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The vehicle routing problem with fuzzy demands (VRPED) is considered. A fuzzy reasoning constrained program model is
formulated for VRPFD, and a hybrid ant colony algorithm is proposed to minimize total travel distance. Specifically, the two-
vehicle-paired loop coordinated strategy is presented to reduce the additional distance, unloading times, and waste capacity caused
by the service failure due to the uncertain demands. Finally, numerical examples are presented to demonstrate the effectiveness of

the proposed approaches.

1. Introduction

The vehicle routing problem (VRP) was first proposed by
Dantzig and Ramser [1]. The VRP has since been the topic of
many operational studies. VRP consists of designing efficient
routes to serve a number of nodes with a fleet of vehicles. Each
node is visited exactly once by one vehicle. The activity of the
vehicle is bounded by certain constraints. Each vehicle starts
at the depot and returns to the same depot after completing
its task. Most VRP studies employ the vehicle uncoordinated
strategy; that is, there is no coordination between the vehicles,
and each vehicle completes only its own task. There are many
significant VRP results based on this case, including those of
Clarke and Wright [2], Solomon [3], Laporte [4], Figliozzi [5],
Sprenger and Monch [6], Pillac et al. [7], Kou et al. [8], and
Kou et al. [9].

The vehicle routing problem with fuzzy demands
(VRPFD) is an extension of the VRP; that is, the demand of
each node is uncertain, subjective, ambiguous, and/or vague
[10]. The VRPED is widely employed for many real applica-
tions due to their numerous uncertainties, including garbage
collection systems, product recall systems, and raw milk

collection systems (collecting raw milk from dairy farmers
for milk powder production enterprises). There are also
several classical studies that refer to the VRPED, such as
Bertsimas [11], Cao and Lai [12], Kuo et al. [13], Kou and
Lin [14], Kou et al. [15], Allahviranloo et al. [16], and Hu
et al. [17]. The VRPED typically assumes that the real value
of a node’s demand is known when the vehicle reaches the
node, whereas the vehicle’s route is planned in advance. After
serving v nodes, the vehicle might not be able to service the
v+ 1 node once it arrives due to insuflicient capacity. In such
situations, if the vehicle uncoordinated strategy is employed,
the vehicle must return to the depot and unload what it has
picked up thus far and then return to the node where it had a
“service failure” and continue to serve the remaining nodes.
Thus, “additional distance” and “additional unloading times”
are introduced due to the “service failure.” However, there
are also vehicles with surplus capacity after completing their
own tasks, introducing “waste capacity.” All of these cases
result in increasing logistics cost. To the authors’ knowledge,
few researchers have addressed the problem of minimizing
the “additional distance” and “waste capacity,” let alone
“additional unloading times,” in the VRPFD.



In this paper, vehicle coordinated strategy (VCS) is
defined such that each vehicle finishes its own assigned task
first; then, if there is a vehicle with surplus capacity, the
vehicle must help any vehicle that has not completed its own
task according to the specified vehicle coordination rules
[18,19]. Only a few VRP studies have considered VCS. Shang
and Cuft [20] considered a multiobjective vehicle routing
heuristic for a pickup and delivery problem. They assumed
that the fleet size is not predetermined and that customers
are allowed to transfer between vehicles. These transfers
can occur at any location and between any two vehicles.
Yang et al. [21] proposed a mixed-integer programming
formulation for the offline version of the real-time VRP and
compared five rolling horizon strategies for the real-time
version. To some extent their work is relevant to vehicle
coordination. Liu et al. [18] proposed a simple general VCS
for the VRP with deterministic demands. Lin [19] designed a
VCS with single or multiple vehicle uses. The VCS is defined
as allowing vehicles to travel to transfer items to another
vehicle returning to the depot, provided that no time window
constraints are violated. Sprenger and Monch [6] studied a
methodology to solve a cooperative transportation planning
problem motivated by a real-world scenario found in the
German food industry. Several manufacturers with the same
customers but complementary food products share their
vehicle fleets to deliver to their customers. They designed
a heuristic to solve the problem. The results of extensive
simulation experiments demonstrated that the cooperative
setting outperforms the noncooperative one. Hu et al. [22]
presented a feasible routing solution to accommodate the
changes (such as customer’s demand changes, delivery time
window changes, disabled roads induced by traffic accidents
or traffic jams, and vehicle breakdowns) and to minimize
the negative impacts on the existing distribution process in
real-time VRP. They handle these disruptions by readjusting
vehicle routes in real time to improve vehicles’ efficiency and
enhance service quality. To a certain extent their work is
relevant to vehicle coordination. However, all investigations
assumed that the customers were uniformly distributed in
certain regions and that the demands were deterministic. To
the authors’ knowledge, few studies have employed the VCS
in the VRPED.

