
Research Article
An Approach of Tracking Control for Chaotic Systems

Jin Xing1,2 and Fangfang Zhang3

1College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2Department of Electromechanical Engineering, Binzhou University, Binzhou, Shandong 256600, China
3School of Electrical Engineering and Automation, Qilu University of Technology, Jinan, Shandong 250353, China

Correspondence should be addressed to Fangfang Zhang; zhff4u@163.com

Received 15 October 2015; Accepted 31 March 2016

Academic Editor: Jie Chen

Copyright © 2016 J. Xing and F. Zhang.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Combining the ergodicity of chaos and the Jacobian matrix, we design a general tracking controller for continuous and discrete
chaotic systems. The control scheme has the ability to track a bounded reference signal. We prove its globally asymptotic stability
and extend it to generalized projective synchronization. Numerical simulations verify the effectiveness of the proposed scheme.

1. Introduction

SinceOtt et al. firstly proposed themethod of chaos control in
1990 [1], chaos control has attracted great attention in recent
years and lots of successful methods have been reported
[2–22], such as feedback control [7, 8], impulsive control
[9, 10], backstepping method [11], adaptive control [12–15],
adaptive fuzzy backstepping technique [16], adaptive sliding
mode control [17, 18], neural network technique [19], andH

∞

synchronization [20–22].
However, due to the complexity of chaotic systems, most

approaches are designed for a special chaotic system, or
they only realize the control of unstable fixed point and
synchronization for identical systems [7–10, 12–15]. The
literatures on the tracking control of reference signal [23–32]
are relatively less.

In 1998, Lin et al. applied the idea of Chen’s method
[23] to discrete chaotic systems [24], but the method needed
calculating an error feedback matrix to assure that a certain
matrix is negative semidefinite. When the dimension of these
matrixes is large, the calculation becomes rather complex.
Chen established the open-plus-closed-loop control law for
discrete dynamical systems [25], but it required that the initial
points were in the basin of entrainment. References [26–28]
realized tracking control only for Henon chaotic system. Ref-
erences [29, 30] presented tracking control schemes for con-
tinuous chaotic systems and did not refer to the application
to discrete systems. Zheng et al. gave a rapid synchronization

algorithm [31], but it involved the calculation of high order
derivative matrix. Rehan et al. discussed stabilization and
tracking control using linear matrix inequalities for a class of
continuous systems satisfying global Lipschitz condition [32].

In practical engineering, we need to eliminate the chaos
or transform them into some useful signals. Therefore,
tracking control, which transforms the chaos signal into
desired bounded signal, is significant in practice. Moreover,
generalized projective synchronization (GPS) can transform
into the problem of tracking control.

Based on the above discussions, we present a general
tracking control scheme based on the Jacobian matrix and
ergodicity of chaos. It is simple and does not refer to
high order derivative matrix or other requirements such as
global Lipschitz condition. The rest of the paper is organized
as follows. In Section 2, the tracking control schemes for
continuous and discrete systems and their mathematical
proofs are given, respectively. In Section 3, we have applied
this method to three chaotic systems and make simulations.
Finally, the conclusions are drawn in Section 4.

2. Theoretical Analysis

2.1. Tracking Control for Continuous Chaotic Systems. Con-
sider the following 𝑛-dimensional continuous chaotic system:

�̇� = 𝑓 (𝑥, 𝑡) + 𝑢, (1)
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where the state variable vector 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

∈ 𝑅
𝑛,

𝑓(𝑥) = {𝑓
1
(𝑥), 𝑓
2
(𝑥), . . . , 𝑓

𝑛
(𝑥)} is 𝑛-dimensional continu-

ously differentiable nonlinear vector function, and 𝑢 is the
controller. It is chaotic with 𝑢 = 0.

The control objective is to design a novel controller
such that the vector 𝑥 tracks the reference signal 𝑟 =

(𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
)
𝑇

∈ 𝑅
𝑛 which satisfies

̇𝑟 = 𝑔 (𝑟, 𝑡) , (2)

where 𝑔(⋅) = {𝑔
1
(⋅), 𝑔
2
(⋅), . . . , 𝑔

𝑛
(⋅)} is 𝑛-dimensional contin-

uously differentiable nonlinear vector function.
Set the range of chaotic system as 𝐹 and the range of

reference signal as 𝐺. As the range of chaotic system 𝐹 is
certain, we choose the reference signal 𝑟 satisfying 𝐹∩𝐺 ̸= Φ.
It is easy to implement in practice.

