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For sequentially monitoring and controlling average and variability of an online manufacturing process, 𝑥 and 𝑠 control charts
are widely utilized tools, whose constructions require the data to be real (precise) numbers. However, many quality characteristics
in practice, such as surface roughness of optical lenses, have been long recorded as fuzzy data, in which the traditional 𝑥 and 𝑠
charts have manifested some inaccessibility.Therefore, for well accommodating this fuzzy-data domain, this paper integrates fuzzy
set theories to establish the fuzzy charts under a general variable-sample-size condition. First, the resolution-identity principle is
exerted to erect the sample-statistics’ and control-limits’ fuzzy numbers (SSFNs andCLFNs), where the sample fuzzy data are unified
and aggregated through statistical and nonlinear-programming manipulations. Then, the fuzzy-number ranking approach based
on left and right integral index is brought to differentiate magnitude of fuzzy numbers and compare SSFNs and CLFNs pairwise.
Thirdly, the fuzzy-logic alike reasoning is enacted to categorize process conditions with intermittent classifications between in
control and out of control. Finally, a realistic example to control surface roughness on the turning process in producing optical
lenses is illustrated to demonstrate their data-adaptability and human-acceptance of those integrated methodologies under fuzzy-
data environments.

1. Introduction

In nowadays fierce, competitivemarketplaces, providing con-
sistent and reliable quality products has been acknowledged
as one of the most significant criteria for industrial manu-
facturers to persist their survival and sustainable growth. As
such, establishing effective quality management systems and
programs has become their prioritized strategy for lowering
the percentage of nonconformities, slashing manufacturing
costs, and fulfilling customer satisfaction [1]. Among them,
the quality-control scheme has been widely advocated as a
powerful control tool for achieving production effectiveness,
as well as remaining quality-based competitive advantages
[2].

Currently, for practically monitoring and controlling
manufacturing processes, Shewhart-type control charts are
extensively applied due to their notable capability on gen-
uinely and early revealing process-abnormal conditions so as
to ward off mistaken process intervention, prevent excessive
product-defects, and eliminate costly scrap or rework of final
products [1, 3]. Typically, the control chart constitutes three
tracking lines, a center line (CL) and upper and lower control
limits (UCL and LCL), whose construction is generally based
on moderate numbers of subgroup sample data, each with
either equal or unequal sample size, randomly being drawn
from the process’s key quality characteristic. For monitoring
the process conditions, the control charts function under the
situations that when all statistic points of collected sample
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data fall within the limits and do not exhibit any systematic
pattern, the process is classified as in statistical control and no
interference is needed; otherwise, the process is being sus-
pected to be affected by some assignable causes that deserve
to be comprehensively investigated through well-structured
corrective actions [1].

Traditionally, Shewhart control charts are constructed
based on random precise data collected from a key quality
characteristic. However, in practice, crisp data may fail to
describe the nature of several applications, such as the sur-
face roughness of components, the transmission speed of
certain lights through amaterial, and the coating thickness of
industrial cutting tools, because they cannot be recorded or
measured precisely [4, 5]. Besides, making decisions on
whether those products are conforming or nonconforming or
judging if a process is in control or out of control usu-
ally includes some extent of human subjectivity relating to
decision-makers’ intelligence and perceptions. These issues
create the vagueness in the measurement system; therefore,
the recorded data are considered as fuzzy data [6–9]. With
the presence of fuzziness, the variance of normal observations
tends to increase [10], and some intermediate decisions indis-
pensably exist in-between the binary classification [6]. Thus,
in order to adapt to these fuzzy environments, the traditional
control charts with binary classifications are necessarily
extended to “fuzzy control charts” [7, 11] which are considered
as an inevitable and suitable choice in monitoring and con-
trolling a manufacturing process with fuzzy data [7, 12–14].
As such, several fuzzy control charts have been proposed and
constructed, for instance, fuzzy 𝑋̃-𝑅̃ and 𝑋̃-𝑆̃ control charts
by Senturk and Erginel [7], fuzzy 𝑥 and 𝑅 control charts by
Shu and Wu [11], fuzzy 𝑥 and 𝑠 control charts by Nguyen et
al. [15], fuzzy MaxGWMA control chart by Shu et al. [4], and
fuzzy 𝑥 control chart for multiple objective decision-making
problem [16].

Nevertheless, certain problems in the construction and
evaluation of fuzzy control charts have been raised. Partic-
ularly, Wang and Raz [17] proposed multigrades linguistic
terms such as perfect, good, medium, poor, and bad to
express the key quality characteristic. However, the underly-
ing probability distribution of the linguistic data was not con-
sidered [18]. Hence, Kanagawa et al. [18] suggested estimating
the probability distribution existing behind the linguistic data
before constructing the control charts. Then, Laviolette et al.
[19] and Asai [20] pointed that the probability estimation
cannot be easily determined. In addition, as the membership
function of linguistic terms is obtained arbitrarily on a given
scale regardless of the fuzziness in the judgments of experts
[11, 21], the linguistic-based control charts are not firmly vali-
dated. Similarly, using defuzzification methods such as fuzzy
midrange, fuzzy mode, fuzzy median, and fuzzy average in
constructing fuzzy control charts proposed in several re-
searches [7, 17, 22] has also raised a core controversial issue of
losing the fuzziness information in the original data as well as
misjudgement of the manufacturing process [11, 23, 24],
although it allows the control charts to be constructed with
binary classifications.

Thus, several scholars have put great effort into preserving
the fuzziness of vague data in their approaches. For examples,
Grzegorzewski and Hryniewicz [25] utilized the necessity
index of strict dominance (NISD); however, Chien et al. [26]
claimed that the NISD is content-dependent because the
ranking results may change when a new fuzzy number is
added. Also, Gülbay and Kahraman [13] came up with an ac-
ceptable percentage index called direct fuzzy approach (DFA)
which was then found failing in obtaining the fuzzy sample
means and variances with the simple using of 𝛼-cuts [11]. Shu
andWu [11] developed a fuzzy dominance approach (FDA) by
extending Yuan’s fuzzy-numbers ranking method [27]. Nev-
ertheless, the FDA approach can only perform nicely at the
dominance degree greater than 0.5. Nguyen et al. [28] pro-
posed a detailed procedure to classify a process, but some of
their rules were found indistinguishable by Nguyen et al.
[15], who later proposed a remedy for a better performance.
Though Shu et al. [4] established a thorough system to eval-
uate manufacturing processes, their classification rules seem
quite complicated. Therefore, this paper aims at providing an
easier procedure by simplifying Yu andDat’s rankingmethod
[29]. In addition, our fuzzy 𝑥 and 𝑠 charts can generally deal
with variable sample size which is the key advantage of our
proposed control charts over those of Nguyen et al. [28].

This paper is organized as follows. Section 2 briefly pro-
vides key characteristics of traditional 𝑥 and 𝑠 control charts,
playing as the foundation for our detailed procedure to con-
struct fuzzy𝑥 and 𝑠 control charts presented in Section 3. Also
in Section 3, an empirical case in monitoring surface rough-
ness of optical lenses in its turning process is conducted as
a paradigm to illustrate the applicability of this new extended
approach in building these fuzzy control charts. In order to
effectively evaluate them, Section 4 apprises not only our
advocated approach by simplifying Yu and Dat’s ranking
method [29] but also the elucidatory development of our
novel classificationmechanismwhich is then used in the case
discussed in Section 3 to provide a thorough controlling and
monitoring procedure for the application of our proposed
fuzzy control charts in practice. Some concluding remarks
make up the last section.

2. Review of Traditional 𝑥 and 𝑠
Control Charts

Literally, process variability must be fully controlled before
process mean is monitored because larger variability in
manufacturing process always results in higher percentage of
nonconforming products, although the process mean is kept
unchanged at its target value [1].Theprocess variability can be
monitored with either𝑅 chart or 𝑠 chart, while 𝑥 chart is used
to monitor process mean; thus, in practice, 𝑥 chart usually
goes with either 𝑅 chart or 𝑠 chart. Specifically, 𝑥 chart and 𝑅
chart are preferably used if sample size is small (nomore than
10), whereas 𝑥 chart and 𝑠 chart are used when sample size
is either larger than 10 or variable [2]. In practice, there are
several applications where randomly choosing samples with
variable sizes is economically preferred [1]. Moreover, many
scholars claimed that control charts with variable sample
size can detect process shifts markedly faster than the ones
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with equal sample size [30].Therefore, this paper investigates
samples with variable sizes; correspondingly, only 𝑥 chart and𝑠 chart are taken into consideration.

Suppose a quality characteristic 𝑋 has a normal distri-
bution with a mean 𝜇 and a standard deviation 𝜎, that is,𝑋 ∼ 𝑁(𝜇, 𝜎2). Normally, 𝜇 and 𝜎 are not known in advance.
They are usually estimated from initial samples taken from a
process that is believed to be in control. Conventionally, 20 or
25 samples are investigated; their grand average is used as the
best estimator of 𝜇, and their average standard deviation can
be used to obtain the estimated value of 𝜎 [1].

Let 𝑛𝑖 be the size of the 𝑖th sample of the𝑚 samples inves-
tigated. Let 𝑥𝑖𝑗 denote the value of the quality characteristic in
the sample 𝑖th at the observation 𝑗th (𝑖 = 1,𝑚; 𝑗 = 1, 𝑛𝑖).
The average of the 𝑖th sample, denoted by 𝑥𝑖, and the grand
average of the𝑚 samples, denoted by 𝑥, are determined by

𝑥𝑖 = 1𝑛𝑖
𝑛𝑖∑
𝑗=1

𝑥𝑖𝑗
𝑥 = 1∑𝑚𝑖=1 𝑛𝑖

𝑚∑
𝑖=1

𝑛𝑖𝑥𝑖. (1)

Let 𝑠𝑖 and 𝑠 denote the standard deviation of the 𝑖th
sample and the𝑚 samples, respectively. They are obtained by

𝑠𝑖 = √ 1𝑛𝑖 − 1 𝑛𝑖∑
𝑗=1

(𝑥𝑖𝑗 − 𝑥𝑖)2
𝑠 = √ 1∑𝑚𝑖=1 𝑛𝑖 − 𝑚 𝑚∑𝑖=1 (𝑛𝑖 − 1) 𝑠2𝑖 .