Thus, in this paper, the fuzzy reasoning constrained
program model for VRPFD is formulated, and the hybrid
ant colony algorithm is designed to minimize total travel dis-
tance. In particular, the two-vehicle-paired loop coordinated
strategy (TVPLCS) is presented to reduce the “additional
distance,” “additional unloading times,” and “waste capacity”
caused by the service failure due to the uncertain demands.
Finally, numerical examples are presented to demonstrate the
effectiveness of the proposed approaches.

The remainder of this paper is organized as follows. In
Section 2, the fuzzy reasoning constrained program model
for VRPED is formulated. In Section 3, we design a hybrid
ant colony algorithm for VRPED. In Section 4, in particular,
we present the TVPLCS to minimize the “additional dis-
tance,” “additional unloading times,” and “waste capacity”.
In Section 5, we give numerical examples to demonstrate
the effectiveness of the proposed approaches. Finally, we
summarize the contributions of this paper.
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2. VRPFD Assumptions and Model

2.1. VRPFD Assumptions. In this paper, the VRPFD assumes
that there is only one depot denoted by 0, and there are
n nodes with fuzzy demands served by m vehicles. The
locations of the depot and nodes are known. The fuzzy
demand of each node i is uncertain and only characterized
by a triangular fuzzy number D;, D; = (d;;,d;,d;3). d;; is
the minimum of the demand of node i, d;; is the maximum
of the demand of node 7, and d;, is the most likely value. The
distance ¢;; between nodes i and node j isknown. Each node s
served exactly once by one vehicle. For simplicity, the capacity
Q of each vehicle is the same, and the activity of the vehicle
is only bounded by capacity constraints. Each vehicle starts
at the depot and returns to the same depot after completing
its task. The objective is to design a set of vehicle routes that
minimizes the total logistics costs.

2.2. Deciding whether the Vehicle Serves the Next Node or
Returns to the Depot. When the demand of each node is
deterministic, it is easy for us to decide whether the vehicle
is able to serve the next node after serving v nodes. However,
while the demand at each node is uncertain and only char-
acterized by a triangular fuzzy number D; = (d;;,d,,, d;3), it
is difficult for us to decide whether the vehicle should serve
the next node v+ 1 or return to the depot. We only know that
the greater the vehicle’s remaining capacity and the lesser the
demand at the next node, the greater the vehicle’s “chances”
of being able to serve the next node. In this paper, we solve
this problem by triangular fuzzy number theory proposed by
Liu [23], which described as follows.

The membership function of triangular fuzzy number
D = (d,,d,,d;) is defined as

(0, x<d, orx=>d,
-d
M, d <x<d,
pp (x) = 1 (dy - d,) (Y
(d3—x)
-~ d, < d,.
(dy—dy) 25755

Let pos{e} be the occurrence possibility of event e. For
triangular fuzzy number A = (a,,a,,a;) and B = {b;, b, b3},
pos{A < B} is defined as

pos {A < B} = sup {min {u, (x), pp ()} | x < y}

L a, < b,
(b —ay) )

= b b) b
(by—b) +(a,—ay) 70 s

0, a, = b;.

Now, we can deduce that the occupied capacity Q,, of the
vehicle which had served v nodes is

D; = (Z,dip ;diz’ Z,dza) . 3)

M-«

Qvo =
i

1
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Also, the capacity Q of each vehicle can be presented as
a triangular fuzzy number Q = (Q, Q, Q). So, the remaining
capacity Q,, of the vehicle is

Q,=Q-Q, = (Q -Yds5Q-Yd, Q- Zdﬂ>
i=1 i=1 i=1 (4)
= (le,erZ’ er3) .