Theorem 1. For systems (1) and (2), if we set 𝑒 = 𝑥−𝑟 and add
the controller

𝑢 (𝑥, 𝑟, 𝑡)

= 𝜆 [𝜀𝑒 + 𝑔 (𝑥, 𝑡) − 𝑓 (𝑟, 𝑡) − (Df|
𝑟
+ Dg

𝑟
) 𝑒] ,

(3)

whereDf|
𝑟
,Dg|
𝑟
are the Jacobian matrix of 𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡)

at 𝑟, respectively, 𝜀 = diag(𝜀
1
, 𝜀
2
, . . . , 𝜀

𝑛
) is a constant feedback

diagonal matrix, and 𝜆 is the switch-off controller, which is
depicted as

𝜆 =

{

{

{

1 if ‖𝑒‖ < 𝑐

0 else,
(4)

where ‖ ⋅ ‖ denotes the Euclidean norm and 𝑐 is a constant, then
for the initial values 𝑥(0) which make (1) chaotic,

lim
𝑡→+∞

‖𝑒 (𝑡)‖ = 0. (5)

That is, system (1) tracks system (2) asymptotically.

Proof. The Taylor series of 𝑓(𝑥, 𝑡) at 𝑟 is

𝑓 (𝑥, 𝑡) = 𝑓 (𝑟 + 𝑒, 𝑡) = 𝑓 (𝑟, 𝑡) + Df|
𝑟
𝑒

+

𝑛

∑

𝑞=2

1

𝑞!

[𝑒
1

𝜕

𝜕𝑥
1

+ 𝑒
2

𝜕

𝜕𝑥
2

+ ⋅ ⋅ ⋅ + 𝑒
𝑛

𝜕

𝜕𝑥
𝑛

]

𝑞

𝑓 (𝑟, 𝑡)

+

1

(𝑛 + 1)!

[𝑒
1

𝜕

𝜕𝑥
1

+ 𝑒
2

𝜕

𝜕𝑥
2

+ ⋅ ⋅ ⋅ + 𝑒
𝑛

𝜕

𝜕𝑥
𝑛

]

𝑛+1

⋅ 𝑓 (𝑟 + 𝜃𝑒, 𝑡)

def
= 𝑓 (𝑟, 𝑡) + Df|

𝑟
𝑒 + 𝑝 (𝑒, 𝑡) ,

(0 < 𝜃 < 1) ,

(6)

where 𝑝(𝑒, 𝑡) is a polynomial vector which contains quadratic
term and finite higher order terms of 𝑒 and 𝑝(0, 𝑡) = 0.

Similarly,

𝑔 (𝑥, 𝑡) = 𝑔 (𝑟, 𝑡) + Dg
𝑟
𝑒 + 𝑞 (𝑒, 𝑡) , (7)

where 𝑞(𝑒, 𝑡) is a polynomial vector like𝑝(𝑒, 𝑡) and 𝑞(0, 𝑡) = 0.

When ‖𝑒‖ < 𝑐, according to (1)–(4), we have

̇𝑒 = �̇� − ̇𝑟

= 𝑓 (𝑥, 𝑡) + 𝜀𝑒 + 𝑔 (𝑥, 𝑡) − 𝑓 (𝑟, 𝑡) − (Df|
𝑟
+ Dg

𝑟
) 𝑒

− 𝑔 (𝑟, 𝑡) = 𝑝 (𝑒, 𝑡) + 𝑞 (𝑒, 𝑡) + 𝜀𝑒.

