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We show a Dvoretzky-Rogers type theorem for the adapted version of the 𝑞-summing operators to the topology of the convergence
of the vector valued integrals on Banach function spaces. In the pursuit of this objective we prove that the mere summability of the
identity map does not guarantee that the space has to be finite dimensional, contrary to the classical case. Some local compactness
assumptions on the unit balls are required.Our results open the door to new convergence theorems and tools regarding summability
of series of integrable functions and approximation in function spaces, since we may find infinite dimensional spaces in which
convergence of the integrals, our vector valued version of convergence in the weak topology, is equivalent to the convergence with
respect to the norm. Examples and applications are also given.

1. Introduction

Summability in Banach spaces is one of the main topics
in Functional Analysis, and results concerning the behavior
of summable sequences are fundamental tool for its appli-
cations. Comparison between norm and weak absolutely
summable series is at the origin of some classical problems
in the theory of Banach spaces, and it was the starting point
of the theory of 𝑝-summing operators. In this paper we
are interested in providing new elements for the analysis of
summability in the case of Banach function spaces by using a
vector valued duality that is provided by the vector measure
integration theory on spaces 𝐿

𝑝
(𝑚) of integrable functions

with respect to a vectormeasure𝑚.These spaces represent, in
fact, all order continuous 𝑝-convex Banach lattices with weak
unit. This theory supplies a distinguished element, the vector
valued integral, for the study of summability in Banach spaces
of measurable functions. It is well known that 𝑓𝑔 ∈ 𝐿

1
(𝑚)

whenever 𝑓 ∈ 𝐿
𝑝
(𝑚) and 𝑔 ∈ 𝐿

𝑝


(𝑚), 1/𝑝 + 1/𝑝

= 1. In this

case, the integral ∫𝑓𝑔𝑑𝑚 determines a vector valued bilinear
map that yields to duality: the vector valued duality between
𝐿
𝑝
(𝑚) and 𝐿

𝑝


(𝑚) (see [1, 2]).

This vector valued duality is the framework to study
natural topologies on spaces of integrable functions with
respect to a vector measure, as the topology 𝜏𝑚 generated by
the seminorms 𝛾𝑔(𝑓) fl ‖ ∫𝑓𝑔𝑑𝑚‖ and 𝑓 ∈ 𝐿

𝑝
(𝑚), when

varying 𝑔 ∈ 𝐿
𝑝


(𝑚).This new vector valued point of view was
first taken into consideration in the study of convergence of
sequences: the relation between the convergence of sequences
in spaces of vector measure integrable functions and the
convergence of the corresponding vector valued integrals has
been treated since the seventies (see, e.g., [3, 4], [5, Section
6], [6], and the references therein). In this paper we are
interested in the summability of sequences in 𝐿

𝑝
(𝑚) spaces

induced by the vector valued duality, that is, when the role
played by the weak topology is assumed by the topology
𝜏𝑚. It is worth mentioning that the 𝑝-convexification 𝐿

𝑝
(𝑚)

(𝑝 ≥ 1) of the space 𝐿
1
(𝑚) of a vector measure 𝑚 was

introduced as a tool for analyzing summability (see [1]),
trying to bring together vector valued integration and the
theory of 𝑝-summing operators in Banach spaces (see also
[7, 8]).

The classical Dvoretzky-Rogers theorem can be stated as
follows: the identity map in a Banach space 𝐸 is absolutely
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𝑞-summing for some 1 ≤ 𝑞 < ∞, if and only if 𝐸 is finite
dimensional. This paper is devoted to proving an extension
for Banach function spaces of this result. In our context,
the usual scalar duality is replaced by the vector valued
duality given by a vector measure and the role of the weak
topology in the Banach space is assumed by the topology 𝜏𝑚.
In order to develop our study, we analyze some properties
of the (𝑞, 𝑃

𝑚
)-summing operators that map 𝜏𝑚 summable

sequences to norm summable sequences. Our main result
shows the necessity of adding some topological requirements
on local compactness to characterize finite dimensional
spaces in terms of the (𝑞, 𝑃

𝑚
)-summability of the identity

map. The last section shows an application to the study of
subspaces of 𝐿𝑝

(𝑚) that are fixed by the integration operator.
As a consequence of our Dvoretzky-Rogers type theorem,
we prove that, under the local compactness hypotheses, only
finite dimensional subspaces can be fixed by the integration
map.

