enterprise. It is thus worth
spending more but reasonable time to obtain a significantly
better production plan by our FO-VNS.

The last two rows of Table 3 provide comparisons between
CPLEX and our proposed algorithms. CPXstd runs the same
time limit as FO-VNS but it performs worse than all other
algorithms. Running a much longer time limit, CPX30std
performs much better. However compared to FO-VNS, the
solution quality of CPX30std is slightly improved with an
extremely increased computational effort.

5.2.2. Computational Results on S-MICLSP-L. The computa-
tional results on the S-MICLSP-L model are given in Table 4.
By the similar observations to Table 3, FO2 still outperforms
FO1 in terms of the solution quality. Particularly, FO2-𝑛1-
L1 and FO2-𝑛2-L2 outperform all the FO1 variants when
considering Cost and Time, which implies they make the
best trade-off between Cost and Time in all FO2 variants.
Similar to Table 3, FO-VNS gives quite outstanding results
comparedwith FO1 and FO2. FO-VNSperforms a better Cost
by reducing 5.17%∼6.16% against FO1-PRT. All of the FO-
VNS variants provide 𝛿 − 𝑆𝐿 of 100%, yet FO1 and FO2 fail
to do so.The results of the last two rows in Table 4 are similar
to Table 3. CPXstd reports its drawbacks in terms of solution

quality and computational effort, while CPX30std reports its
better solution quality withmuch longer computational time.

According to Tables 3 and 4, it can be confirmed that the
advantages of FO2 and FO-VNS against FO1 for S-MICLSP-
L grow compared with S-MICLSP. For example, FO2-𝑛1-L3
has −3.93% of devCostAverage while it has −3.20% in the S-MICLSP
case fromTable 3. Also, this FO2 variant can obtain−2.50% of
devCostBest while it can obtain 1.77% in the S-MICLSP case from
Table 3. This observation can also be found for all variants of
FO-VNS.

5.2.3. Comparison of Various Cases of Parameter Settings.
To check the effectiveness and efficiency of our proposed
approaches under various cases of parameter settings, we
implement FO1-PRT, FO2-𝑛1-L3, and FO-VNS-L3 (best vari-
ants of FO1, FO2, and FO-VNS tested ever) again using
test cases of different TBO (time between orders) and ST
(setup times). TBO can be computationally defined as the
ratio between setup costs and inventory costs (see [28]).
Varying different parameters, the results of Table 5 with
measurements of Cost and Time are illustrated by groups of
combinations of TBOs (low with TBO < 2.0, medium with2.0 ⩽ TBO < 3.0, and high with 3.0 < TBO) and STs (low
with ST < 25, and high with ST ⩾ 25).

We compare the results in terms of FO1-PRT for the
benchmark. From Table 5, we can see that for high TBO
cases, FO2-𝑛1-L3 and FO-VNS-L3 significantly outperform
FO1-PRT in terms of solution quality. These outstanding
performances of FO2-𝑛1-L3 and FO-VNS-L3 can also be
found in cases of high ST, compared to cases of low ST.
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Table 5: Computational results with various parameters settings.

Algorithm model TBO ST FO1-PRT FO2-𝑛1-L3 FO-VNS-L3
Cost Time devCost devTime devCost devTime

S-MICLSP

High High 795664.08 245.51 −2.23 9.96 −4.94 145.95
Low 689240.75 234.44 −1.77 11.57 −4.60 157.29

Medium High 575783.97 244.29 −1.71 8.03 −4.29 146.78
Low 489240.75 230.71 −1.07 9.63 −2.39 161.63

Low High 336501.13 237.52 −0.38 2.35 −3.69 152.33
Low 230349.23 229.79 2.19 −4.34 −1.83 162.06

S-MICLSP-L

High High 817073.11 490.18 −3.08 5.44 −6.39 145.87
Low 712618.87 474.03 −2.50 5.59 −6.16 154.60