(8)

We introduce the following nonnegative Lyapunov func-
tion:

𝑉 (𝑒, 𝑡) = 0.5𝑒
𝑇

𝑒. (9)

Then

�̇� (𝑒, 𝑡) = 𝑒
𝑇

̇𝑒 = 𝑒
𝑇

(𝑝 (𝑒, 𝑡) + 𝑞 (𝑒, 𝑡)) + 𝑒
𝑇

𝜀𝑒. (10)

Since ‖𝑒‖ < 𝑐 and 𝑝(𝑒, 𝑡), 𝑞(𝑒, 𝑡) are polynomial vector
composed of quadratic term and finite higher order terms
of 𝑒, there always exists 𝜀

𝑖
< 0 (𝑖 = 1, 2, . . . , 𝑛) satisfying

�̇�(𝑒, 𝑡) < 0.
When ‖𝑒‖ ≥ 𝑐, the controller does not work. As there exist

𝑥 and 𝑟 satisfying 𝐹 ∩ 𝐺 ̸= Φ, we let 𝐾 = 𝐹 ∩ 𝐺. According
to the ergodicity of chaos, there always exists a certain time 𝑡

0

satisfying 𝑒 = 𝑔(𝑥, 𝑡
0
) − 𝑓(𝑟, 𝑡

0
) = 0 in the set 𝐾, and system

(1) always comes into the domain of ‖𝑒‖ < 𝑐 in a limited
time; thus, it asymptotically tracks the reference signal with
controller (3). The proof is completed.

Remark 2. The value of 𝑐 is related to 𝜀
𝑖
(𝑖 = 1, 2, . . . , 𝑛)

according to (10). The larger the 𝜀
𝑖
is, the quicker the

convergence is. However, it is difficult to calculate specific
value of 𝑐. In practice, the value of 𝑐 can be increased from
zero for an appropriate convergence speed.

2.2. Tracking Control for Discrete Chaotic Systems. Consider
𝑛-dimensional discrete chaotic system or data-sampling sys-
tem:

𝑥
𝑘+1

= 𝑓 (𝑘, 𝑥
𝑘
) + 𝑢, (11)

where the state variable 𝑥
𝑘
= (𝑥
𝑘
(1), 𝑥
𝑘
(2), . . . , 𝑥

𝑘
(𝑛))
𝑇

∈ 𝑅
𝑛,

𝑓(⋅) = {𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
} is 𝑛-dimensional continuously differ-

entiable nonlinear vector function, and 𝑢 is the controller. It
is chaotic with 𝑢 = 0.

The drive system or the reference signal is denoted as

𝑟
𝑘+1

= 𝑔 (𝑘, 𝑟
𝑘
) , (12)

where 𝑔(⋅) = {𝑔
1
(⋅), 𝑔
2
(⋅), . . . , 𝑔

𝑛
(⋅)} is 𝑛-dimensional con-

tinuously differentiable nonlinear vector function. Like con-
tinuous systems, we assume there exist 𝑥

𝑘
and 𝑟
𝑘
satisfying

𝐹 ∩ 𝐺 ̸= Φ.

Lemma 3 (see [33]). Assume that there exists a function 𝑉

such that

(i) 𝑉 : 𝑁
+

𝑛0

× 𝐵
𝐻

→ 𝑅
+

= [0, +∞), 𝐵
𝐻

= {𝑥 | ‖𝑥‖ ≤

𝐻, 𝑥 ∈ 𝑅
𝑠

}; 𝑉(𝑛, 0) = 0; 𝑉 is positive definite and
continuous with respect to the second argument;
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(ii) the variation of the function 𝑉 along the system 𝑦
𝑛+1

=

ℎ(𝑛, 𝑦
𝑛
),

Δ𝑉 (𝑛, 𝑦
𝑛
) = 𝑉 (𝑛 + 1, 𝑦

𝑛+1
) − 𝑉 (𝑛, 𝑦

𝑛
) , (13)

is negative definite. That is, there exists function Ψ satisfying
Ψ(𝑥) > 0 (𝑥 > 0), Ψ(0) = 0, (Ψ(𝑥

1
) − Ψ(𝑥

2
))(𝑥
1
− 𝑥
2
) > 0,

such that Δ𝑉(𝑛, 𝑦
𝑛
) ≤ −Ψ(‖𝑦

𝑛
‖), where ℎ : 𝑁

+

𝑛0

× 𝑅
𝑠

→ 𝑅
𝑠,

ℎ(𝑛, 0) = 0.