(2)

From the values of 𝑥 and 𝑠, the centerline (CL), upper
control limit (UCL), and lower control limit (LCL) of the 𝑥
chart are constructed by

UCL𝑥𝑖 = 𝑥 + 𝐾 𝑠𝑐4𝑖√𝑛𝑖
CL𝑥𝑖 = 𝑥

LCL𝑥𝑖 = 𝑥 − 𝐾 𝑠𝑐4𝑖√𝑛𝑖 ,
(3)

where 𝑐4𝑖 is a constant determined by sample size 𝑛𝑖 as shown
in several textbooks [1, 2, 31]. And, 𝐾 is the number of
standard deviation units (usually called Sigma) that are
allowed as tolerance; traditionally,𝐾 = 3 is usually used [1, 2].

And the control limits for 𝑠 chart are determined by

UCL𝑠𝑖 = (1 + 𝐾𝑐4𝑖√1 − 𝑐24𝑖) 𝑠
CL𝑠𝑖 = 𝑠

LCL𝑠𝑖 = (1 − 𝐾𝑐4𝑖√1 − 𝑐24𝑖) 𝑠.
(4)

The control limits of the control charts determined by
(3) and (4) are fluctuated as shown in Figure 1 because each
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Figure 1: Typical 𝑥 chart and 𝑠 chart with variable sample size.

sample has its own value of 𝑐4. By plotting all of 𝑥𝑖 and 𝑠𝑖 (𝑖 =1,𝑚) against the variable control limits, we can detect out-of-
control signal (if any).

3. Construction of Fuzzy 𝑥 Chart and 𝑠 Chart
With sample fuzzy data obtained from a manufacturing pro-
cess, this section shows how our proposed fuzzy 𝑥 chart and𝑠 chart are constructed in order to monitor the underlying
process average and variability, respectively.

Let 𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛𝑖 (𝑖 = 1,𝑚) be fuzzy observations
(fuzzy data) which are assumed to be fuzzy real numbers
discussed in [4, 28]. Upper and lower control limits are con-
structed based on these fuzzy data. For any given 𝛼 ∈ [0, 1],
we can obtain the corresponding real-valued data (𝑥𝑖𝑗)𝐿𝛼 and(𝑥𝑖𝑗)𝑈𝛼 for 𝑖 = 1,𝑚 and 𝑗 = 1, 𝑛𝑖. In order to obtain the estimate
of the fuzzy control limits for (𝑥𝑖𝑗)𝐿𝛼 and (𝑥𝑖𝑗)𝑈𝛼 , the real-valued
data (𝑥𝑖1)𝐿𝛼, . . . , (𝑥𝑖𝑛𝑖)𝐿𝛼 and (𝑥𝑖1)𝑈𝛼 , . . . , (𝑥𝑖𝑛𝑖)𝑈𝛼 (𝑖 = 1,𝑚) are
used in (1)–(4), which results in the following:

𝑥𝑈𝑖,𝛼 = 1𝑛𝑖
𝑛𝑖∑
𝑗=1

(𝑥𝑖𝑗)𝑈𝛼
𝑥𝑈𝛼 = 1∑𝑚𝑖=1 𝑛𝑖

𝑚∑
𝑖=1

𝑛𝑖𝑥𝑈𝑖,𝛼
𝑥𝐿𝑖,𝛼 = 1𝑛𝑖

𝑛𝑖∑
𝑗=1

(𝑥𝑖𝑗)𝐿𝛼
𝑥𝐿𝛼 = 1∑𝑚𝑖=1 𝑛𝑖

𝑚∑
𝑖=1

𝑛𝑖𝑥𝐿𝑖,𝛼
𝑠𝑈𝑖,𝛼 = √ 1𝑛𝑖 − 1 𝑛𝑖∑

𝑗=1

[(𝑥𝑖𝑗)𝑈𝑖,𝛼 − 𝑥𝑈𝑖,𝛼]2
𝑠𝑈𝛼 = √ 1∑𝑚𝑖=1 𝑛𝑖 − 𝑚 𝑚∑𝑖=1 [(𝑛𝑖 − 1) (𝑠𝑈𝑖,𝛼)2]
𝑠𝐿𝑖,𝛼 = √ 1𝑛𝑖 − 1 𝑛𝑖∑

𝑗=1

[(𝑥𝑖𝑗)𝐿𝑖,𝛼 − 𝑥𝐿𝑖,𝛼]2
𝑠𝐿𝛼 = √ 1∑𝑚𝑖=1 𝑛𝑖 − 𝑚 𝑚∑𝑖=1 [(𝑛𝑖 − 1) (𝑠𝐿𝑖,𝛼)2]

(5)
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3.1. Fuzzy 𝑥 Control Chart. Substituted with the fuzzy results
in (5), the parameters for the fuzzy 𝑥 chart in (3) are obtained
by

𝑢𝑈𝑥𝑖 ,𝛼 ≡ (ucl𝑥𝑖)𝑈𝛼 = 𝑥𝑈𝛼 + 𝐾 𝑠𝑈𝛼𝑐4𝑖√𝑛𝑖
𝑐𝑈𝑥𝑖 ,𝛼 ≡ (cl𝑥𝑖)𝑈𝛼 = 𝑥𝑈𝛼
𝑙𝑈𝑥𝑖 ,𝛼 ≡ (lcl𝑥𝑖)𝑈𝛼 = 𝑥𝑈𝛼 − 𝐾 𝑠𝑈𝛼𝑐4𝑖√𝑛𝑖
𝑢𝐿𝑥𝑖 ,𝛼 ≡ (ucl𝑥𝑖)𝐿𝛼 = 𝑥𝐿𝛼 + 𝐾 𝑠𝐿𝛼𝑐4𝑖√𝑛𝑖
𝑐𝐿𝑥𝑖 ,𝛼 ≡ (cl𝑥𝑖)𝐿𝛼 = 𝑥𝐿𝛼
𝑙𝐿𝑥𝑖 ,𝛼 ≡ (lcl𝑥𝑖)𝐿𝛼 = 𝑥𝐿𝛼 − 𝐾 𝑠𝐿𝛼𝑐4𝑖√𝑛𝑖 .

(6)

(a) Construction of FuzzyUpper Control Limit 𝑢̃𝑥. By using the
above results, let us consider the closed interval 𝐴 𝑖,𝛼 which is
defined as follows:𝐴 𝑖,𝛼 = [min {𝑢𝐿𝑥𝑖 ,𝛼, 𝑢𝑈𝑥𝑖 ,𝛼} ,max {𝑢𝐿𝑥𝑖 ,𝛼, 𝑢𝑈𝑥𝑖 ,𝛼}]≡ [𝑙𝑖,𝛼, 𝑢𝑖,𝛼] , (7)

where 𝑙𝑖,𝛼 = min {𝑢𝐿𝑥𝑖 ,𝛼, 𝑢𝑈𝑥𝑖 ,𝛼}𝑢𝑖,𝛼 = max {𝑢𝐿𝑥𝑖 ,𝛼, 𝑢𝑈𝑥𝑖 ,𝛼} . (8)

Based on resolution identity [32], the control-limits’ fuzzy
numbers (CLFNs) for the membership function of the fuzzy
upper control limit can be defined as

𝜉𝑢̃𝑥𝑖 (𝑐) = sup
𝛼∈[0,1]

𝛼 ⋅ 1𝐴𝑖,𝛼 (𝑐) . (9)

Since each 𝑥𝑖𝑗 is a fuzzy real number, (𝑥𝑖𝑗)𝐿𝛼 and (𝑥𝑖𝑗)𝑈𝛼 are
continuouswith respect to 𝛼 on [0, 1], saying that 𝑥𝐿𝛼, 𝑥𝑈𝛼 , 𝑠𝐿𝛼,
and 𝑠𝑈𝛼 are continuous with respect to 𝛼 on [0, 1]. Under these
facts, the 𝛼-level set (𝑢̃𝑥𝑖)𝛼 of fuzzy upper control limit 𝑢̃𝑥𝑖 can
be simply written as

(𝑢̃𝑥𝑖)𝛼 = {𝑐 : 𝜉𝑢̃𝑥𝑖 (𝑐) ≥ 𝛼} = [min
𝛼≤𝛽≤1

𝑙𝑖,𝛼,max
𝛼≤𝛽≤1

𝑢𝑖,𝛼]
= [(𝑢̃𝑥𝑖)𝐿𝛼 , (𝑢̃𝑥𝑖)𝑈𝛼 ] ,

(10)

where 𝑙𝑖,𝛼 and 𝑢𝑖,𝛼 are shown in (8).
From (10), the relationship between (𝑢̃𝑥𝑖)𝐿𝛼 and 𝑢𝐿𝑥𝑖 ,𝛼, 𝑢𝑈𝑥𝑖 ,𝛼

is found as

(𝑢̃𝑥𝑖)𝐿𝛼 = min
𝛼≤𝛽≤1

𝑙 (𝛽) = min
𝛼≤𝛽≤1

min {𝑢𝐿𝑥𝑖 ,𝛽, 𝑢𝑈𝑥𝑖 ,𝛽} . (11)

Similarly, the relationship between (𝑢̃𝑥𝑖)𝑈𝛼 and 𝑢𝐿𝑥𝑖 ,𝛼, 𝑢𝑈𝑥𝑖 ,𝛼 is
found as

(𝑢̃𝑥𝑖)𝑈𝛼 = max
𝛼≤𝛽≤1

𝑢 (𝛽) = max
𝛼≤𝛽≤1

max {𝑢𝐿𝑥𝑖 ,𝛽, 𝑢𝑈𝑥𝑖 ,𝛽} . (12)