Medium High 576455.47 486.10 −2.00 3.71 −3.45 146.66
Low 502618.87 478.28 −1.16 4.26 −2.77 151.84

Low High 337218.37 486.34 −0.13 −1.50 −2.50 147.05
Low 251979.47 466.17 0.18 0.57 −1.10 158.21

Considering cases of high or medium TBO, FO2-𝑛1-L3 and
FO-VNS-L3 obtain lower devCost in S-MICLSP-L than that in
S-MICLSP. It implies that for high or medium TBO cases,
the advantages of FO2 and FO-VNS in S-MICLSP-L grow
compared to that in S-MICLSP, which is similar to the
previous observations in Section 5.2.2. All of the above results
imply that FO2 and FO-VNS are much more effective than
FO1 in cases of high or medium TBO and high ST.

5.2.4. Comparison with Scenario Methods. Typically, because
of the continuous nature of demand uncertainty and the
dynamic structure of the problems, multistage stochastic
modeling methods can be applied and hence scenario meth-
ods are used to approximate the models. This methodology
is distinguished from ours and here we numerically com-
pare the difference between them. The methodology using
scenario method is denoted by SCN𝑚-BC, where Branch
& Cut approach is used to solve the models approximated
by scenario method. We generate 𝑚 realizations of random
demand for each period and hence the number of scenarios
is𝑚𝑇, where𝑇 is the number of periods.We choose𝑚 = 5, 10
for small test cases. Our methodologies are denoted by PWL-
FO2 and PWL-FO-VNS, whereby FO2-𝑛1-L3 and FO-VNS-
L3 are, respectively, applied.

We compare the results in terms of the methodology
of PWL-FO2 for the benchmark. From Table 6, we can
generally see that the methodology of PWL-FO-VNS is
competitive with SCN5-BC and SCN10-BC in terms of Cost.
The entry “∗∗∗∗” indicates that there are no computational
results. Since the number of scenarios is growing in size
exponentially, it is impossible to compute finalized results in
reasonable time even when 𝑇 is relatively small. Both PWL-
FO2 and PWL-FO-VNS are more splendid than SCN5-BC
in terms of solution quality. SCN10-BC can obtain better
solutions when 𝑇 = 2, 3; however the computational time is
unacceptable when 𝑇 = 6, 10. Our proposed PWL-FO-VNS
obtains competitive solution quality against SCN10-BC while
the computational efforts are much less. All of the results

imply that our proposed approximation method and solving
approaches are efficient.

6. Conclusion

The key contributions and findings of this paper are as
follows:

(1) We formulate dynamic S-MICLSP and S-MICLSP-L
models mapped to a realistic problem in steel pro-
duction. We also propose a piecewise linear approx-
imation method to reformulate models that can be
solved tractably.Thismethod is novel and can balance
the approximated accuracy and computational times.
This method can also be extended to other cases such
as the lot-sizing problemswith substitutions (see [18])
and safety stocks (see [29]).

(2) We present a new fix-and-optimize (FO) approach
for both S-MICLSP and S-MICLSP-Lwhich possesses
a novel way of decomposing. Our FO decomposes
the problems based on the concept of “𝑘-degree-
connection” described in Section 3. This decompo-
sition method combines all the information about
products, resources, demands, and time periods.
Hence, our presented approach is more effective in
each iteration. The computational experiments show
that our proposed approach outperforms the recent
one.

(3) We develop an integrative FO-VNS approach, based
on diversifying search space by VNS. The FO-VNS
explores more promising regions in each iteration.
This approach extends the scope of [25] and can
be applied to models with setup carryovers. From
numerical results, FO-VNS can obtain solutions with
quite high quality by consuming reasonable time in a
tactical planning decision, especially in the testing on
S-MICLSP-L model.
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Table 6: Computational results compared with scenarios methods.