(erS B dv+1,1)

Thus, the possibility pos(D,,; < Q,,), which means that
the demand of node v + 1 is less than the remaining capacity,
is

dv+1,2 < erZ

pos (Dv+1 < er) =

0,

Let P* € [0, 1] be the decision maker’s preference. A large
value of P* indicates that the decision maker is risk averse,
and the decision maker aims to ensure service. In this case,
P* > 0.6. The possibility of “service success” is relatively
high. In contrast, a small value of P* means that the decision
maker has an insatiable appetite for risk and tries to serve
more nodes with each vehicle. In that case, P* < 0.5. The
possibility of “service success” is relatively low.

Now, after serving v nodes, we can make a decision
whether the vehicle should serve the next node v+1 or return
to the depot 0. The decision was made as follows.

Ifpos(D,,; < Q,,) > P*, the vehicle should serve the next
node v + 1; else, the vehicle should return to the depot 0.

2.3. VRPFD Model. The notations used in the formulation of
the VRPFD are described as follows.

i: node index (i = 0 stands for the depot).

n: number of nodes.

N: set of nodes.

S: nonempty proper subset of the set N.

D;: fuzzy demand of each node i, D; = (d;;,d},, d;3).
¢;: distance between node i and node j.

k: vehicle index.

m: number of vehicles.

K: set of vehicles.

Q: capacity of the vehicle.

P*: decision maker’s preference, P* € [0, 1].

The decision variables used in the formulation of the
VRPED are described as follows:

yir: {if node i is served by vehicle k, y;; = 1; otherwise,
Vi = 0}

x;jjx: {if vehicle k moves from node i to node j, x; ;. = 1;
otherwise, x;j = 0}.

(Qw3 - er2) + (dv+1,2 - dv+1,1) ’

dyi1p > Qurp Ay < Qus (5)

dv+1,1 = erS'

Thus, the fuzzy reasoning constrained program model of
the VRPFD is mathematically formulated as follows:

min > Y ¥ 6 (6)
k=1i=0 j=0
Subject to  pos < ZDiyik < Q) >P* VkeK @)
ieN
keK
zxijk:yjk’ VjeN, keK )
ieEN
injk =y VieN, keK (10)
JEN
zxijk = ijik =¥ VieN, keK an
JjEN jeN
Z Yok =m 1)
keK
Zxojk = inok =1, VkeK 13)
jEN ieN

ZZ Z X <ISI-1, VSCN. (14)

keK €S jeS, j#i

The object of the proposed VRPED is to minimize the
total distance. Constraint (7) ensures that all nodes are served
within the vehicle’s capacity at the values of the decision
maker’s preference. Constraint (8) ensures that each node is
visited by one vehicle. Constraints (9) and (10) define the
relationships between x;;; and yj. respectively. Constraint
(11) guarantees that a vehicle must enter and leave each node
exactly once. Constraint (12) ensures that at most 1 vehicles
are used. Constraint (13) ensures that vehicle routes start from
the depot 0 and terminate at the same depot. Constraint
(14) represents the subtour elimination constraint where |S|
stands for the cardinality of set S.



3. Hybrid Ant Colony Algorithm for VRPFD

The ant colony algorithm (ACA) is one of the most popular
swarm-inspired methods in the field of computational intel-
ligence. The first ACA was developed by Clolrni et al. [24].
It was successfully applied to the traveling salesman problem.
The first ant system for the VRP was proposed by Bulleneimer
et al. [25]. Doerner et al. [26] further improved this ant
colony system using a savings-based heuristic. Recently, ACA
has been applied to the VRP with different constraints, for
example, Ellabib et al. [27], Gajpal and Abad [28], Yu et
al. [29], and Fleming et al. [30]. By looking at success of
above hybridised ant colony algorithms on VRP, we decided
to develop hybrid ant colony algorithm (HACA) for VRPFD
too.

Let Q be the set of all candidate nodes in the dataset, let
U(h) be the set of nodes yet to be served by ant /1, and let S(h)
be the set of nodes already served by ant h.