(b) Construction of Fuzzy Lower Control Limit 𝑙̃𝑥. With the
same procedure, the endpoints of the 𝛼-level closed interval
of the fuzzy lower control limit 𝑙̃𝑥𝑖 are determined by

(𝑙̃𝑥𝑖)𝛼
= [min
𝛼≤𝛽≤1

min {𝑙𝐿𝑥𝑖 ,𝛽, 𝑙𝑈𝑥𝑖 ,𝛽} ,max
𝛼≤𝛽≤1

max {𝑙𝐿𝑥𝑖 ,𝛽, 𝑙𝑈𝑥𝑖 ,𝛽}] . (13)

3.2. Fuzzy 𝑠 Control Chart. Substituted with the fuzzy results
in (5), the parameters for the fuzzy 𝑠 chart in (4) are obtained
by

𝑢𝑈𝑠𝑖 ,𝛼 ≡ (ucl𝑠𝑖)𝑈𝛼 = (1 + 𝐾√1 − 𝑐24𝑖𝑐4𝑖 )𝑠𝑈𝛼
𝑐𝑈𝑠𝑖 ,𝛼 ≡ (cl𝑠𝑖)𝑈𝛼 = 𝑠𝑈𝛼
𝑙𝑈𝑠𝑖 ,𝛼 ≡ (lcl𝑠𝑖)𝑈𝛼 = (1 − 𝐾√1 − 𝑐24𝑖𝑐4𝑖 )𝑠𝑈𝛼
𝑢𝐿𝑠𝑖 ,𝛼 ≡ (ucl𝑠𝑖)𝐿𝛼 = (1 + 𝐾√1 − 𝑐24𝑖𝑐4𝑖 )𝑠𝐿𝛼
𝑐𝐿𝑠𝑖 ,𝛼 ≡ (cl𝑠𝑖)𝐿𝛼 = 𝑠𝐿𝛼
𝑙𝐿𝑠𝑖 ,𝛼 ≡ (lcl𝑠𝑖)𝐿𝛼 = (1 − 𝐾√1 − 𝑐24𝑖𝑐4𝑖 )𝑠𝐿𝛼.

(14)

The construction of the fuzzy control limits for fuzzy 𝑠 chart is
done the same as that for fuzzy 𝑥 chart. The results are
summarized as follows:

(a) The endpoints of the 𝛼-level closed interval (𝑢̃𝑠𝑖)𝛼 =[(𝑢̃𝑠𝑖)𝐿𝛼, (𝑢̃𝑠𝑖)𝑈𝛼 ] of fuzzy upper control limit 𝑢̃𝑠𝑖 are
determined by

(𝑢̃𝑠𝑖)𝐿𝛼 = min
𝛼≤𝛽≤1

min {𝑢𝐿𝑠𝑖 ,𝛽, 𝑢𝑈𝑠𝑖 ,𝛽}
(𝑢̃𝑠𝑖)𝑈𝛼 = max

𝛼≤𝛽≤1
max {𝑢𝑈𝑠𝑖 ,𝛽, 𝑢𝑈𝑠𝑖 ,𝛽} . (15)
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(b) The endpoints of the 𝛼-level closed interval (̃𝑙𝑠𝑖)𝛼 =[(̃𝑙𝑠𝑖)𝐿𝛼, (̃𝑙𝑠𝑖)𝑈𝛼 ] of fuzzy upper control limit 𝑙̃𝑠𝑖 are deter-
mined by

(𝑙̃𝑠𝑖)𝐿𝛼 = min
𝛼≤𝛽≤1

min {𝑙𝐿𝑠𝑖 ,𝛽, 𝑙𝑈𝑠𝑖 ,𝛽}
(𝑙̃𝑠𝑖)𝑈𝛼 = max

𝛼≤𝛽≤1
max {𝑙𝑈𝑠𝑖 ,𝛽, 𝑙𝑈𝑠𝑖 ,𝛽} . (16)

3.3. Fuzzy Average 𝑥̃ and Fuzzy Mean Standard Deviation 𝑠.
In order to realize whether the fuzzy average 𝑥̃𝑖 and fuzzy
mean standard deviation 𝑠𝑖 arewithin the fuzzy control limits,
we need to calculate their membership functions with the
sample-statistics’ fuzzy numbers (SSFNs) first. With a similar
procedure for the CLFNs, the endpoints of the 𝛼-level closed
interval (𝑥̃𝑖)𝛼 = [(𝑥̃𝑖)𝐿𝛼, (𝑥̃𝑖)𝑈𝛼 ] of fuzzy average 𝑥̃𝑖 are obtained
by

(𝑥̃𝑖)𝐿𝛼 = min
𝛼≤𝛽≤1

min {𝑥𝐿𝑖,𝛽, 𝑥𝑈𝑖,𝛽}
(𝑥̃𝑖)𝑈𝛼 = max

𝛼≤𝛽≤1
max {𝑥𝐿𝑖,𝛽, 𝑥𝑈𝑖,𝛽} . (17)

And, the endpoints of the 𝛼-level closed interval (𝑠𝑖)𝛼 =[(𝑠𝑖)𝐿𝛼, (𝑠𝑖)𝑈𝛼 ] of fuzzy mean standard deviation 𝑠𝑖 are
(𝑠𝑖)𝐿𝛼 = min

𝛼≤𝛽≤1
min {𝑠𝐿𝑖,𝛽, 𝑠𝑈𝑖,𝛽}

(𝑠𝑖)𝑈𝛼 = max
𝛼≤𝛽≤1

max {𝑠𝐿𝑖,𝛽, 𝑠𝑈𝑖,𝛽} . (18)

In order to illustrate the practical applicability of the
proposed fuzzy 𝑥 and 𝑠 control charts, a realistic example
in monitoring and controlling surface roughness of optical
lens on its turning process is presented in Section 3.4 as a
paradigm for their data-adaptability.

3.4. Practical Application I. In recent years, optical lenses
have become key components in many industrial products,
such as digital cameras, microscope, and telescope [28]. Most
of optical systems require accurate correspondence between
the object and image, as well as high-quality image which can
be achieved with high-quality and precisely centralized lens.
A lens with better surface roughness significantly improves
the optical resolution of the object image [33]. The quality of
an optical lens depends not only on its design and itsmaterials
but also on the production process itself.Themachining pro-
cesses generate a wide variety of surface patterns, including
lay, roughness, and waviness as illustrated in Figure 2. The
effect of light scattering induced by the surface roughness has
been well addressed in [34–37]. Literally, the less roughness
on a lens surface the better [38, 39] because the roughness
makes the light scattered as shown in Figure 3. Thus, surface
roughness is one of the most important factors in evaluating
the quality of a lens since quality lenses make the final
optical products perform functionally as expected; that is,
controlling the surface quality is a critical issue. However,

Table 1: The attained significance levels in Runs test.

Cut-points in Runs test Median Mean Mode
Attained significance level 0.233 0.301 0.155

Waviness
height

Roughness
height

Roughness
width Waviness width

Lay
(direction
of surface
pattern)

Flaw

Figure 2: Roughness and waviness profiles.

as manufacturing condition is the key source of the surface
texture irregularities which may form nucleation sites for
cracks, imperfections, or quick corrosion [40], monitoring
the manufacturing process becomes incredibly important in
the optical lens industry.

The surface roughness is practically assessed by the height
of the irregularities which can be measured with either con-
tact methods using stylus profilometers [41] or noncontact
methods including direct imaging using a commercial atomic
force microscope in tapping mode [42], speckle-contrast
method, light scatteringmethod [43, 44], and so on.However,
each method has certain disadvantages. A profilometer does
not work accurately when the size of the features of the
surface are quite close to the size of the stylus. Besides, it has
difficulty in detecting flaws of the same size as the roughness
of the surface. Under noncontactmethods, some features that
are less than some fraction of the frequency of their operating
wavelength of light cannot be detected by the instruments
that rely heavily on the optical inference [45]. Also, human
eyes are capable of seeing the colors ranged from violet
through red which lies in the wavelength range of 400–700
nanometers (nm), respectively [46]. Due to these problems,
the surface roughness cannot bemeasured precisely; thus, the
recorded value is interpreted as a triangular fuzzy number as
depicted in Figure 4.

In this study, twenty-five samples have been randomly
taken from a current turning process. Due to the random
sampling, the sizes of the samples are variable. The collected
data are shown in Table 6. As mentioned above, the uncer-
tainty existing in this measurement could be affected by ran-
domness and the phenomenon of fuzziness. Therefore, both
randomness and fuzziness should be taken into consideration
[4]. Runs test is considered as one of the goodmethods to test
for the randomness of fuzzy numbers [47]. The attained sig-
nificance levels for different cut-points (median, mean, and
mode) under this test are shown in Table 1. As all of the levels
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Figure 3: (a) Schema of lights propagation at smooth and (b) rough optical surface.
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Figure 4: Schema of surface profile as produced by a stylus device.

are greater than 0.155, at a given significance level of 0.01 was
used in this study, the surface roughness can obviously be
considered as a random variable [2].

Moreover, it is critical to test if these data are normally
distributed because normal distribution is the basic assump-
tion to construct the control charts. The normal distribution
is tested under Kolmogorov-Smirnov (K-S) statistics [31].
With our data, the attained significance level of 0.05 in
this test indicates that the surface roughness is normally
distributed. As a result, the data can be used to calculate
the fuzzy control limits and construct fuzzy control charts.
The fuzzy 𝑠 chart and 𝑥 chart with 𝐾 = 3 for the twenty-
five investigated samples are plotted in Figures 5 and 6,
respectively.