Methodology model Periods PWL-FO2 PWL-FO-VNS SCN5-BC SCN10-BC
Cost Time devCost devTime devCost devTime devCost devTime

S-MICLSP

𝑇 = 2 31610.95 6.05 0.65 133.29 4.52 −19.82 −1.81 246.14𝑇 = 3 52896.83 9.84 −2.67 120.10 1.34 121.28 −2.44 1709.16𝑇 = 6 106087.66 16.48 −3.03 117.48 −4.13 15134.03 ∗∗∗∗ ∗∗∗∗𝑇 = 10 180137.95 27.52 −3.33 116.87 ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗
S-MICLSP-L

𝑇 = 2 35294.55 11.06 −2.15 161.47 3.20 −13.05 −1.61 236.42𝑇 = 3 55840.08 17.84 −2.86 144.40 3.73 207.43 −3.43 2439.68𝑇 = 6 113090.88 32.39 −3.54 137.08 −4.31 17906.94 ∗∗∗∗ ∗∗∗∗𝑇 = 10 195927.06 52.22 −4.02 135.99 ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗
Table 7: Instance generator settings.

Symbol Definition Assumptions and settings
Indices and sets:

P𝑗
Products used to fulfill

demand 𝑗 Set up using clustering algorithm such as K-means clustering and hierarchical clustering
after every attribute of products is realized

P𝑟
Products that are produced

by resource 𝑟 Set up for randomly chosen product

Deterministic parameters:𝑓𝑖 Setup cost See (A.4)𝑝𝑖 Unit production cost See (A.3)ℎ𝑖 Unit holding cost 2% of the unit production cost𝑐𝑖 Unit capacity See (A.2)
st𝑖 Setup time capacity See (A.1)𝑘𝑟 Available capacities See (A.6)

𝑏𝑗 Unit backlogging Penalty
cost

⩾50 ×∑𝑖∈P𝑗 𝑝𝑖
oc𝑟 Overtime cost See (A.7)𝑒𝑖𝑗 Demand coefficient Set 𝑒𝑖𝑗 = 1 for all 𝑖 and 𝑗.𝐼𝑖0 Initial inventory ∼𝑈int(1.5𝜉𝑖, 4𝜉𝑖), with 𝜉𝑖 = (𝑝𝑖/∑𝑘∈P𝑗 𝑝𝑘)(1/𝑇)∑𝑡∈T,𝑗∈D𝑖 𝐸[𝐷𝑗𝑡]
Random parameters:

𝐷𝑗𝑡 Demand
Normally distributed, stationary across period horizons, but different mean 𝜇 and variation

coefficient 𝜎/𝜇 for each demand: ∼𝑁⩾0,⩽5𝜇(𝜇, 𝜎) (with values < 0 cut-off), with𝜇 ∼ 𝑁⩾0(50, 20) and 𝜎/𝜇 ∼ 𝑁⩾0(0.2, 0.1)

This paper can explore several avenues in future research;
for example:

(i) Extend the S-MICLSP and S-MICLSP-Lmodels to the
multilevel versions.

(ii) Find amore effective way to construct decomposition
frameworks in each iteration.

(iii) Develop a more efficient local search engine for the
integrative metaheuristics.

Appendix

Generating Problem Instances

To solve the real S-MICLSP and S-MICLSP-L applications,
we need to gather data in steel production. However, due to

the reasons of confidentiality, we have to generate sufficient
problem instances, inwhich structure is as realistic as possible
and capacities are rather tight. To ensure that the optimal
ordering decisions are nontrivial, we propose a method for
generating problem instances based on the realistic attributes
of products. The symbols used for describing the instance
generator are given in Notations. To generate instances, we
also delineate the settings and assumptions of our method
which are contained in Table 7.

Each product can be described by values of several
attributes 𝑎 ∈ F. We assume that all attribute values are
integers and ⩾ 0. Suppose that we have known the number
of elements in demands (or demand classes)D, productsP,
and resources R, the next question is how to determine P𝑗
and P𝑟. From the context, it is obvious that𝑀, the number
of elements inD, is not greater than𝑁, which is the number
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Table 8: An example of product attributes used in steel production.