3.1. Transfer Probabilities. 'The probability pihj that ant h
chooses to serve node j having served node i is given by

« B
N L1 ) S
pij = ZreU(h) (7, ]" % [1:] (15)

0, otherwise,

where 7;; is the pheromone density of edge (i, j); #; is
the visibility of edge (i, j); « is the relative influence of
the pheromone trails; and f8 is the relative influence of the

visibility.
3.2. Pheromone Updating

3.2.1. Local Pheromone Updating Rule

Definition 1 (ant attraction). The ant attraction d/y of edge
(i, j) is the ratio of number 0 of ants that have travelled edge
(i, j) to the number y of ants that have visited node i.

Each ant leaves constant quantity 0 of pheromone on the
edge it travels, and larger ant attraction y/0 of edge (i, j)
results in greater amount of ant travel on edge (i, j). Thus,
more frequent local pheromone updating will result in a
larger pheromone quantity 7;; between all edges. The global
searching of the ACO algorithm represents a handicap. To
address this problem a local pheromone updating rule has
been designed.

Let y;, be the number of ants that visited node i before
arrival of ant /1 at node 7, and let 9, be the number of ants that
travelled edge (7, j) before ant h travelled edge (i, j). The local
pheromone update quantity of edge (i, j) caused by ant h can
be calculated as

h
Arij (t)
o)
0 x <1 - —h>, if ant h traveled from node i to j (16)
= Xn
0, otherwise.
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Let TZ(f) be the local pheromone quantity of edge (i, j)

before updating; let TZ-(t + 1) be the local pheromone quantity
of edge (i, j) after updating; and let p be the pheromone
volatilization coeflicient. Then, the local pheromone updating
rule can be defined as

Tt +1) = px Tl (t) + ATy (), i, Vji#j,  (17)
AT (£) = Y AT (1), (18)
h=1

3.2.2. Global Pheromone Updating Rule. If ant h has already
served all n nodes, the global pheromone updating rule is
employed. It is defined as

T (t+n) = (1-p)-7; (t) + Az (1), (19)
Aty () = kZ:lATZ (). (20)

3.3. The Steps of HACA. 'The steps of the proposed HACA are
depicted below.

Step 1 (algorithm initialization). (1) Set the values of the
current iteration number ric, the maximum iteration number
maxir, the capacity value Q, the ant number m, and the
decision maker’s preference P*. (2) Set all ants at the central
depot 0, and let each ant start from the depot. (3) Let Q,, =
0 be the initial occupied load of ant h, and the remaining

capacity Q,, = Q — Q,,.

Step 2 (route construction). (1) Calculate the transfer prob-
ability pZ (2) Select node j according to the sequence of pihj
arranged in decreasing order. (3) If pos(Dj <Q,) > P,
j € U(h), ant h must move to node j from the current node
i, and the current node of ant h is changed to be j, j ¢ U(h),
j € S(h), and the occupied load Q,, = Q,, + d; otherwise,
ant h should return to the depot, Q,, = 0, and move to the
next node j. (4) Repeat this selection until U(h) = ¢.

Step 3 (pheromone updating). If U(h) = ¢, that is, ant & has
already served all n nodes, the global pheromone updating
rule is employed; otherwise, the local pheromone updating
rule is employed.

Step 4 (judgment). If the total number of searching ants is
smaller than m, return to step 2; otherwise, find the best
solution by the path set L = {L,,L,,...,L,,} obtained with
S(h).

Step 5 (the 2-opt local search). (1) The obtained route is
broken at random into three segments. (2) The middle
segment must not contain the depot. (3) The route is then
reconstructed by reversing the middle segment. (4) The route
is updated whenever there is an improvement. (5) The process
is repeated until there is no further improvement in the
solution [28]. (6) If the new solution is better than the current
solution, the new solution will replace the current solution.
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¢ failure

FIGURE 1: Service failure.

Step 6 (termination rule of the algorithm). If nc < maxir,
nc = nc + 1, return to step 2, and repeat the above steps;
otherwise, terminate the HACA.