Then the origin of the system 𝑦
𝑛+1

= ℎ(𝑛, 𝑦
𝑛
) is

asymptotically stable.
Similar to continuous system, we have the following.

Theorem 4. For systems (11) and (12), if we set 𝑒
𝑘

= 𝑥
𝑘
−

𝑟
𝑘
(𝑘 = 1, 2, . . . , 𝑛) and add the controller

𝑢 (𝑘, 𝑥
𝑘
, 𝑒
𝑘
) = 𝜇 [𝛿

𝑘
𝑒
𝑘
+ 𝑔 (𝑘, 𝑥

𝑘
) − 𝑓 (𝑘, 𝑟

𝑘
)

− (Df|
𝑟𝑘
+ Dg

𝑟𝑘
) 𝑒
𝑘
] ,

(14)

where Df|
𝑟𝑘
,Dg|
𝑟𝑘

are the Jacobian matrix of 𝑓(𝑘, 𝑥
𝑘
) and

𝑔(𝑘, 𝑥
𝑘
) at 𝑟
𝑘
, respectively, 𝛿 = diag(𝛿

1
, 𝛿
2
, . . . , 𝛿

𝑛
) is a constant

feedback diagonal matrix, and the switch-off controller 𝜇 is
depicted as

𝜇 =

{

{

{

1 if 

𝑒
𝑘





< 𝑑

0 else,
(15)

where 𝑑 is a constant less than 1, then for the initial values 𝑥
1

which make (11) chaotic we have

lim
𝑘→+∞





𝑒
𝑘





= 0. (16)

That is, system (11) tracks system (12) asymptotically.

Proof. The Taylor series of 𝑓(𝑘, 𝑥
𝑘
) at 𝑟
𝑘
is

𝑓 (𝑘, 𝑥
𝑘
) = 𝑓 (𝑘, 𝑟

𝑘
+ 𝑒
𝑘
) = 𝑓 (𝑘, 𝑟

𝑘
) + Df|

𝑟𝑘
𝑒
𝑘

+

𝑛

∑

𝑞=2

1

𝑞!

[𝑒
𝑘
(1)

𝜕

𝜕𝑥
𝑘
(1)

+ 𝑒
𝑘
(2)

𝜕

𝜕𝑥
𝑘
(2)

+ ⋅ ⋅ ⋅

+ 𝑒
𝑘
(𝑛)

𝜕

𝜕𝑥
𝑘
(𝑛)

]

𝑞

𝑓 (𝑘, 𝑟
𝑘
)

+

1

(𝑛 + 1)!

[𝑒
𝑘
(1)

𝜕

𝜕𝑥
𝑘
(1)

+ 𝑒
𝑘
(2)

𝜕

𝜕𝑥
𝑘
(2)

+ ⋅ ⋅ ⋅

+ 𝑒
𝑘
(𝑛)

𝜕

𝜕𝑥
𝑘
(𝑛)

]

𝑛+1

𝑓 (𝑘, 𝑟
𝑘
+ 𝜃𝑒
𝑘
)

def
= 𝑓 (𝑘, 𝑟

𝑘
)

+ Df|
𝑟𝑘
𝑒
𝑘
+ 𝑤 (𝑘, 𝑒

𝑘
) , (0 < 𝜃 < 1) ,

(17)

where 𝑤(𝑘, 𝑒
𝑘
) is a polynomial vector which contains quad-

ratic term and finite higher order terms of 𝑒
𝑘
and𝑤(𝑘, 0) = 0.

Similarly,

𝑔 (𝑘, 𝑥
𝑘
) = 𝑔 (𝑘, 𝑟

𝑘
) + Dg

𝑟𝑘
𝑒
𝑘
+ V (𝑘, 𝑒

𝑘
) , (18)

where V(𝑘, 𝑒
𝑘
) is a polynomial vector like 𝑤(𝑘, 𝑒

𝑘
) and

V(𝑘, 0) = 0.
If ‖𝑒
𝑘
‖ < 𝑑, according to (11)–(14), we have

𝑒
𝑘+1

= 𝑥
𝑘+1

− 𝑟
𝑘+1

= 𝑓 (𝑘, 𝑥
𝑘
) + 𝛿𝑒

𝑘
+ 𝑔 (𝑘, 𝑥

𝑘
) − 𝑓 (𝑘, 𝑟

𝑘
)

− (Df|
𝑟𝑘
+ Dg

𝑟𝑘
) 𝑒
𝑘
− 𝑔 (𝑘, 𝑟

𝑘
)

= 𝑤 (𝑘, 𝑒
𝑘
) + V (𝑘, 𝑒

𝑘
) + 𝛿𝑒

𝑘
.