In evaluating a fuzzy control chart, we need to com-
pare SSFNs and CLFNs. Thus, a method for ranking fuzzy
numbers is mandatory. Among several existing ranking ap-
proaches, a recentmethod proposedYu andDat is considered
in this paper due to its claimed ability in not only providing
consistent ranking results and easy applicability but also effec-
tively ranking a mix of various types of fuzzy numbers [29].
The next section, Section 4, elucidates the development of
our thorough classification mechanism based on a simplified
approach of the chosen method.

4. Proposed Classification Mechanism

With fuzzy control charts shown in Figures 5 and 6, as each
fuzzy observation needs compared with its fuzzy control
limits only, for better efficiency, Yu and Dat’s approach [29]
can be efficiently simplified by adding an extra normal trian-
gular fuzzy number 0̃ = (0, 0, 0) which is used as a radical

number to support our comparison. Specifically, consider a
generalized normal fuzzy numbers 𝑎𝑖 = (𝑏𝑖, 𝑐𝑖, 𝑑𝑖, 𝑒𝑖) whose
membership functions are defined by

𝜉𝑎𝑖 (𝑥) =
{{{{{{{{{{{{{{{

𝑓𝐿𝑎𝑖 (𝑥) if 𝑥 ∈ [𝑏𝑖, 𝑐𝑖]1 if 𝑥 ∈ [𝑐𝑖, 𝑑𝑖]𝑓𝑅𝑎𝑖 (𝑥) if 𝑥 ∈ [𝑑𝑖, 𝑒𝑖]0 otherwise.
(19)

Let 𝑔𝐿𝑎𝑖(𝑦) and 𝑔𝑅𝑎𝑖(𝑦) be the inverse functions of the𝑓𝐿𝑎𝑖(𝑥)
and𝑓𝑅𝑎𝑖 (𝑥), respectively.Then, the left and right integral values
of 𝑎𝑖 to 0̃, respectively, denoted by LV𝑖 and RV𝑖, are calculated
by

LV𝑖 = ∫1
0
𝑔𝐿𝑎𝑖 (𝑦) 𝑑𝑦

RV𝑖 = ∫1
0
𝑔𝑅𝑎𝑖 (𝑦) 𝑑𝑦

(20)

By incorporating optimism level 𝛽, an index presenting
subjective attitude of decision-maker (𝛽 ∈ [0, 1]), with LV𝑖
and RV𝑖, our proposed ranking index of 𝑎𝑖, denoted by SV𝛽𝑖 ,
is defined by

SV𝛽𝑖 = 𝛽RV𝑖 + (1 − 𝛽) LV𝑖. (21)

4.1. Monitoring Process Variability. In order to monitor pro-
cess variability, we need to compare the collected fuzzy data𝑠𝑖 with its fuzzy control limits 𝑢̃𝑠𝑖 and 𝑙̃𝑠𝑖 . Hence, based on the
ranking index in (21), the following procedure is suggested:
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Figure 5: Fuzzy 𝑠 chart for roughness height of optical lens.

(1) Calculate SV𝛽
𝑢̃𝑠𝑖
, SV𝛽
𝑠𝑖
, and SV𝛽

𝑙̃𝑠𝑖
for 𝑢̃𝑠𝑖 , 𝑠𝑖, and 𝑙̃𝑠𝑖 ,

respectively.

(2) For 𝑠𝑖, we calculate its standard deviation, denoted by
Sd𝛽𝑠 across the𝑚 samples by the following formulas:

SV𝛽𝑠 = 1𝑚 𝑚∑
𝑖=1

SV𝛽
𝑠𝑖

Sd𝛽𝑠 = √ 1𝑚 − 1 𝑚∑
𝑖=1

(SV𝛽
𝑠𝑖
− SV𝛽𝑠 )2. (22)

(3) For 𝑢̃𝑠𝑖 , from the obtained SV𝛽
𝑢̃𝑠𝑖

and Sd𝛽𝑠 , we establish
two relevant control limits for 𝑢̃𝑠𝑖 as

SV𝑈,𝛽
𝑢̃𝑠𝑖

= SV𝛽
𝑢̃𝑠𝑖

+ Sd𝛽𝑠

SV𝐿,𝛽
𝑢̃𝑠𝑖

= SV𝛽
𝑢̃𝑠𝑖

− Sd𝛽𝑠 . (23)

(4) For 𝑙̃𝑠𝑖 , from the obtained SV𝛽
𝑙̃𝑠𝑖
and Sd𝛽𝑠 , we establish

two relevant control limits for 𝑙̃𝑠𝑖 as follows:
SV𝑈,𝛽
𝑙̃𝑠𝑖

= SV𝛽
𝑙̃𝑠𝑖
+ Sd𝛽𝑠

SV𝐿,𝛽
𝑙̃𝑠𝑖

= SV𝛽
𝑙̃𝑠𝑖
− Sd𝛽𝑠 . (24)

(5) Before proposing the classification of the manufac-
turing process, we first reorder the values of SV𝑈,𝛽

𝑢̃𝑠𝑖
,

SV𝛽
𝑢̃𝑠𝑖
, SV𝐿,𝛽
𝑢̃𝑠𝑖
, SV𝑈,𝛽
𝑙̃𝑠𝑖

, SV𝛽
𝑙̃𝑠𝑖
, and SV𝐿,𝛽

𝑙̃𝑠𝑖
in a descending



8 Complexity

0 0.5 1

2

4

6

0 0.5 1

2

4

6
1

0 0.5 1

2

4

6
2

0 0.5 1

2

4

6
3

0 0.5 1

2

4

6
4

0 0.5 1

2

4

6
5

0 0.5 1

2

4

6
10

0 0.5 1

2

4

6
9

0 0.5 1

2

4

6
8

0 0.5 1

2

4

6
7

0 0.5 1

2

4

6
6

0 0.5 1

2

4

6
11

0 0.5 1

2

4

6
12

0 0.5 1

2

4

6
13

0 0.5 1

2

4

6
14

0 0.5 1

2

4

6
15

0 0.5 1

2

4

6
20

0 0.5 1

2

4

6
19

0 0.5 1

2

4

6
18

0 0.5 1

2

4

6
16 17

0 0.5 1

2

4

6
22

0 0.5 1

2

4

6
21

0 0.5 1

2

4

6
23

0 0.5 1

2

4

6
24

0 0.5 1

2

4

6
25

ũ
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Figure 6: Fuzzy 𝑥 chart for roughness height of optical lens.

order represented by six critical values 𝑆𝛽𝑖 (𝑖 = 1, 6)
where 𝑆𝛽1 > 𝑆𝛽2 > 𝑆𝛽3 > 𝑆𝛽4 > 𝑆𝛽5 > 𝑆𝛽6 .

(6) Based on the six critical values, a manufacturing
process can be classified based on the following rules:

(a) Process is in control at the optimism level 𝛽 if
the following condition happens:

𝑆𝛽4 < SV𝛽
𝑠𝑖
< 𝑆𝛽3 . (25)

(b) Process is rather in control at the optimism level𝛽 if one of the following conditions happens:

(b1) 𝑆𝛽3 ≤ SV𝛽
𝑠𝑖
≤ 𝑆𝛽2 .

(b2) 𝑆𝛽5 ≤ SV𝛽
𝑠𝑖
≤ 𝑆𝛽4 .

(c) Process is rather out of control at the optimism
level 𝛽 if one of the following conditions hap-
pens:

(c1) 𝑆𝛽2 < SV𝛽
𝑠𝑖
< 𝑆𝛽1 .

(c2) 𝑆𝛽6 < SV𝛽
𝑠𝑖
< 𝑆𝛽5 .

(d) Process is out of control at the optimism level 𝛽
if one of the following conditions happens:
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(d1) SV𝛽
𝑠𝑖
≥ 𝑆𝛽1 .

(d2) SV𝛽
𝑠𝑖
≤ 𝑆𝛽6 .

4.2. Monitoring Process Average. In monitoring process aver-
age, we need to compare the collected fuzzy datawith its fuzzy
control limits 𝑢̃𝑥𝑖 and 𝑙̃𝑥𝑖 . Similarly, we suggest the following
procedure:

(1) Calculate SV𝛽
𝑢̃𝑥𝑖
, SV𝛽
𝑥̃𝑖
, and SV𝛽

𝑙̃𝑥𝑖
for 𝑢̃𝑥𝑖 , 𝑥̃𝑖, and 𝑙̃𝑥𝑖 ,

respectively.

(2) For 𝑥̃𝑖, we calculate its standard deviation, denoted by
Sd𝛽
𝑥
across the𝑚 samples by the following formulas:

SV𝛽
𝑥̃
= 1𝑚 𝑚∑
𝑖=1

SV𝛽
𝑥̃𝑖

Sd𝛽
𝑥
= √ 1𝑚 − 1 𝑚∑

𝑖=1

(SV𝛽
𝑥̃𝑖
− SV𝛽
𝑥̃
)2. (26)

(3) For 𝑢̃𝑥𝑖 , from the obtained SV𝛽
𝑢̃𝑥𝑖

and Sd𝛽
𝑥
, we establish

two relevant control limits for 𝑢̃𝑥𝑖 as follows:
SV𝑈,𝛽
𝑢̃𝑥𝑖

= SV𝛽
𝑢̃𝑥𝑖

+ Sd𝛽
𝑥

SV𝐿,𝛽
𝑢̃𝑥𝑖

= SV𝛽
𝑢̃𝑥𝑖

− Sd𝛽
𝑥
. (27)

(4) For 𝑙̃𝑥𝑖 , from the obtained SV𝛽
𝑙̃𝑥𝑖
and Sd𝛽

𝑥
, we establish

two relevant control limits for 𝑙̃𝑥𝑖 as follows:
SV𝑈,𝛽
𝑙̃𝑥𝑖

= SV𝛽
𝑙̃𝑥𝑖
+ Sd𝛽
𝑥

SV𝐿,𝛽
𝑙̃𝑥𝑖

= SV𝛽
𝑙̃𝑥𝑖
− Sd𝛽
𝑥
. (28)

(5) Before proposing the classification of the manu-
facturing process, we first reorder the values of
SV𝑈,𝛽
𝑢̃𝑥𝑖

, SV𝛽
𝑢̃𝑥𝑖
, SV𝐿,𝛽
𝑢̃𝑥𝑖
, SV𝑈,𝛽
𝑙̃𝑥𝑖

, SV𝛽
𝑙̃𝑥𝑖
, and SV𝐿,𝛽

𝑙̃𝑥𝑖
in a

descending order represented by six critical values𝑆𝛽𝑖 (𝑖 = 1, 6) where 𝑆𝛽1 > 𝑆𝛽2 > 𝑆𝛽3 > 𝑆𝛽4 > 𝑆𝛽5 > 𝑆𝛽6 .
(6) Then the manufacturing process can be classified

based on the following rules:

(a) Process is in control at the optimism level 𝛽 if
the following condition happens:𝑆𝛽4 < SV𝛽

𝑥̃𝑖
< 𝑆𝛽3 .