2. Preliminaries

We use standard Banach space notation. Let 1 ≤ 𝑝 ≤ ∞.
Then we write 𝑝

 for the extended real number satisfying
1/𝑝 + 1/𝑝


= 1. We follow the definition of Banach

function space over a finite measure 𝜇 given in [9, Def. 1.b.17,
p. 28]. Throughout the paper 𝑋(𝜇) will denote an infinite
dimensional Banach function space over 𝜇; that is, 𝑋(𝜇)

is a Banach lattice of 𝜇, a.e., equal classes of 𝜇-integrable
functions with a lattice norm and the 𝜇 a.e. order satisfying
𝐿
∞
(𝜇) ⊆ 𝑋(𝜇) ⊆ 𝐿

1
(𝜇). We will also assume that 𝑋(𝜇) is

order continuous; that is, for each decreasing sequence𝑓𝑛 ↓ 0

in𝑋(𝜇), lim𝑛‖𝑓𝑛‖𝑋(𝜇) = 0.

Let 𝑋 be a real Banach space and let (Ω, Σ) be a
measurable space. If 𝑚 : Σ → 𝑋 is a countably additive
vector measure, we write R(𝑚) for its range. The variation
|𝑚| of𝑚 is given by |𝑚|(𝐴) fl sup

𝐵
𝑖
∈𝜋

∑
𝑛

𝑖=1
‖𝑚(𝐵𝑖)‖, where the

supremum is computed over all finite measurable partitions
𝜋 of 𝐴 ∈ Σ. ‖𝑚‖ is the semivariation of 𝑚; that is, ‖𝑚‖(𝐴) fl
sup

𝑥∗∈𝐵
𝑋
∗
|⟨𝑚, 𝑥

∗
⟩|(𝐴), 𝐴 ∈ Σ, where ⟨𝑚, 𝑥

∗
⟩ is the scalar

measure given by ⟨𝑚, 𝑥
∗
⟩(𝐴) fl ⟨𝑚(𝐴), 𝑥

∗
⟩. The Rybakov

Theorem (see [10, Ch. IX]) establishes that there exists 𝑥∗
∈

𝑋
∗ such that𝑚 is absolutely continuous with respect to a so-

called Rybakov measure |⟨𝑚, 𝑥
∗
⟩| that means that 𝑚(𝐴) = 0

whenever |⟨𝑚(𝐴), 𝑥
∗
⟩| = 0. For 1 ≤ 𝑝 < ∞, a (real)

measurable function 𝑓 is said to be 𝑝-integrable with respect
to𝑚 if |𝑓|

𝑝 is integrable with respect to all measures |⟨𝑚, 𝑥
∗
⟩|

and for each 𝐴 ∈ Σ there exists an element ∫
𝐴
|𝑓|

𝑝
𝑑𝑚 ∈ 𝑋

such that ⟨∫
𝐴
|𝑓|

𝑝
𝑑𝑚, 𝑥

∗
⟩ = ∫

𝐴
|𝑓|

𝑝
𝑑⟨𝑚, 𝑥

∗
⟩, 𝑥∗

∈ 𝑋
∗.

The space 𝐿
𝑝
(𝑚), 1 ≤ 𝑝 < ∞, is defined to be the

Banach lattice of all (𝜇-equivalence classes of) measurable
real functions defined onΩ that are 𝑝-integrable with respect
to𝑚 when the a.e. order and the norm

𝑓
𝐿𝑝(𝑚)

fl ( sup
𝑥∗∈𝐵
𝑋
∗

∫
𝑓


𝑝
𝑑
⟨𝑚, 𝑥

∗
⟩
)