4. Two-Vehicle-Paired Loop
Coordinated Strategy

As mentioned above, the VRPFED typically assumes that the
“actual” value of a node’s demand is known when the vehicle
reaches the node, and the vehicle route is planned in advance.
After serving v nodes, a vehicle might not be able to service
the v + 1 node once it arrives due to its insufficient capacity.
In such situations, if the vehicle uncoordinated strategy is
employed, the vehicle must return to the depot, unload what
it has picked up thus far, return to the node where it had
a “service failure,” and continue to service the remaining
nodes (e.g., in raw milk collection systems). Thus, “additional
distance” and “additional unloading times” are introduced
due to the “service failure” (Figure 1). In contrast, there are
also vehicles with surplus capacity after completing their own
tasks; thus, “waste capacity” is created. All of these cases
increase the logistics costs. To the authors’ knowledge, few
studies have considered the problem of how to effectively
minimize the “additional distance” and “waste capacity,” let
alone reduce “additional unloading times,” in the VRPFD.

After the optimal routes are obtained by the HACA
(it is assumed that each route only served exactly by one
vehicle), the two-vehicle-paired loop coordinated strategy
(TVPLCS) is presented to minimize the “additional distance,”
“additional unloading times,” and “waste capacity” in the
VRPED. The essence of the TVPLCS is that the vehicle with
“surplus capacity” must help the vehicle with “insufficient
capacity” according to the specified coordination rules after
finish its own assigned task. The coordination rules of the
TVPLCS are described as follows.

Grouwyp k

O Node
[] Depot

<— Planned route

FIGURE 2: Vehicle grouping.

Coordination Rule 1. Assume that there are m planned vehicle
routes and one depot 0 in two-dimensional coordinates. Put
the depot on the origin of the two-dimensional coordinates.
Starting from y-axis, divide the 2 adjacent routes into a
coordinated group according to clockwise rotation (Figure 2).
If the number of the routes is odd, there is one remaining
route which is not assigned, and the vehicle will complete its
own assigned task.

Coordination Rule 2. Each vehicle of the same coordinated
group should finish its own assigned task first, and each
vehicle first serves its “outer” nodes and then its “inner”
nodes (Figure 3(a)). In this manner, if a vehicle has a “service
failure,” the “failure nodes” are near the other vehicle in
the same coordinated group, thus promoting coordination
between the two vehicles (Figure 3(b)).

Coordination Rule 2. If a vehicle completes its own task and
has no surplus capacity, it should return to the depot and
inform the other vehicle of its “task status.”

Coordination Rule 4. If a vehicle completes its own task, has
surplus capacity, and does not receive information from the
other vehicle, the vehicle should wait and inform the other
vehicle of its “task status” (Figure 4(a)). If the vehicle receives
information from the other vehicle that the other vehicle is
completing its own task, the first vehicle should return the
depot (Figure 4(b)). If the vehicle receives information from
the other vehicle that the other vehicle cannot complete its
own task, the first vehicle should go to the node where the
other vehicle had a “service failure” and continue to serve
the remaining nodes. If the vehicle completes the remaining
tasks, it should return the depot and inform the depot
(Figure 4(c)); otherwise, the vehicle should return to the
depot and inform the depot of its “remaining task status”
(Figure 4(d)).
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Coordination Rule 5. If all vehicles of all coordinated groups
have returned to the depot and there are “remaining nodes”
because of “service failure,” the “remaining nodes” will be
served by the vehicles of the second scheduling optimization,
and the vehicle coordinated strategy will also be employed in
the second service (Figure 5).

There are also some deficiencies in the TVPLCS, such
as the “waiting” and “informing” between the two vehicles.
“Waiting” means that if the vehicle completes its task and
has surplus capacity, it must wait for the other vehicle’s
information. It may wait a long time due to different traffic
circumstances, thus increasing the time cost. “Informing”
means that when the vehicle completes its task, it must inform
the other vehicle of its “task status.” The “informing” problem
can be easily solved using the advanced communication
technology now available.

5. Experimental Results

The program for HACA was developed in Matlab 7.0. All
computer experiments were performed on a PC (CPU
1.86 GHz, Memory 2 GB). The parameters for the HACA are
set as follows: the ant number m = 30; the vehicle capacity
value Q = 150 items; the maximum iteration number
maxir = 200; the pheromone volatilization coefficient p =
0.9; the relative influence of the pheromone trails a = 1; the
relative influence of the visibility § = 2; and the pheromone
quantity 0 = 15.