(b) Process is rather in control at the optimism level𝛽 if one of the following conditions happen:

(b1) 𝑆𝛽3 ≤ SV𝛽
𝑥̃𝑖
≤ 𝑆𝛽2 .

(b2) 𝑆𝛽5 ≤ SV𝛽
𝑥̃𝑖
≤ 𝑆𝛽4 .

(c) Process is rather out of control at the optimism
level 𝛽 if one of the following conditions hap-
pens:

(c1) 𝑆𝛽2 < SV𝛽
𝑥̃𝑖
< 𝑆𝛽1 .

(c2) 𝑆𝛽6 < SV𝛽
𝑥̃𝑖
< 𝑆𝛽5 .

(d) Process is out of control at the optimism level 𝛽
if one of the following conditions happens:

(d1) SV𝛽
𝑥̃𝑖
≥ 𝑆𝛽1 .

(d2) SV𝛽
𝑥̃𝑖
≤ 𝑆𝛽6 .

4.3. Practical Application II. The above classification mecha-
nism is now employed in evaluating the fuzzy control charts
shown in Figures 5 and 6. Particularly, with the simplified left
and right integral value approach presented in Section 4, the
six critical values in the 5th step for the process variability
and process average across the different optimism levels are,
respectively, displayed in Tables 4 and 5. Moreover, with the
suggested classification rules for the process variability and
process average, the current manufacturing process can be
classified as in Tables 2 and 3 where we briefly present the
numerical results at five optimism levels 0.1, 0.3, 0.5, 0.7, and
0.9 for brevity (full results are supplemented on request).The
numerical results in Table 2 indicate that the current process
variability is in control although the process variability of the20th sample is considered acceptable (rather in control) only.
The in-control process variability is well considered as the
first and important criterion to further analyze the process
under𝑥 chart because its control limits depend on the process
variability.Moreover, if assignable causes of the variability are
detected and eliminated, no systematic pattern is found on 𝑥
chart [1].

Based on Figure 6 and the numerical results the twenty-
five samples investigated in Table 3, five alarming signals,
including 15th, 19th, 20th, 23rd, and 25th samples, are
detected. Among them, 19th, 23rd, and 25th samples are con-
sidered rather in-control (R-In), while a pessimistic decision-
maker (at optimism level 0.1) believes that the 15th and 20th
samples are rather out-of-control (R-Out) and if he/she is
more optimistic, these two samples can be still claimed to
be rather in-control (R-In); that is, the incorporation of the
human subjectivity, practitioner’s experience, and optimism
level 𝜆 in our proposed ranking index provides certain
flexibility in the process evaluation. Ultimately, with such
outliers, a careful investigation is needed to look for the
assignable causes occurred in the production of these men-
tioned samples. Once detected, the causes should be com-
pletely eliminated from the current process; or at least, their
impacts escorting the process variabilitymust be significantly
reduced with proper corrective actions undertaken in order
to improve the surface quality of the manufactured optical
lenses.

From managerial perspective, the classification with four
intermediate levels plays important role in avoiding unnec-
essary adjustments to the current process, thus avoiding
vain expenditures and operational risks. Specifically, for the
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Table 2: Process variability classification.

Number
SV𝛽̃̃𝑠𝑖 Status

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
(S.1) 1.640 1.666 1.691 1.717 1.743 In In In In In
(S.2) 1.321 1.344 1.366 1.389 1.412 In In In In In
(S.3) 1.083 1.101 1.118 1.136 1.153 In In In In In
(S.4) 1.451 1.473 1.496 1.518 1.540 In In In In In
(S.5) 1.508 1.524 1.540 1.556 1.572 In In In In In
(S.6) 1.503 1.533 1.563 1.593 1.624 In In In In In
(S.7) 0.970 1.001 1.031 1.061 1.091 In In In In In
(S.8) 1.470 1.483 1.495 1.507 1.520 In In In In In
(S.9) 1.472 1.482 1.491 1.500 1.509 In In In In In
(S.10) 1.034 1.068 1.102 1.135 1.169 In In In In In
(S.11) 1.175 1.225 1.274 1.324 1.373 In In In In In
(S.12) 1.426 1.433 1.441 1.448 1.456 In In In In In
(S.13) 1.132 1.155 1.178 1.201 1.224 In In In In In
(S.14) 1.477 1.487 1.496 1.505 1.515 In In In In In
(S.15) 1.538 1.547 1.556 1.565 1.575 In In In In In
(S.16) 1.101 1.105 1.108 1.112 1.116 In In In In In
(S.17) 1.242 1.269 1.296 1.324 1.351 In In In In In
(S.18) 1.108 1.126 1.144 1.162 1.180 In In In In In
(S.19) 1.524 1.570 1.616 1.661 1.707 In In In In In
(S.20) 0.445 0.460 0.474 0.489 0.503 R-In R-In R-In R-In R-In
(S.21) 0.806 0.825 0.844 0.863 0.882 In In In In In
(S.22) 1.545 1.554 1.564 1.573 1.583 In In In In In
(S.23) 0.849 0.866 0.882 0.898 0.915 In In In In In
(S.24) 1.680 1.699 1.718 1.737 1.757 In In In In In
(S.25) 1.258 1.267 1.276 1.284 1.293 In In In In In
Notes. In: in-control; R-In: rather in-control.

Table 3: Process average classification.

Number
SV𝛽
𝑥̃𝑖

Process status
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

(S.1) 3.257 3.405 3.552 3.700 3.848 In In In In In
(S.2) 2.631 2.794 2.957 3.120 3.284 In In In In In
(S.3) 3.046 3.180 3.314 3.448 3.582 In In In In In
(S.4) 2.750 2.890 3.031 3.171 3.311 In In In In In
(S.5) 3.407 3.543 3.679 3.815 3.951 In In In In In
(S.6) 3.714 3.849 3.984 4.120 4.255 In In In In In
(S.7) 2.913 3.062 3.211 3.360 3.509 In In In In In
(S.8) 3.770 3.872 3.973 4.075 4.176 In In In In In
(S.9) 3.133 3.267 3.401 3.535 3.669 In In In In In
(S.10) 3.841 3.996 4.151 4.306 4.460 In In In In In
(S.11) 3.675 3.801 3.927 4.054 4.180 In In In In In
(S.12) 3.415 3.525 3.634 3.744 3.853 In In In In In
(S.13) 2.847 2.973 3.099 3.225 3.352 In In In In In
(S.14) 3.143 3.283 3.422 3.562 3.701 In In In In In
(S.15) 1.760 2.127 2.494 2.861 3.228 R-Out R-In R-In R-In In
(S.16) 2.599 2.717 2.835 2.953 3.071 In In In In In
(S.17) 3.447 3.567 3.688 3.808 3.929 In In In In In
(S.18) 3.319 3.455 3.591 3.728 3.864 In In In In In
(S.19) 4.001 4.146 4.290 4.434 4.579 R-In R-In R-In R-In R-In
(S.20) 4.546 4.655 4.765 4.875 4.985 R-Out R-In R-In R-In R-In
(S.21) 3.179 3.323 3.468 3.613 3.758 In In In In In
(S.22) 3.463 3.603 3.743 3.883 4.024 In In In In In
(S.23) 2.163 2.298 2.433 2.568 2.703 R-In R-In R-In R-In R-In
(S.24) 3.407 3.568 3.730 3.892 4.054 In In In In In
(S.25) 2.269 2.399 2.529 2.660 2.790 R-In R-In R-In R-In R-In
Notes. R-Out: rather out-of-control; R-In: rather in-control.
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Table 4: Critical values to evaluate fuzzy 𝑠-chart.
𝜆 𝑆𝜆1 𝑆𝜆2 𝑆𝜆3 𝑆𝜆4 𝑆𝜆5 𝑆𝜆6

(S.1)

0.1 2.724 2.425 2.126 0.546 0.247 −0.052
0.3 2.735 2.437 2.138 0.547 0.248 −0.051
0.5 2.747 2.448 2.149 0.548 0.249 −0.050
0.7 2.760 2.460 2.160 0.550 0.250 −0.050
0.9 2.772 2.471 2.170 0.553 0.251 −0.050

(S.2)

0.1 2.591 2.292 1.993 0.679 0.380 0.081
0.3 2.602 2.303 2.004 0.681 0.382 0.083
0.5 2.613 2.314 2.015 0.683 0.383 0.084
0.7 2.625 2.325 2.025 0.685 0.385 0.085
0.9 2.637 2.336 2.035 0.688 0.387 0.086

(S.3)

0.1 2.498 2.199 1.899 0.772 0.473 0.174
0.3 2.508 2.209 1.910 0.774 0.475 0.176
0.5 2.519 2.220 1.920 0.777 0.478 0.178
0.7 2.530 2.230 1.930 0.780 0.480 0.180
0.9 2.542 2.241 1.940 0.783 0.482 0.181