1/𝑝

,

𝑓 ∈ 𝐿
𝑝
(𝑚) ,

(1)

are considered. It is an order continuous 𝑝-convex Banach
function space over any Rybakov measure 𝜂 for 𝑚 (see
[1, Proposition 5]; see also [11] and [6, Ch. 3] for more
information on these spaces). For the case 𝑝 = ∞, 𝐿∞

(𝑚) is
defined as 𝐿∞

(𝜂). A relevant fact is that, for each 1 ≤ 𝑝 ≤ ∞,
𝐿
𝑝
(𝑚) ⋅𝐿

𝑝


(𝑚) ⊆ 𝐿
1
(𝑚) (see [6, Prop. 3.43] and [1, Sec. 3]; see

also [11]). Moreover, for each 𝑓 ∈ 𝐿
𝑝
(𝑚)

𝑓
𝐿𝑝(𝑚)

= sup
𝑔∈𝐵
𝐿
𝑝


(𝑚)


∫𝑓𝑔𝑑𝑚


. (2)

These relations allow defining the so-called vector measure
duality by using the integration operator 𝐼𝑚 : 𝐿

1
(𝑚) → 𝑋,

which is given by

𝐼𝑚 (𝑓) = ∫
Ω

𝑓𝑑𝑚, 𝑓 ∈ 𝐿
1
(𝑚) . (3)

We will use the symbol ∫𝑓𝑑𝑚 instead of ∫
Ω
𝑓𝑑𝑚 through-

out the paper. Relevant information on the properties of 𝐼𝑚
can be found in [12–14] and [6, Ch. 3] and the references
therein. Since for all 𝑝 > 1 the inclusion 𝐿

𝑝
(𝑚) ⊆ 𝐿

1
(𝑚)

always holds, the integration map can be defined also as an
operator 𝐼𝑚 : 𝐿

𝑝
(𝑚) → 𝑋; we use the same symbol 𝐼𝑚 in this

case for this operator. It must be said that the spaces 𝐿
𝑝
(𝑚)

represent in fact the class of all order continuous 𝑝-convex
Banach latticeswith aweak unit (see [11, Prop. 2.4] or [6, Prop.
3.30]) that means that our results can be applied to a broad
class of Banach spaces.

As we said in Introduction, duality and vector valued
duality for the spaces 𝐿

𝑝
(𝑚) are fundamental tools in this

paper. Regarding duality, fix a Rybakov measure 𝜇 for 𝑚.
Due to the order continuity of 𝐿𝑝

(𝑚), its dual space 𝐿
𝑝
(𝑚)

∗

(1 ≤ 𝑝 < ∞) allows an easy description; it coincides with its
Köthe dual (or associate space) (𝐿

𝑝
(𝑚))

; that is, 𝐿𝑝
(𝑚)

∗
=

(𝐿
𝑝
(𝑚))


= {𝜑𝑔 : 𝑔 ∈ H}, where

H fl {𝑔 : Ω → R Σ-measurable : 𝑓𝑔 ∈ 𝐿
1
(𝜇) ∀𝑓

∈ 𝐿
𝑝
(𝑚)}

(4)

and the duality is given by ⟨𝜑𝑔, 𝑓⟩ = ∫
Ω
𝑓𝑔𝑑𝜇. Information

about a precise description of (𝐿
𝑝
(𝑚))

 can be found in
[2, 7, 15–17]. It must be said here that (𝐿𝑝

(𝑚))
 and 𝐿

𝑝


(𝑚)

coincide only in very special situations, for instance, for 𝑚

being a scalarmeasure.Wewill write 𝜏𝑤 for theweak topology
on 𝐿

𝑝
(𝑚).