Attribute number Example (name) Distribution Characteristic
1 Mixture ∼𝑈int(0, 1) Property
2 Thickness ∼𝑈int(0, 2) Measurement
3 Width ∼𝑈int(70, 100) Measurement⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

of elements in P. Then we can use clustering algorithms
such as K-means clustering and hierarchical clustering to
cluster the 𝑁 elements into 𝑀 classes after the attribute
values are realized (see [30] for more details about clustering
algorithms). Thus P𝑗 is determined. As for P𝑟, we are
building it by assigning the resources randomly to each
product.

The following two groups of attributes distinguished by
real-world steel production can help us generate the instances
further.

(1) Property. Attributes that are in products themselves. The
products are significantly different from other products by
this kind of attributes.These attributes are also the key factors
for generating the setup parameters such as st𝑖 and 𝑓𝑖. The set
containing this kind of attributes is denoted byF𝑃.

(2) Measurement. Attributes for specification of some kinds
of standards, such as width and length.The variation of these
values can also fluctuate the marginal parameters such as 𝑐𝑖,𝑝𝑖. The set containing this kind of attributes is denoted by
F𝑀.

Table 8 lists an example of product attributes in steel
production. The underlying motivation of this classification
of the attributes is the fact that the occupied resource of
one product is mainly dependent on its “Property” attribute.
Hence, the idea for generating the resource parameters, st𝑖
and 𝑐𝑖, is as follows: we assume that both st𝑖 and 𝑐𝑖 of
one product are linear functions of its attributes value V𝑎𝑖.
Particularly, for st𝑖, we assume that it is linear function of
V𝑎𝑖 only whose attributes are “Property.” For all attributes,
the weights 𝑤𝑐𝑎 and 𝑤st

𝑎 (which could also be negative) are
multiplied with the attribute value V𝑎𝑖. We also assume the
two base values, 𝑐0𝑖 and st0𝑖, for generating st𝑖 and 𝑐𝑖, where𝑐0𝑖 ∼ 𝑁⩾0(3, 0.5) and st0𝑖 ∼ 𝑁⩾0(2, 0.5) (with values < 0 cut-
off). Thus, we can generate st𝑖 and 𝑐𝑖 as follows:

st𝑖 = st0𝑖 + ∑
𝑎∈F𝑃

𝑤st
𝑎 ⋅ V𝑎𝑖 (A.1)

𝑐𝑖 = 𝑐0𝑖 + ∑
𝑎∈F

𝑤𝑐𝑎 ⋅ V𝑎𝑖. (A.2)

An observation from production viewpoint is that the
unit production cost 𝑝𝑖 is strongly correlated to 𝑐𝑖 while the
setup cost 𝑓𝑖 is strongly correlated to st𝑖. In order to generate𝑝𝑖 and 𝑓𝑖, we first sample random variable 𝑈 from a normal
distribution𝑁⩾0(1, 0.2). Using these random numbers, both𝑝𝑖 and𝑓𝑖 are calculated using same random value, so that they

are correlated. We also introduce 𝑚𝑐𝑟 and 𝑚st
𝑟 as multipliers

for physical unit standardization since we assume that 𝑈 is
dimensionless:

𝑝𝑖 = 50 ⋅ 𝑐𝑖 ⋅ 𝑚𝑐𝑟 ⋅ 𝑈 (A.3)

𝑓𝑖 = 50 ⋅ st𝑖 ⋅ 𝑚st
𝑟 ⋅ 𝑈. (A.4)

The procedure for generating 𝑘𝑟 and oc𝑟 is as follows: we
first calculate the minimum amount of the resource capacity
required for producing sufficient quantities of each product
to fulfill the expected demand. We denote this amount𝐾.
𝐾 = min {𝑐𝑖 | 𝑖 ∈ P} ⋅ ( ∑

𝑡∈T,𝑗∈D

𝐸 [𝐷𝑗𝑡] − ∑
𝑖∈P

𝐼𝑖0) . (A.5)

The corresponding capacity of resource 𝑟, 𝑘𝑟, is estimated by
the unit capacity consumption 𝑐𝑖 and the setup capacity st𝑖,
while the overtime cost, oc𝑟, can be also estimated by the
unit product cost 𝑝𝑖 and the setup cost 𝑓𝑖. Both 𝑘𝑟 and oc𝑟
are affected by 𝛼𝑐 and 𝛼st so they can be correlated with each
other.