(19)

We introduce the following nonnegative Lyapunov func-
tion:

𝑉 (𝑘, 𝑒
𝑘
) = 𝑒
𝑇

𝑘
𝑒
𝑘
. (20)

Then

Δ𝑉 (𝑘, 𝑒
𝑘
) = 𝑒
𝑇

𝑘+1
𝑒
𝑘+1

− 𝑒
𝑇

𝑘
𝑒
𝑘
= (𝑤
𝑇

(𝑘, 𝑒
𝑘
) 𝑤 (𝑘, 𝑒

𝑘
)

+ V𝑇 (𝑘, 𝑒
𝑘
) V (𝑘, 𝑒

𝑘
) + 𝑒
𝑇

𝑘
𝛿
𝑇

𝛿𝑒
𝑘

+ 2𝑤
𝑇

(𝑘, 𝑒
𝑘
) V (𝑘, 𝑒

𝑘
) + 2𝑤

𝑇

(𝑘, 𝑒
𝑘
) 𝛿𝑒
𝑘

+ 2V𝑇 (𝑘, 𝑒
𝑘
) 𝛿𝑒
𝑘
) − 𝑒
𝑇

𝑘
𝑒
𝑘
.

(21)

Because ‖𝑒
𝑘
‖ < 𝑑 ≤ 1, ‖𝑤(𝑘, 𝑒

𝑘
)‖ = 𝑂(‖𝑒

𝑘
‖
2

) and
‖V(𝑘, 𝑒

𝑘
)‖ = 𝑂(‖𝑒

𝑘
‖
2

). Assume 𝛿 = 0; there always exists
𝑀 > 0 satisfying

𝑤
𝑇

(𝑘, 𝑒
𝑘
) 𝑤 (𝑘, 𝑒

𝑘
) + V𝑇 (𝑘, 𝑒

𝑘
) V (𝑘, 𝑒

𝑘
)

+ 2𝑤
𝑇

(𝑘, 𝑒
𝑘
) V (𝑘, 𝑒

𝑘
) < 𝑀





𝑒
𝑘






2

.

(22)

Therefore,

Δ𝑉 (𝑘, 𝑒
𝑘
) < 𝑀





𝑒
𝑘






2

− 0.99𝑒
𝑇

𝑘
𝑒
𝑘
− 0.01𝑒

𝑇

𝑘
𝑒
𝑘

< −0.01𝑒
𝑘
,

(23)

under the condition that

𝑀




𝑒
𝑘






2

− 0.99 ≤ 0. (24)

It means 𝑑 ≤ √0.99/𝑀 ≈ √1/𝑀.
If ‖𝑒
𝑘
‖ ≥ 𝑑, the controller does not work. As there exist

𝑥
𝑘
and 𝑟
𝑘
satisfying 𝐹∩𝐺 ̸= Φ; according to the ergodicity of

chaos, system (11) always comes into the range of ‖𝑒
𝑘
‖ < 𝑑 in

a limited time; thus, it asymptotically tracks (12).The proof is
completed.

Remark 5. From (21), we know 𝛿 = 0 is the simplest situation
for discrete systems. It can be extended to |𝛿

𝑘
| < 𝑎 (𝑘 =

1, 2, . . . , 𝑛) for specific system, where 𝑎 is a positive constant,
which will be illustrated in the following simulations.

Remark 6. The value of 𝑑 is related to 𝛿
𝑘
(𝑘 = 1, 2, . . . , 𝑛)

according to (21)–(24).