(S.4)

0.1 2.591 2.292 1.993 0.679 0.380 0.081
0.3 2.602 2.303 2.004 0.681 0.382 0.083
0.5 2.613 2.314 2.015 0.683 0.383 0.084
0.7 2.625 2.325 2.025 0.685 0.385 0.085
0.9 2.637 2.336 2.035 0.688 0.387 0.086

(S.5)

0.1 2.652 2.352 2.053 0.618 0.319 0.020
0.3 2.663 2.364 2.065 0.620 0.321 0.022
0.5 2.674 2.375 2.076 0.622 0.322 0.023
0.7 2.686 2.386 2.086 0.624 0.324 0.024
0.9 2.698 2.397 2.096 0.626 0.325 0.024

(S.6)

0.1 2.541 2.242 1.942 0.729 0.430 0.131
0.3 2.551 2.252 1.953 0.731 0.432 0.133
0.5 2.562 2.263 1.964 0.733 0.434 0.135
0.7 2.574 2.274 1.974 0.736 0.436 0.136
0.9 2.585 2.284 1.983 0.739 0.438 0.137

(S.7)

0.1 2.724 2.425 2.126 0.546 0.247 −0.052
0.3 2.735 2.437 2.138 0.547 0.248 −0.051
0.5 2.747 2.448 2.149 0.548 0.249 −0.050
0.7 2.760 2.460 2.160 0.550 0.250 −0.050
0.9 2.772 2.471 2.170 0.553 0.251 −0.050

(S.8)

0.1 2.724 2.425 2.126 0.546 0.247 −0.052
0.3 2.735 2.437 2.138 0.547 0.248 −0.051
0.5 2.747 2.448 2.149 0.548 0.249 −0.050
0.7 2.760 2.460 2.160 0.550 0.250 −0.050
0.9 2.772 2.471 2.170 0.553 0.251 −0.050

(S.9)

0.1 2.591 2.292 1.993 0.679 0.380 0.081
0.3 2.602 2.303 2.004 0.681 0.382 0.083
0.5 2.613 2.314 2.015 0.683 0.383 0.084
0.7 2.625 2.325 2.025 0.685 0.385 0.085
0.9 2.637 2.336 2.035 0.688 0.387 0.086

(S.10)

0.1 2.652 2.352 2.053 0.618 0.319 0.020
0.3 2.663 2.364 2.065 0.620 0.321 0.022
0.5 2.674 2.375 2.076 0.622 0.322 0.023
0.7 2.686 2.386 2.086 0.624 0.324 0.024
0.9 2.698 2.397 2.096 0.626 0.325 0.024

(S.11)

0.1 2.541 2.242 1.942 0.729 0.430 0.131
0.3 2.551 2.252 1.953 0.731 0.432 0.133
0.5 2.562 2.263 1.964 0.733 0.434 0.135
0.7 2.574 2.274 1.974 0.736 0.436 0.136
0.9 2.585 2.284 1.983 0.739 0.438 0.137

Table 4: Continued.𝜆 𝑆𝜆1 𝑆𝜆2 𝑆𝜆3 𝑆𝜆4 𝑆𝜆5 𝑆𝜆6
(S.12)

0.1 2.591 2.292 1.993 0.679 0.380 0.081
0.3 2.602 2.303 2.004 0.681 0.382 0.083
0.5 2.613 2.314 2.015 0.683 0.383 0.084
0.7 2.625 2.325 2.025 0.685 0.385 0.085
0.9 2.637 2.336 2.035 0.688 0.387 0.086

(S.13)

0.1 2.498 2.199 1.899 0.772 0.473 0.174
0.3 2.508 2.209 1.910 0.774 0.475 0.176
0.5 2.519 2.220 1.920 0.777 0.478 0.178
0.7 2.530 2.230 1.930 0.780 0.480 0.180
0.9 2.542 2.241 1.940 0.783 0.482 0.181

(S.14)

0.1 2.498 2.199 1.899 0.772 0.473 0.174
0.3 2.508 2.209 1.910 0.774 0.475 0.176
0.5 2.519 2.220 1.920 0.777 0.478 0.178
0.7 2.530 2.230 1.930 0.780 0.480 0.180
0.9 2.542 2.241 1.940 0.783 0.482 0.181

(S.15)

0.1 2.591 2.292 1.993 0.679 0.380 0.081
0.3 2.602 2.303 2.004 0.681 0.382 0.083
0.5 2.613 2.314 2.015 0.683 0.383 0.084
0.7 2.625 2.325 2.025 0.685 0.385 0.085
0.9 2.637 2.336 2.035 0.688 0.387 0.086

(S.16)

0.1 2.652 2.352 2.053 0.618 0.319 0.020
0.3 2.663 2.364 2.065 0.620 0.321 0.022
0.5 2.674 2.375 2.076 0.622 0.322 0.023
0.7 2.686 2.386 2.086 0.624 0.324 0.024
0.9 2.698 2.397 2.096 0.626 0.325 0.024

(S.17)

0.1 2.724 2.425 2.126 0.546 0.247 −0.052
0.3 2.735 2.437 2.138 0.547 0.248 −0.051
0.5 2.747 2.448 2.149 0.548 0.249 −0.050
0.7 2.760 2.460 2.160 0.550 0.250 −0.050
0.9 2.772 2.471 2.170 0.553 0.251 −0.050

(S.18)

0.1 2.652 2.352 2.053 0.618 0.319 0.020
0.3 2.663 2.364 2.065 0.620 0.321 0.022
0.5 2.674 2.375 2.076 0.622 0.322 0.023
0.7 2.686 2.386 2.086 0.624 0.324 0.024
0.9 2.698 2.397 2.096 0.626 0.325 0.024

(S.19)

0.1 2.591 2.292 1.993 0.679 0.380 0.081
0.3 2.602 2.303 2.004 0.681 0.382 0.083
0.5 2.613 2.314 2.015 0.683 0.383 0.084
0.7 2.625 2.325 2.025 0.685 0.385 0.085
0.9 2.637 2.336 2.035 0.688 0.387 0.086

(S.20)

0.1 2.591 2.292 1.993 0.679 0.380 0.081
0.3 2.602 2.303 2.004 0.681 0.382 0.083
0.5 2.613 2.314 2.015 0.683 0.383 0.084
0.7 2.625 2.325 2.025 0.685 0.385 0.085
0.9 2.637 2.336 2.035 0.688 0.387 0.086

(S.21)

0.1 2.652 2.352 2.053 0.618 0.319 0.020
0.3 2.663 2.364 2.065 0.620 0.321 0.022
0.5 2.674 2.375 2.076 0.622 0.322 0.023
0.7 2.686 2.386 2.086 0.624 0.324 0.024
0.9 2.698 2.397 2.096 0.626 0.325 0.024

(S.22)

0.1 2.498 2.199 1.899 0.772 0.473 0.174
0.3 2.508 2.209 1.910 0.774 0.475 0.176
0.5 2.519 2.220 1.920 0.777 0.478 0.178
0.7 2.530 2.230 1.930 0.780 0.480 0.180
0.9 2.542 2.241 1.940 0.783 0.482 0.181
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Table 4: Continued.𝜆 𝑆𝜆1 𝑆𝜆2 𝑆𝜆3 𝑆𝜆4 𝑆𝜆5 𝑆𝜆6
(S.23)

0.1 2.591 2.292 1.993 0.679 0.380 0.081
0.3 2.602 2.303 2.004 0.681 0.382 0.083
0.5 2.613 2.314 2.015 0.683 0.383 0.084
0.7 2.625 2.325 2.025 0.685 0.385 0.085
0.9 2.637 2.336 2.035 0.688 0.387 0.086

(S.24)

0.1 2.541 2.242 1.942 0.729 0.430 0.131
0.3 2.551 2.252 1.953 0.731 0.432 0.133
0.5 2.562 2.263 1.964 0.733 0.434 0.135
0.7 2.574 2.274 1.974 0.736 0.436 0.136
0.9 2.585 2.284 1.983 0.739 0.438 0.137

(S.25)

0.1 2.498 2.199 1.899 0.772 0.473 0.174
0.3 2.508 2.209 1.910 0.774 0.475 0.176
0.5 2.519 2.220 1.920 0.777 0.478 0.178
0.7 2.530 2.230 1.930 0.780 0.480 0.180
0.9 2.542 2.241 1.940 0.783 0.482 0.181

“rather in-control” process, no intervention to the process is
suggested unless its cost is bearable. On the other hand, for
“rather out-of-control” process, mediating the manufactur-
ing process is strongly required if either the setup cost is small
or tolerable or the gains of quality products outweigh the large
expenditure for possible intervention.