𝑘𝑟 = 𝛽𝑘 ⋅ ∑𝑖∈P𝑟 (𝛼𝑐𝑐𝑖 + 𝛼stst𝑖)∑𝑖∈P (𝛼𝑐𝑐𝑖 + 𝛼stst𝑖) ⋅
𝐾𝑇 (A.6)

oc𝑟 = 𝛽oc ⋅ ∑
𝑖∈P𝑟

(𝛼𝑐𝑝𝑖 + 𝛼st𝑓𝑖) . (A.7)

Note that the concept of the instance generator can be
extended to the aspects of other products in the production
management. This methodology can make the structure of
the generating instances as realistic as possible since all the
parameters are based on the attributes of the products.

Notations

Notations Used in Model Formulations

Indices and Index Sets

𝑟 ∈R: Set of resources (R = {1, . . . , 𝑅})𝑖 ∈ P: Set of products (P = {1, . . . , 𝑁})𝑗 ∈ D: Set of demands (or demand classes)
(D = {1, . . . ,𝑀})𝑡 ∈ T: Set of periods (T = {1, . . . , 𝑇})(𝑖, 𝑗) ∈ A: (𝑖, 𝑗) ∈ A If and only if product 𝑖 can fulfill
demand (class) 𝑗
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P𝑗: Set of products that can fulfill demand
(class) 𝑗

P𝑟: Set of products that produced by resource𝑟
D𝑖: Set of demands (or demand classes) whose

demand can be fulfilled by product 𝑖
(only one element under many-to-one
structure assumption).

Deterministic Parameters

𝑓𝑖: Incurred setup cost when production for
product 𝑖 is ready𝑝𝑖: Unit production cost of product 𝑖ℎ𝑖: Holding cost for storing product 𝑖 to next
period per unit and period𝑏𝑗: Backlogging penalty cost for demand
(class) 𝑗 per unit and period

oc𝑟: Overtime cost of resource 𝑟 per unit of
overtime𝑐𝑖: Capacity required for manufacturing one
unit of product 𝑖

st𝑖: Setup time capacity required for
manufacturing product 𝑖𝑘𝑟: Available capacity of resource 𝑟𝑚𝑖: Large number, required for setup forcing
constraint𝑒𝑖𝑗: Number of units of product 𝑖 that satisfies
one unit of demand (class) 𝑗 for any(𝑖, 𝑗) ∈ A.

Random Variables

𝐵𝑗𝑡: Backlog number of demand (class) 𝑗
during period 𝑡𝐼𝑖𝑡: Physical inventory level of product 𝑖 at the
end of period 𝑡.

Random Parameters

𝐷𝑗𝑡: Demand (class) 𝑗 in period 𝑡.
Decision Variables

𝑆𝑖𝑗𝑡: Quantity of product 𝑖 used to fulfill
demand (class) 𝑗 at period 𝑡𝑄𝑖𝑡: Production quantity of product 𝑖 at period𝑡𝑋𝑖𝑡: Binary variable that indicates whether
production of product 𝑖 occurs at period 𝑡𝑍𝑖𝑡: Binary setup carryover variable for item 𝑖
at the beginning of period 𝑡𝑂𝑟𝑡: Additional capacity of resource 𝑟 at period𝑡.

Additional Notations for Approximation

Indices and Index Sets

𝑙 ∈L: Set of segments (L = {1, . . . , 𝐿}).