Because the standard test instances for VRPFD are
unavailable, the two-dimensional coordinates of the nodes
and depot are generated randomly in [100 x 100] in this
paper. The fuzzy demands of the nodes were also determined
arbitrarily.

5.1. The Running Time of the HACA. In this experiment, the
number of the test nodes is within the interval of 100-500
with a step of 100. Each instance runs 20 times. The average

TABLE 1: Running times of HACA.

Number of test nodes 100 200 300 400 500
Running time (seconds) 289.37 484.62 698.16 875.84 983.67

TABLE 2: Running times of HACA and HPSOGA.

Dataset A-n33-k5 E-n51-k5 M-nl101-kl0 M-n151-k12

Running time of
HACA
(seconds)

20.16 81.24 296.71 437.62

Running time of
HPSOGA
(seconds)

20.64 88.09 388.32 635.59

running time of each instance is used to be the solution. This
is not real time problem and hence CPU times of HACA are
acceptable. The results of running times are shown in Table 1.

To facilitate the comparison, HACA is also simulated in sev-
eral benchmark datasets. The source of the datasets is http://
www.coin-or.org/SYMPHONY/branchandcut/VRP/data/#V.
These datasets are modified to the VRPFD datasets by
generating fuzzy demand. The fuzzy demand D; = (d;;,d;,,
d;;) is randomly generated for each dataset, where the
original dataset is used as d;, for each node. In this
simulation, solution obtained by HACA is compared with
HPSOGA designed by Kuo et al. [13]. Each instance runs
20 times. The average running time of each instance is
shown in Table 2. The results in Table 2 prove that HACA
has promising performance in solving VRPFD. HACA
outperforms HPSOGA for all dataset.

5.2. The Efficiency of the TVPLCS. To determine efficiency
of the TVPLCS we have developed an approach to estimate
the “waste capacity,” “additional distance,” and “additional
unloading times.” The steps of the proposed calculation
approach are described as follows.

Step 1. The method for processing fuzzy number into deter-
ministic number proposed by the CA [31] is employed to
estimate the “actual” demands d? of each node.

Step 2. For each route planned by the HACA, the vehicle
moves along the route, accumulating the sum Q” of the
“actual” demands of all nodes; that is, Q% = ) da;.

i€route

Step 3. If Q" < Q, the vehicle can finish the task of this route,
then the “waste capacity” is Q — Q% if Q" > Q, the vehicle
cannot finish the task of this route. The vehicle must return to
the depot, unload what it has picked up thus far, return to the
node where it had a “service failure,” and continue to serve
the remaining nodes. Now, we can calculate the “additional
distance” and “additional unloading times” due to the “service
failure.” The “additional distance” is equal to length of second
tour of the vehicle caused because of service failure in the
first tour. The “additional unloading times” are the “service
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TABLE 3: Travel distance results within 100 nodes.
p* TVPLCSHACA HPSOGA
TPD TAD TD TPD TAD TD

0.1 2,285.66 1,817.80 4,103.46 2,376.18 2,013.74 4,380.92
0.2 2,36716 1,682.57 4,049.73 2,426.91 1,802.32 4,229.23
0.3 2,49735 1,176.48 3,673.83 2,573.84 1,472.69 4,046.53
0.4 2,734.83 714.54 3,44937 2,821.73 1058.36 3,880.09
0.5 2,610.92 673.27 3,284.19 2,783.41 952.71  3,736.12
0.6 3,016.73 283.24 3,298.97 3,133.28 509.16 3,642.44
0.7 3,236.51 0 3,236.51 3,292.41 40765 3,700.06
0.8 3,347.26 0 3,347.26 3,384.74 368.52  3,753.26
0.9 3,469.80 0 3,449.80 3,794.37 0 3,794.37
1 357756 0 3,577.56  3,836.91 0 3,836.91

failure” times. The “total distance” is the sum of the “total
planned distance” and “total additional distance.”