Remark 7. Compared with the controllers in [23–32], the
proposed scheme is simpler and more general. It is suitable
for continuous and discrete chaotic systems.
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Figure 1: The Lorenz system tracks (sin 𝑡, cos 𝑡, sin 𝑡 + cos 𝑡) starting from (1, −2, −1) with 𝑐 = 10 and 𝜀
𝑖
= −50 (𝑖 = 1, 2, 3).

Remark 8. The proposed scheme has the ability to track a
bounded signal satisfying 𝐹 ∩ 𝐺 ̸= Φ.

Remark 9. Themethod can be extended to GPS.
For response system (1) (or (11) for discrete system) and

a drive system (2) (or (12)), if lim
𝑡→+∞

‖𝜌𝑥 − 𝑟‖ → 0 (or
lim
𝑘→+∞

‖𝜌𝑥
𝑘
− 𝑟
𝑘
‖ → 0), where 𝜌 is the reversible scaling

factor diagonal matrix, it is said that systems (1) and (2) (or
(11) and (12)) realize GPS. Set 𝑟 = 𝜌

−1

𝑟/(or 𝑟
𝑘

= 𝜌
−1

𝑟
𝑘
);

therefore, GPS becomes complete synchronization between
𝑥 and 𝑟

 (or 𝑥
𝑘
and 𝑟


𝑘
).

3. Examples

Example 1 (Lorenz system). The Lorenz system is depicted as

�̇�
1
= 𝛼 (−𝑥

1
+ 𝑥
2
) + 𝑢
1
,

�̇�
2
= 𝛽𝑥
1
− 𝑥
2
− 𝑥
1
𝑥
3
+ 𝑢
2
,

�̇�
3
= 𝑥
1
𝑥
2
− 𝛾𝑥
3
+ 𝑢
3
,

(25)

where 𝛼, 𝛽, 𝛾, 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑢
1
, 𝑢
2
, 𝑢
3
∈ 𝑅. The system is chaotic

with 𝑢
1
= 𝑢
2
= 𝑢
3
= 0, 𝛼 = 10, 𝛽 = 28, and 𝛾 = 8/3.

The fourth-order Runge-Kutta scheme is utilized to solve the
differential equations with Δ𝑡 = 10

−3. The initial point of the
system is (1, −2, −1).

The reference signal is (sin 𝑡, cos 𝑡, sin 𝑡+cos 𝑡), and it also
can be depicted as

̇𝑟
1
= 𝑟
2
,

̇𝑟
2
= −𝑟
1
,

̇𝑟
3
= 𝑟
2
− 𝑟
1
.

(26)

According to (3), we have

𝑢
1
= 𝜀
1
𝑒
1
+ 𝑥
2
− 𝛼 (−𝑟

1
+ 𝑟
2
) + 𝛼𝑒

1
− (𝛼 + 1) 𝑒

2
,

𝑢
2
= 𝜀
2
𝑒
2
− 𝑥
1
− (𝛽𝑟
1
− 𝑟
2
− 𝑟
1
𝑟
3
) − (𝛽 − 1 − 𝑟

3
) 𝑒
1

+ 𝑒
2
,

𝑢
3
= 𝜀
3
𝑒
3
+ 𝑥
2
− 𝑥
1
− (𝑟
1
𝑟
2
− 𝛾𝑟
3
) − (𝑟
2
− 1) 𝑒

1

− (𝑟
1
+ 1) 𝑒

2
+ 𝛾𝑒
3
.

(27)

The tracking error and the controller are shown in
Figure 1. From the track error in Figure 1, we conclude that
the Lorenz system quickly tracks the reference signal.

To display the robustness of the proposed method, we
add a uniformly distributed random noise to 𝑥(𝑡). Figure 2
indicates that 𝑥(𝑡) eventually tracks the reference signal and
ultimately slightly fluctuates around it.

Example 2 (Duffing system). Consider the following Duffing
system:

�̇�
1
= 𝑥
2
,

�̇�
2
= −𝜃
1
𝑥
1
− 𝑥
3

1
− 𝜃
2
𝑥
2
+ 𝜃
3
cos𝜔𝑡 + 𝑢,

(28)

where 𝜃
1

= −1.1, 𝜃
2
= 0.4, 𝜃

3
= 1.8, and 𝜔 = 1.8. The

Duffing equation with 𝑢 = 0 has a chaotic solution shown as
in Figure 3. We utilize the fourth-order Runge-Kutta scheme
to solve the differential equations with Δ𝑡 = 10

−3. The initial
point is (1, 2), and the reference signal is (10 sin 𝑡, 10 cos 𝑡).