Regarding vector valued duality relations between 𝐿
𝑝
(𝑚)

spaces, 1 ≤ 𝑝 ≤ ∞, the integration map defines the
continuous bilinear map

𝐵𝑚 : 𝐿
𝑝
(𝑚) × 𝐿

𝑝


(𝑚) → 𝑋 (5)

given by 𝐵𝑚(𝑓, 𝑔) fl ∫𝑓𝑔𝑑𝑚, 𝑓 ∈ 𝐿
𝑝
(𝑚), 𝑔 ∈ 𝐿

𝑝


(𝑚). Note
that 𝐵𝑚 is both sides norming for 𝐿𝑝

(𝑚) and 𝐿
𝑝


(𝑚); that is,
for every 𝑓 ∈ 𝐿

𝑝
(𝑚), ‖𝑓‖𝐿𝑝(𝑚) = sup

𝑔∈𝐵
𝐿
𝑝


(𝑚)

‖ ∫𝑓𝑔𝑑𝑚‖, and

the same happens dually for the case of functions 𝑔 ∈ 𝐿
𝑝


(𝑚).
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In this paper we will consider the topology 𝜏𝑚 of point-
wise convergence of the integrals that is the locally convex
topology defined by the seminorms 𝛾𝑔(𝑓) fl ‖ ∫𝑓𝑔𝑑𝑚‖𝑋,
𝑓 ∈ 𝐿

𝑝
(𝑚), 𝑔 ∈ 𝐿

𝑝


(𝑚). The topology 𝜏𝑤,𝑚 of pointwise weak
convergence of the integrals is defined by the seminorms
𝛾𝑔,𝑥∗(𝑓) fl ⟨∫𝑓𝑔𝑑𝑚, 𝑥

∗
⟩, 𝑓 ∈ 𝐿

𝑝
(𝑚), 𝑔 ∈ 𝐿

𝑝


(𝑚), and
𝑥
∗

∈ 𝑋
∗. It is also a locally convex topology on 𝐿

𝑝
(𝑚). It

is easy to see that the norm topology is finer than all the
others, and 𝜏𝑚 and 𝜏𝑤 are finer than 𝜏𝑤,𝑚, although 𝜏𝑚 and
𝜏𝑤 are not comparable in general. An exhaustive analysis of
the 𝜏𝑚 topology has been done recently and can be found
in [18] (see also the references therein). The reader can find
more information about it in [1, 6, 7, 11, 16, 19]. The following
result establishes the basic relations between the quoted
topologies.

Proposition 1 (See Proposition 1 in [18]). Let 1 ≤ 𝑝 ≤ ∞.
If 𝐵𝐿𝑝(𝑚) is 𝜏𝑚-compact then 𝜏𝑤,𝑚 and 𝜏𝑚 coincide on bounded
subsets of 𝐿𝑝

(𝑚). Moreover, if 𝑝 > 1 and 𝐵𝐿𝑝(𝑚) is 𝜏𝑚-compact
then the weak topology and 𝜏𝑚 coincide on bounded subsets of
𝐿
𝑝
(𝑚). Consequently, if𝑝 > 1,𝐵𝐿𝑝(𝑚) is 𝜏𝑚-compact if and only

if (𝐿𝑝
(𝑚), ‖ ⋅ ‖𝐿𝑝(𝑚)) is reflexive and the weak topology and 𝜏𝑚

coincide on 𝐵𝐿𝑝(𝑚).
In this paper we will make a local use of the duality

defined by the integration bilinear map 𝐵𝑚. For 1 ≤ 𝑝 ≤ ∞

consider a subspace 𝑃 ⊆ 𝐿
𝑝
(𝑚). We say that a subspace 𝑅 ⊆

𝐿
𝑝


(𝑚) is an𝑚-dual for 𝑃 if 𝑅 is𝑚-norming for 𝑃; that is, the
function 𝑓  sup

𝑔∈𝐵
𝑅

‖ ∫𝑓𝑔𝑑𝑚‖ gives an equivalent norm
for 𝑃. We write 𝑃𝑚 for such a space𝑅. In the same way, we say
that a subspace𝑃𝑚𝑚 of𝐿𝑝

(𝑚) is𝑚-bidual of𝑃 (with respect to
𝑚-dual𝑃𝑚) if𝑃 ⊆ 𝑃

𝑚𝑚 and𝑃
𝑚𝑚 is𝑚-norming for𝑃𝑚. Notice

that the inclusion 𝑃 ⊆ 𝑃
𝑚𝑚 is not necessary for 𝑃𝑚𝑚 to be𝑚-

norming for 𝑃𝑚. For instance, if𝑋(𝜇) is an order continuous
Banach function space and 𝑚 : Σ → 𝑋(𝜇) is the vector
measure given by 𝑚(𝐴) fl 𝜒𝐴, 𝐴 ∈ Σ, then for 𝑃 = 𝐿