5.2.1. Test of the Travel Distance. For simplicity and percep-
tual intuition, we only test 100 nodes. To show the efficiency of
the proposed approaches, we compare our TVPLCS based on
the HACA (TVPLCSHACA) with the hybrid particle swarm
optimization with genetic algorithm (HPSOGA) proposed
by Kuo et al. [13]. HPSOGA employs vehicle uncoordinated
strategy, and it is designed for VRPFD. This is to say,
coordinating strategies/rules defined in Section 4 all were
used in the experiment. At first, the coordination rule 1
is used. Then the coordination rule 2 is used. Also, the
coordination rule 3 and coordination rule 4 are used; if the
task is not finished, the coordination rule 5 must be used; else,
the coordination rule 5 may not be used.

All test are calculated according to the decision maker’s
confidence P*, where P* varies within the interval of 0-1 with
a step of 0.1. The average computational results of 10 times are
calculated.

The “total planned distance” (TPD), “total additional
distance” (TAD), and “total distance” (TD) are calculated. The
results of TVPLCSHACA and HPSOGA are listed in Table 3.

From the results in Table 3, we can see the following:
(1) with regard to TPD the result gained from the HACA
is smaller than the result obtained by the HPSOGA. When
P* = 0.9, the former is 9.35% less than the latter. Even more,
the former is 10.33% less than the latter while P* = 1. (2) As
mentioned above, TAD is due to the “service failures.” The
TAD result gained from the TVPLCSHACA is also smaller
than the result obtained by the HPSOGA. Especially, when
0.4 < P* < 0.6, the former is close to almost half of the latter.
This is to say, the TVPLCSHACA is useful for VRPFD, and
TVPLCS can effectively reduce the TAD. When P* > 0.7,
TAD gained from the HACA is 0, which means that there is
no “service failure” in each route. However, TAD gained from
the HPSOGA is 0 while P* > 0.9. That is, our approach is
better than HPSOGA. (3) The TD of TVPLCSHACA is also
smaller than the result obtained by the HPSOGA. The results
can show the effectiveness of our proposed approaches.
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TABLE 4: Results of the total vehicle number, waste capacity, and
additional unloading times.

p* TVPLCSHACA HDEA
PVN TVN TWC TAUT PVN TVN TWC TAUT
01 13 22 0 13 26 166 13
02 13 21 0 14 25 182 12
03 14 21 0 14 25 186 11
04 15 21 0 15 25 198 9
05 16 20 51 16 25 223 8
06 17 20 87 17 24 257 7
0.7 18 18 125 18 23 261 5
4
0
0

0.8 18 18 114 19 23 273
09 19 19 89 20 20 127
1 19 19 81 20 20 118

S O O O W Bk O N O

5.2.2. Test of the Total Vehicle Number, Waste Capacity, and
Additional Unloading Times. Also, we test the same 100
nodes which tested above. To show the efficiency of the
proposed TVPLCS, we compare our TVPLCSHACA with the
HDEA proposed by Erbao and Mingyong [12]. The algorithm
employs vehicle uncoordinated strategy, and it is designed
for VRPFD. All test are calculated according to the decision
maker’s confidence P*, where P* varies within the interval
of 0-1 with a step of 0.1. The average computational results
of 10 times are calculated. The “plan vehicle number” (PVN),
“total vehicle number” (TVN), “total waste capacity” (TWC),
and “total additional unloading times” (TAUT) are tested.
The results of our TVPLCSHACA and the results of HDEA
(HDEA employs vehicle uncoordinated strategy) are listed in
Table 4. In Table 4, capacity unit is item.