Random Variables

𝑦𝑗𝑡: Cumulated demand of demand 𝑗 from
period 1 up to period 𝑡𝐼𝑗𝑡: Physical inventory level of demand 𝑗 at the
end of period 𝑡𝐼prod𝑗𝑡 : Backlog number of demand 𝑗 after
production at period 𝑡, but before demand
occurrence𝐼end𝑗𝑡 : Backlog number of demand 𝑗 at the end of
period 𝑡.

Approximation Variables

𝑎𝑙𝐼𝑗𝑡 : Slope value of the on hand inventory for
demand 𝑗 in period 𝑡 associated with
segment 𝑙𝑎𝑙𝐵𝑗𝑡 : Slope value of the backlog for demand 𝑗 in
period 𝑡 associated with segment 𝑙𝑃𝑦𝑗𝑡(𝑥): Expected loss function or the failure
function of the random variable 𝑦𝑗𝑡 with
respect to the quantity 𝑥.

Decision Variables

𝑤𝑙𝑖𝑗𝑡: Cumulated production quantity of
product 𝑖 for demand 𝑗 in period 𝑡
associated with interval 𝑙𝑞𝑖𝑗𝑡: Production quantity of product 𝑖 for
demand 𝑗 in period 𝑡.

Notations Used in FO-VNS for S-MICLSP

𝑋: Setup plan for the current solution𝑋∗: Setup plan for the incumbent (the current
best solution)

CT: Computation time so far
CTmax: Maximum computation time allowed𝑦: Index of neighborhood structure 𝐺𝑦(𝑋)𝑦max: Maximum number of neighborhood

considered.

Notations Used in FO-VNS for S-MICLSP-L

𝑍: Carryover plan for the current
solution𝑍∗: Carryover plan for the incumbent
(the current best solution)𝑍: Carryover plan for linear relaxation
model𝑋𝑍 = {(𝑋𝑖𝑡, 𝑍𝑖𝑡)}: Setup and carryover plan for the
current solution𝑋∗𝑍 = {(𝑋∗𝑖𝑡, 𝑍∗𝑖𝑡)}: Setup and carryover plan for the
incumbent (the current best solution)𝑦𝑍: Index of neighborhood structure 𝐺𝑦𝑍𝑦𝑍,max: Maximum number of neighborhood
considered
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𝐺𝑦𝑍(𝑋𝑍): A finite set of neighborhood structures,
with 𝐺1(𝑋𝑍) ⊆ 𝐺2(𝑋𝑍) ⊆ ⋅ ⋅ ⋅ ⊆𝐺𝑦𝑍,max

(𝑋𝑍)𝑞𝑦𝑍 : Maximum distance between two setup
and carryover plans, where both of them
are in the same neighborhood structure𝐺𝑦𝑍 .

Auxiliary Notations for Instance Generator

Constants

𝑛𝑎: Number of attributes.

Indices and Sets

𝑎 ∈ F = {1, 2, . . . , 𝑛𝑎}: Attributes
F𝑃 ⊆ F: Set of “Property” attributes
F𝑀 ⊆ F: Set of “Measurement” attributes.

Parameters

𝑤𝑐𝑎: Production capacity weight for attribute 𝑎𝑤st
𝑎 : Setup capacity weight for attribute 𝑎𝑚𝑐𝑟: Dimensional multiplier for calculating

unit production cost𝑚st
𝑟 : Dimensional multiplier for calculating

setup cost𝛼𝑐, 𝛼st: Dimensional multipliers for calculating
parameters of resource capacity𝛽𝑘, 𝛽oc: Dimensionless multipliers for calculating
parameters of resource capacity.

Random Values

V𝑎𝑖: Value for attribute 𝑎 of product 𝑖𝑐0𝑖: Base value of production capacity for
attribute 𝑎 of product 𝑖

st0𝑖: Base value of setup capacity for attribute 𝑎
of product 𝑖𝑈: Random variable, used as a multiplier
(dimensionless).

Derived Values

𝐾: Total resource capacities required for
producing the expected demand for all
products.
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