According to (3), we have

𝑢 = 𝜀
2
𝑒
2
+ 𝑥
1
− (−𝜃

1
𝑟
1
− 𝑟
3

1
− 𝜃
2
𝑟
2
+ 𝜃
3
cos𝜔𝑡)

+ (𝜃
1
+ 3𝑟
2

1
+ 1) 𝑒

1
+ 𝜃
2
𝑒
2
.

(29)
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Figure 2: The Lorenz system tracks (sin 𝑡, cos 𝑡, sin 𝑡 + cos 𝑡) starting from (1, −2, −1) with 𝑐 = 10 and 𝜀
𝑖
= −50 (𝑖 = 1, 2, 3) under random

noise jamming.
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Figure 3: The chaotic behavior of Duffing system.

The tracking trajectory and the controller are shown in
Figure 4, where the dotted line denotes the reference signals.
The controlled Duffing system quickly tracks the reference
signal whose range is larger than that of Duffing system.

Example 3 (Henon system). Consider thewell-knownHenon
mapping:

𝑥
𝑘+1,1

= 1 − 𝑎𝑥
2

𝑘,1
+ 𝑥
𝑘,2

+ 𝑢
𝑘,1
,

𝑥
𝑘+1,2

= 𝑏𝑥
𝑘,1
,

(30)

where 𝑎, 𝑏, 𝑢
𝑘,1

∈ 𝑅. When 𝑎 = 1.4, 𝑏 = 0.3, the Henon
mapping exhibits a chaotic behavior with 𝑢

𝑘,1
= 0. The initial

point is (0, 0).

Given the goal orbit [25]

𝑟
𝑘+1,1

= 3.5𝑟
𝑘,1

(1 − 𝑟
𝑘,1
) ,

𝑟
𝑘+1,2

= 𝑏𝑟
𝑘,1
,

(31)

which is a period-4 orbit.
Applying control law (14), we have

𝑢
𝑘,1

= 𝛿
1
𝑒
1
+ 3.5𝑥

𝑘,1
(1 − 𝑥

𝑘,1
) − (1 − 𝑎𝑦

2

𝑘,1
+ 𝑦
𝑘,2
)

− (3.5 − 7𝑟
1
− 2𝑎𝑟
1
) 𝑒
1
− 𝑒
2
.

(32)

The results with different 𝛿
1
are shown in Figures 5–7.

It can be seen that the system arrives at the desired goal in
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Figure 4: The Duffing system tracks (10 sin 𝑡, 10 cos 𝑡 ) starting from (1, 2) with 𝑐 = 80 and 𝜀
2
= −50.
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Figure 5: The Henon system tracks a period-4 orbit starting from (0, 0) with 𝑑 = 0.2 and 𝛿
1
= 0.

a short time. It is quicker than [25] and does not have any
requirement of initial point.

However, the speed of convergence is related to the value
of 𝑑 and 𝛿

1
. We should choose appropriate 𝛿

1
(choosing 0 as

initial value) to get a desired speed of convergence, not the
larger the better.

4. Conclusions

We design a general tracking controller for chaotic systems
combining the ergodicity of chaos and Jacobian matrix. It
is suitable for continuous and discrete chaotic systems. For
continuous systems, the element of feedback matrix 𝜀

𝑖
<

0 (𝑖 = 1, 2, . . . , 𝑛) and the norm of error 𝑐 > 0. For
discrete system, the element of feedback matrix |𝛿

𝑖
| < 𝑎 (𝑖 =

1, 2, . . . , 𝑛) and the norm of error 0 < 𝑑 < 1.
The control scheme has the ability to track a bounded

reference signal satisfying 𝐹 ∩ 𝐺 ̸= Φ. Moreover, it can
be generalized into GPS. The simulations demonstrate its
good performance in terms of simplicity, feasibility, and
robustness, which indicate it has better practical significance
for real world applications.
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