5. Conclusion

In monitoring a manufacturing process, the conventional
control charts are only applicable for real-valued data and
categorizing the process as either in control or out of control;
however, due to some certain problems inmeasuring, the data
are not precisely collected, which is said to be fuzzy data.
Therefore, in the fuzzy environment, the traditional control
charts turn out to be inappropriate. Hence, in this paper, we
proposed fuzzy𝑥 and 𝑠 control charts whose control limits are
obtained based on the results of the resolution identity in the
well-known fuzzy set theory. Moreover, in order to monitor
the process based on these fuzzy control charts, by simpli-
fying a recently proposed ranking method based on the left
and right integral value, we developed thorough evaluation
rules which can classify a manufacturing process in the fuzzy
environment into four different linguistic statuses, including
in-control, out-of-control, rather out-of-control, and rather
in-control. Basically, since the incorporation of optimism
level into the ranking index provides critical flexibility in
decision-making procedure, decision-makers can take their
own advantages and experiences in implementing proper
actions in order to fully control the quality of manufac-
tured products. In the empirical case study of monitoring
the surface roughness of optical lens with fuzzy data in
manufacturing processes, both randomness and fuzziness are

Table 5: Critical values to evaluate fuzzy 𝑥-chart.
𝜆 𝑆𝜆1 𝑆𝜆2 𝑆𝜆3 𝑆𝜆4 𝑆𝜆5 𝑆𝜆6

(S.1)

0.1 5.326 4.710 4.094 2.352 1.736 1.121
0.3 5.434 4.842 4.250 2.464 1.873 1.281
0.5 5.545 4.973 4.402 2.580 2.009 1.438
0.7 5.659 5.105 4.551 2.699 2.145 1.591
0.9 5.778 5.237 4.696 2.822 2.282 1.741

(S.2)

0.1 5.158 4.543 3.927 2.519 1.904 1.288
0.3 5.266 4.674 4.083 2.632 2.040 1.448
0.5 5.378 4.806 4.235 2.747 2.176 1.605
0.7 5.492 4.938 4.384 2.866 2.312 1.758
0.9 5.611 5.070 4.530 2.989 2.448 1.907

(S.3)

0.1 5.037 4.422 3.806 2.640 2.025 1.409
0.3 5.145 4.554 3.962 2.752 2.161 1.569
0.5 5.257 4.686 4.115 2.868 2.297 1.725
0.7 5.372 4.818 4.264 2.986 2.432 1.878
0.9 5.491 4.950 4.409 3.109 2.568 2.028

(S.4)

0.1 5.158 4.543 3.927 2.519 1.904 1.288
0.3 5.266 4.674 4.083 2.632 2.040 1.448
0.5 5.378 4.806 4.235 2.747 2.176 1.605
0.7 5.492 4.938 4.384 2.866 2.312 1.758
0.9 5.611 5.070 4.530 2.989 2.448 1.907

(S.5)

0.1 5.234 4.619 4.003 2.443 1.827 1.212
0.3 5.342 4.751 4.159 2.555 1.964 1.372
0.5 5.454 4.882 4.311 2.671 2.100 1.529
0.7 5.568 5.014 4.460 2.790 2.236 1.682
0.9 5.687 5.146 4.605 2.913 2.372 1.832

(S.6)

0.1 5.093 4.478 3.862 2.584 1.969 1.353
0.3 5.201 4.610 4.018 2.696 2.105 1.513
0.5 5.313 4.742 4.171 2.812 2.241 1.669
0.7 5.428 4.874 4.320 2.931 2.377 1.823
0.9 5.547 5.006 4.465 3.053 2.513 1.972

(S.7)

0.1 5.326 4.710 4.094 2.352 1.736 1.121
0.3 5.434 4.842 4.250 2.464 1.873 1.281
0.5 5.545 4.973 4.402 2.580 2.009 1.438
0.7 5.659 5.105 4.551 2.699 2.145 1.591
0.9 5.778 5.237 4.696 2.822 2.282 1.741

(S.8)

0.1 5.326 4.710 4.094 2.352 1.736 1.121
0.3 5.434 4.842 4.250 2.464 1.873 1.281
0.5 5.545 4.973 4.402 2.580 2.009 1.438
0.7 5.659 5.105 4.551 2.699 2.145 1.591
0.9 5.778 5.237 4.696 2.822 2.282 1.741

(S.9)

0.1 5.158 4.543 3.927 2.519 1.904 1.288
0.3 5.266 4.674 4.083 2.632 2.040 1.448
0.5 5.378 4.806 4.235 2.747 2.176 1.605
0.7 5.492 4.938 4.384 2.866 2.312 1.758
0.9 5.611 5.070 4.530 2.989 2.448 1.907

(S.10)

0.1 5.234 4.619 4.003 2.443 1.827 1.212
0.3 5.342 4.751 4.159 2.555 1.964 1.372
0.5 5.454 4.882 4.311 2.671 2.100 1.529
0.7 5.568 5.014 4.460 2.790 2.236 1.682
0.9 5.687 5.146 4.605 2.913 2.372 1.832
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Table 5: Continued.𝜆 𝑆𝜆1 𝑆𝜆2 𝑆𝜆3 𝑆𝜆4 𝑆𝜆5 𝑆𝜆6
(S.11)

0.1 5.093 4.478 3.862 2.584 1.969 1.353
0.3 5.201 4.610 4.018 2.696 2.105 1.513
0.5 5.313 4.742 4.171 2.812 2.241 1.669
0.7 5.428 4.874 4.320 2.931 2.377 1.823
0.9 5.547 5.006 4.465 3.053 2.513 1.972

(S.12)

0.1 5.158 4.543 3.927 2.519 1.904 1.288
0.3 5.266 4.674 4.083 2.632 2.040 1.448
0.5 5.378 4.806 4.235 2.747 2.176 1.605
0.7 5.492 4.938 4.384 2.866 2.312 1.758
0.9 5.611 5.070 4.530 2.989 2.448 1.907

(S.13)

0.1 5.037 4.422 3.806 2.640 2.025 1.409
0.3 5.145 4.554 3.962 2.752 2.161 1.569
0.5 5.257 4.686 4.115 2.868 2.297 1.725
0.7 5.372 4.818 4.264 2.986 2.432 1.878
0.9 5.491 4.950 4.409 3.109 2.568 2.028

(S.14)

0.1 5.037 4.422 3.806 2.640 2.025 1.409
0.3 5.145 4.554 3.962 2.752 2.161 1.569
0.5 5.257 4.686 4.115 2.868 2.297 1.725
0.7 5.372 4.818 4.264 2.986 2.432 1.878
0.9 5.491 4.950 4.409 3.109 2.568 2.028

(S.15)

0.1 5.158 4.543 3.927 2.519 1.904 1.288
0.3 5.266 4.674 4.083 2.632 2.040 1.448
0.5 5.378 4.806 4.235 2.747 2.176 1.605
0.7 5.492 4.938 4.384 2.866 2.312 1.758
0.9 5.611 5.070 4.530 2.989 2.448 1.907

(S.16)

0.1 5.234 4.619 4.003 2.443 1.827 1.212
0.3 5.342 4.751 4.159 2.555 1.964 1.372
0.5 5.454 4.882 4.311 2.671 2.100 1.529
0.7 5.568 5.014 4.460 2.790 2.236 1.682
0.9 5.687 5.146 4.605 2.913 2.372 1.832

(S.17)

0.1 5.326 4.710 4.094 2.352 1.736 1.121
0.3 5.434 4.842 4.250 2.464 1.873 1.281
0.5 5.545 4.973 4.402 2.580 2.009 1.438
0.7 5.659 5.105 4.551 2.699 2.145 1.591
0.9 5.778 5.237 4.696 2.822 2.282 1.741

(S.18)

0.1 5.234 4.619 4.003 2.443 1.827 1.212
0.3 5.342 4.751 4.159 2.555 1.964 1.372
0.5 5.454 4.882 4.311 2.671 2.100 1.529
0.7 5.568 5.014 4.460 2.790 2.236 1.682
0.9 5.687 5.146 4.605 2.913 2.372 1.832

(S.19)

0.1 5.158 4.543 3.927 2.519 1.904 1.288
0.3 5.266 4.674 4.083 2.632 2.040 1.448
0.5 5.378 4.806 4.235 2.747 2.176 1.605
0.7 5.492 4.938 4.384 2.866 2.312 1.758
0.9 5.611 5.070 4.530 2.989 2.448 1.907

(S.20)

0.1 5.158 4.543 3.927 2.519 1.904 1.288
0.3 5.266 4.674 4.083 2.632 2.040 1.448
0.5 5.378 4.806 4.235 2.747 2.176 1.605
0.7 5.492 4.938 4.384 2.866 2.312 1.758
0.9 5.611 5.070 4.530 2.989 2.448 1.907

Table 5: Continued.𝜆 𝑆𝜆1 𝑆𝜆2 𝑆𝜆3 𝑆𝜆4 𝑆𝜆5 𝑆𝜆6
(S.21)

0.1 5.234 4.619 4.003 2.443 1.827 1.212
0.3 5.342 4.751 4.159 2.555 1.964 1.372
0.5 5.454 4.882 4.311 2.671 2.100 1.529
0.7 5.568 5.014 4.460 2.790 2.236 1.682
0.9 5.687 5.146 4.605 2.913 2.372 1.832

(S.22)

0.1 5.037 4.422 3.806 2.640 2.025 1.409
0.3 5.145 4.554 3.962 2.752 2.161 1.569
0.5 5.257 4.686 4.115 2.868 2.297 1.725
0.7 5.372 4.818 4.264 2.986 2.432 1.878
0.9 5.491 4.950 4.409 3.109 2.568 2.028

(S.23)

0.1 5.158 4.543 3.927 2.519 1.904 1.288
0.3 5.266 4.674 4.083 2.632 2.040 1.448
0.5 5.378 4.806 4.235 2.747 2.176 1.605
0.7 5.492 4.938 4.384 2.866 2.312 1.758
0.9 5.611 5.070 4.530 2.989 2.448 1.907

(S.24)

0.1 5.093 4.478 3.862 2.584 1.969 1.353
0.3 5.201 4.610 4.018 2.696 2.105 1.513
0.5 5.313 4.742 4.171 2.812 2.241 1.669
0.7 5.428 4.874 4.320 2.931 2.377 1.823
0.9 5.547 5.006 4.465 3.053 2.513 1.972

(S.25)

0.1 5.037 4.422 3.806 2.640 2.025 1.409
0.3 5.145 4.554 3.962 2.752 2.161 1.569
0.5 5.257 4.686 4.115 2.868 2.297 1.725
0.7 5.372 4.818 4.264 2.986 2.432 1.878
0.9 5.491 4.950 4.409 3.109 2.568 2.028

taken into consideration to avoid potential bias and loss of
efficiency. By comparing the fuzzy averages and variances to
their respective fuzzy control limits, our proposed control
charts have effectively detected key alarming signals whose
underlying roots need to be carefully investigated so that
corrective actions can be undertaken in order to either
preclude them from the process or reduce their effect on the
variation in the processes to improve the surface quality of
the optical lenses. In addition, the intermediate classification
provided by our proposed control charts practically signifies
the trade-off between the intervention cost and the expected
quality gain; thus, our approach can obviously avoid not
only unnecessary adjustment to the current process but also
the potential loss in their business. As such, our proposed
fuzzy control charts can fulfill the current literature of the
conventional 𝑥 chart and 𝑠 chart in terms of effectiveness
when fuzzy data inevitably present in the manufacturing
processes.