The results in Table 4 indicate the following: (1) For PVN,
the value gained by HACA is close to the result planed by
HDEA, and the former is better than the latter. (2) With
regard to TAUT, the value gained by TVPLCSHACA is much
better than the result calculated by HDEA. When P* <
0.3, the number of the former is 30% less than that of the
latter. When 0.4 < P* < 0.6, the number of the former
is 50% less than that of the latter. When P* > 0.7, TAUT
gained by TVPLCSHACA is 0. However, TAUT gained by
HDEA is 0 till P* > 0.9. So, TVPLCS can effectively cut
down “additional unloading times” in VRPFD, especially
when the value of decision maker’s preference is relatively
smaller. (3) About TWC, when P* < 0.4, all numerical
values gained by TVPLCSHACA are 0, but the results of
HDEA are close to 200. In other words, when a vehicle has
surplus capacity, the vehicle should serve the “failure nodes”
of the other failure route according to the specified TVPLCS
rules. TVPLCS could be usefully employed in reduction of
the “waste capacity” in VRPFD, especially when the value
of decision maker’s preference is relatively smaller. (4) As
for TVN, the value gained by TVPLCSHACA based on the
HACA is less than the result planed by HDEA. When P* <
0.8, the former is nearly 25% less than the latter. Thus, the
TVPLCS is very useful for the VRPFD, especially when P*
is given a relatively smaller value. That is, the decision maker
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TABLE 5: Results of total distance, vehicle number, and logistics cost.

p* TVPLCSHACA HDEA
TD TVN TLC TD TVN TLC

0.1 4,103.46 22 31,5173 4,380.92 26 34,904.6
0.2 4,049.73 21 30,748.65  4,229.23 25 33,646.15
0.3 3,673.83 21 28,869.15  4,046.53 25 32,732.65
0.4 3,449.37 21 27,746.85  3,880.09 25 31,900.45
0.5 3,284.19 20 26,420.95  3,736.12 25 31,180.6
0.6 3,298.97 20 26,494.85 3,642.44 24 30,212.2
0.7 3,236.51 18 25,182.55  3,700.06 23 30,000.3
0.8 3,347.26 18 25,736.3  3,753.26 23 30,266.3
0.9 3,449.80 19 26,749 3,794.37 20 28,971.85
1 3,577.56 19 27,387.8 3,836.91 20 29,184.55

has an insatiable appetite for risk and wants to serve more
nodes with each vehicle.

5.3. Determining the Reasonable Value of the Decision Maker’s
Preference. Now, we determine the reasonable value of the
decision maker’s preference based on the results listed in
Tables 3 and 4. The TD in Table 3 and the TVN in Table 4 are
selected to calculate the total logistics cost (TLC) for VRPFD.
In this paper, it is assumed that the freight of TD is 5 yuan
RMB per unit distance, and the fixed charge of TVN is 500
yuan RMB per vehicle. TLC is the sum of TD and TVN. The
results of TLC are listed in Table 5.

From the results in Table 5 we can see the following: (1)
When decision maker’s preference P* > 0.6, the decision
maker is risk averse and aims to minimize service failures.
The optimal value of P* should be 0.6 or 0.7 according to
TD. The best value of P* should be 0.7 according to TLC and
TVN. However, it is not easy for us to obtain a highly credible
decision maker’s preference due to the variability of customer
demands in practice, especially when the operations of a
distributing system are only starting up. (2) While P* <
0.5, the decision maker is risk preference and wants to
serve more nodes with each vehicle. All values of TD, TVN,
and TLC tell us that the best value of P* is 0.5. (3) The
reasonable value of the decision maker’s preference deduced
from TVPLCSHACA is exactly the same as that inferred from
HDEA.

6. Conclusions

This paper contributes to the research on the VRPFD in
the following respects: (1) The fuzzy reasoning constrained
program model and HACA are designed to optimize the vehi-
cle routes, and the most appropriate values for the decision
maker’s confidence level P* were obtained by simulation.
That is, if decision maker is risk averse and aims to ensure
service, the best value of P* should be 0.7 If the decision
maker has an insatiable appetite for risk and wants to serve
more nodes with each vehicle, the best value of P* should
be 0.5. (2) In particular, the TVPLCS is presented to reduce
the “additional distance,” “unloading times,” and the “waste

capacity” caused by “service failure.” Numerical examples are
presented to demonstrate the effectiveness of our proposed
approaches. Particularly, the TVPLCS is very useful for the
VRPFD when the decision maker has an insatiable appetite
for risk, especially when the operations of a distributing
system are only starting up and the customers’ demands are
difficult to estimate.

For the future research, we may consider other nondeter-
ministic side constraints in VRPFD, such as stochastic vehicle
travel time, important customer with emergent service, and
time window constraint that should be considered in order
to fit the practical applications.
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