Appendix

See Tables 4, 5, and 6.
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Table 6: Roughness height (𝜇m) of optical lens.

Obser. number (S.1) (S.2) (S.3) (S.4)
(1) 0.76 1.03 1.34 0.79 1.16 2.12 3.46 3.68 3.86 3.04 4.79 4.84
(2) 4.87 5.31 5.59 2.26 2.79 3.49 2.68 2.72 2.85 4.38 5.11 5.29
(3) 3.58 4.55 5.14 3.08 3.22 4.16 2.15 4.85 5.50 0.84 1.63 1.75
(4) 2.76 3.22 3.85 1.02 1.62 1.88 1.85 2.18 2.62 0.80 0.96 1.35
(5) 2.46 3.28 3.67 0.57 3.24 4.02 1.14 2.00 2.29 2.04 2.96 3.69
(6) 0.96 1.32 1.45 3.92 4.51 5.00 3.82 4.11 4.60 0.89 3.26 3.52
(7) 4.27 4.64 5.34 0.76 1.10 1.79 4.05 4.61 4.95 3.22 4.01 4.43
(8) 0.53 4.96 5.07 1.45 2.04 2.95 2.99 3.53 3.79 3.19 4.16 4.65
(9) 3.31 4.17 4.34 3.55 4.08 4.39 2.10 2.24 2.27
(10) 2.56 4.98 5.52 1.16 2.10 2.78 0.57 0.86 2.63
(11) 2.64 2.73 3.72
(12) 0.74 1.26 4.21
Obser. number (S.5) (S.6) (S.7) (S.8)
(1) 2.04 2.27 4.20 4.98 5.23 5.39 3.49 4.05 5.00 3.20 3.65 3.95
(2) 1.31 1.58 2.30 3.05 3.87 5.42 0.81 1.25 3.01 3.19 3.62 3.99
(3) 3.34 4.27 4.78 1.01 1.45 3.98 0.54 3.07 3.95 1.34 1.61 2.35
(4) 1.17 1.93 2.77 2.46 3.07 3.27 2.20 2.52 2.66 1.26 1.72 2.29
(5) 4.78 4.83 5.48 2.78 3.29 4.18 2.29 2.35 2.99 3.72 4.51 4.52
(6) 5.21 5.96 6.31 1.78 1.95 2.74 3.59 4.33 4.60 4.95 5.50 5.63
(7) 2.93 3.75 4.65 4.48 5.19 5.54 2.59 3.00 3.71 4.40 5.28 5.93
(8) 4.02 4.03 4.99 1.89 2.41 2.77 3.14 4.04 4.08 4.15 4.58 5.28
(9) 1.86 1.96 2.83 4.95 5.87 5.89
(10) 2.25 3.11 3.43 5.17 6.15 6.37
Obser. number (S.9) (S.10) (S.11) (S.12)
(1) 1.63 2.54 3.39 0.79 2.14 3.02 3.45 4.69 4.94 2.67 3.50 4.13
(2) 4.33 4.73 5.50 0.88 4.51 4.96 4.98 5.11 5.21 4.43 4.66 4.86
(3) 0.96 3.54 4.02 4.92 5.52 6.19 4.53 5.01 5.12 4.94 5.52 5.69
(4) 2.75 3.02 3.59 3.04 3.32 3.34 4.92 5.22 5.41 2.71 3.01 3.56
(5) 2.92 3.34 3.68 3.40 3.84 4.26 3.26 4.10 4.28 4.64 5.47 6.39
(6) 1.33 1.66 2.26 3.25 3.98 4.21 1.27 3.17 3.83 0.99 1.34 1.40
(7) 4.73 5.59 5.79 4.01 4.25 4.68 2.29 3.11 3.22 1.62 1.98 2.93
(8) 1.19 1.52 2.43 3.28 4.12 5.20 3.03 3.67 3.73 3.06 3.22 3.58
(9) 1.49 1.78 2.23 4.25 5.02 5.23 3.62 4.33 5.15 2.04 2.90 3.51
(10) 4.24 5.10 5.45 1.06 1.67 2.29 2.21 3.10 3.69
(11) 0.55 2.63 3.01
Obser. number (S.13) (S.14) (S.15) (S.16)
(1) 1.90 2.36 3.14 1.61 1.86 2.32 4.87 5.54 6.29 2.49 3.17 4.07
(2) 3.08 4.07 4.75 4.36 5.16 6.12 0.59 0.80 1.36 3.96 4.30 4.68
(3) 4.11 4.80 5.09 1.23 2.02 2.05 1.63 2.52 2.61 1.95 2.80 3.69
(4) 2.05 2.41 3.12 3.65 4.26 4.99 1.27 1.71 1.88 0.64 2.02 2.67
(5) 1.33 1.76 1.96 3.89 4.48 5.30 2.08 2.91 3.12 2.45 2.67 3.07
(6) 1.91 2.44 3.24 1.53 2.03 2.50 3.42 3.71 3.77 2.41 2.50 3.49
(7) 1.92 2.75 3.41 3.06 3.84 4.30 4.53 4.61 4.84 0.58 0.86 1.27
(8) 4.04 4.87 5.85 3.62 4.51 4.92 2.36 2.99 3.97 1.83 1.92 2.22
(9) 1.20 1.32 1.38 1.99 2.83 3.77 3.38 3.82 4.34 3.02 3.97 4.28
(10) 0.65 3.16 3.52 0.46 0.93 2.31 0.89 1.05 3.14
(11) 2.43 2.72 2.93 1.47 2.11 2.96
(12) 2.98 3.36 3.64 4.42 4.93 5.69
Obser. number (S.17) (S.18) (S.19)
(1) 3.29 3.99 4.48 4.04 4.24 5.20 1.87 1.93 2.37
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Table 6: Continued.

(2) 1.72 1.88 2.75 4.15 4.34 5.00 3.48 4.03 4.44
(3) 4.63 4.98 5.20 4.03 4.55 4.84 0.45 0.59 1.18
(4) 3.48 4.42 5.24 1.51 1.67 2.16 4.78 5.40 6.34
(5) 2.35 2.46 3.16 2.30 2.94 3.88 3.80 4.30 4.59
(6) 4.28 4.39 5.27 1.95 2.47 2.59 3.52 5.10 5.46
(7) 3.41 3.85 4.41 3.78 4.17 5.12 3.68 4.85 5.15
(8) 1.21 1.26 3.05 2.82 3.48 4.31 3.60 5.05 5.47
(9) 0.92 2.36 4.09 3.24 5.46 5.62
(10) 4.10 5.61 5.65
Obser. number (S.20) (S.21) (S.22)
(1) 3.83 4.35 5.41 2.43 3.25 3.87 0.93 0.99 1.95
(2) 3.40 4.42 4.60 2.52 2.89 3.64 3.90 4.61 5.04
(3) 4.64 5.21 5.35 2.69 2.74 3.82 2.92 3.60 4.47
(4) 4.20 5.51 5.64 2.86 4.14 4.85 3.99 4.42 5.11
(5) 4.18 4.40 4.85 1.63 1.80 1.93 0.76 1.92 4.96
(6) 3.62 4.62 4.80 3.29 3.32 3.92 4.69 4.95 5.74
(7) 3.86 4.62 4.94 0.76 3.21 4.12 2.81 3.22 3.60
(8) 4.05 5.09 5.34 3.47 3.73 4.64 4.57 5.40 6.23
(9) 4.04 4.26 4.80 3.98 4.54 5.25 0.83 0.92 1.30
(10) 3.44 3.80 3.98 2.35 3.28 3.97
(11) 3.05 3.60 3.98
(12) 4.83 5.01 5.30
Obser. number (S.23) (S.24) (S.25)
(1) 1.61 2.57 2.87 0.95 1.03 1.35 2.28 2.69 3.05
(2) 1.07 1.56 1.80 5.26 6.10 6.41 1.20 1.86 3.57
(3) 1.56 1.71 1.82 3.96 4.19 4.43 0.68 1.25 3.61
(4) 2.17 3.16 3.62 2.02 2.42 2.48 2.19 2.9 3.25
(5) 0.86 3.26 3.84 2.52 5.31 5.41 3.18 3.75 3.94
(6) 0.56 2.84 3.14 3.60 4.37 4.88 3.35 3.91 4.27
(7) 0.46 1.11 1.55 2.56 3.20 4.16 0.47 0.76 1.33
(8) 1.48 1.57 2.38 3.66 4.11 4.75 0.72 1.01 1.08
(9) 2.70 3.43 3.96 4.84 5.36 6.29 0.68 2.96 3.04
(10) 2.96 3.28 3.31 0.61 1.86 3.24 1.83 2.26 3.16
(11) 0.49 1.26 4.02 0.65 1.13 1.18
(12) 4.31 4.34 4.97
Notes. Obser. number: observation number; S.: sample number.

Abbreviations

SSFNs: Sample-statistics’ fuzzy numbers
CLFNs: Control-limits’ fuzzy numbers
CL: Center line
UCL: Upper control limit
LCL: Lower control limit
NISD: Necessity index of strict dominance
DFA: Direct fuzzy approach
FDA: Fuzzy dominance approach
LV: Left integral values
RV: Right integral values
R-In: Rather in-control
R-Out: Rather out-of-control.
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