𝑝
(𝑚)

the space 𝑃
𝑚 generated by the function 𝜒Ω in 𝐿

𝑝


(𝑚) is 𝑚-
norming for 𝑃, and also the space 𝑃

𝑚𝑚 generated by 𝜒Ω in
𝐿
𝑝
(𝑚) is 𝑚-norming for 𝑃

𝑚. However, 𝑃 is not included in
𝑃

𝑚𝑚. But note also that given𝑃,𝑃𝑚, and𝑃
𝑚𝑚 being norming,

it can always be assumed that 𝑃 ⊆ 𝑃
𝑚𝑚 just by defining the

new 𝑃
𝑚𝑚 as the subspace of 𝐿𝑝

(𝑚) generated by 𝑃∪𝑃
𝑚𝑚

.We
will use this example later.

We say that a triple (𝑃, 𝑃
𝑚
, 𝑃

𝑚𝑚
) of 𝑚-dual spaces as

above is an 𝑚-dual system. We can define the topology
𝜏𝑚(𝑃

𝑚
) over 𝑃 as the one induced by all the seminorms 𝑓 

‖ ∫𝑓𝑔𝑑𝑚‖, 𝑔 ∈ 𝑃
𝑚, and 𝜏(𝑃

𝑚𝑚
) the topology for 𝑃

𝑚 given
by the seminorms 𝑔  ‖ ∫𝑓𝑔𝑑𝑚‖, 𝑓 ∈ 𝑃

𝑚𝑚. A quick look at
the proof of Proposition 1 in [18] shows that a local version of
this result is also true, that is, a version of this result writing
𝑃 instead of 𝐿𝑝

(𝑚) and 𝜏𝑚(𝑃
𝑚
) instead of 𝜏𝑚, where 𝑃

𝑚 is an
𝑚-dual space.

Let us show some examples. A natural 𝑚-dual space of
𝐿
𝑝
(𝑚) is 𝐿

𝑝


(𝑚); in this case, we write simply 𝜏𝑚 for the
topology 𝜏𝑚(𝐿

𝑝


(𝑚)). However, an𝑚-dual space may be very
small. For instance, if the integration map 𝐼𝑚 : 𝐿

1
(𝑚) → 𝑋 is

isomorphism, then the subspace generated by 𝜒Ω ∈ 𝐿
∞
(𝑚) is

𝑚-dual for 𝐿1
(𝑚). Obviously, for every subspace 𝑃 ⊆ 𝐿

𝑝
(𝑚),

𝐿
𝑝


(𝑚) is𝑚-dual for 𝑃.
Let us finish this section by defining a fundamental class

of operators related to the summability of sequences with
respect to the 𝜏𝑚-topology. It generalizes the class considered
in Lemma 16 of [1] and in [7, Section 4.2]. Theorem 17 in
[1] provides a Pietsch type domination/factorization theorem
for this family of operators. The local version of this result
becomes the main tool for the proof of our results.

Definition 2. Let 1 ≤ 𝑝, 𝑞 < ∞,𝑅 be a subspace of 𝐿𝑝


(𝑚) and
𝑃 a Banach subspace of 𝐿𝑝

(𝑚). Let 𝐸 be a Banach space. An
operator 𝑇 : 𝑃 → 𝐸 is (𝑞, 𝑅)-summing if there is a constant
𝐾 such that, for any finite set of functions 𝑓1, . . . , 𝑓𝑛 ∈ 𝑃,

(

𝑛

∑

𝑖=1

𝑇 (𝑓𝑖)

𝑞
)

1/𝑞

≤ 𝐾sup
𝑔∈𝐵
𝑅

(

𝑛

∑

𝑖=1


∫𝑓𝑖𝑔𝑑𝑚



𝑞

)

1/𝑞

. (6)

Of course, the integration map 𝐼𝑚 : 𝑃 → 𝑋 is always
(𝑞, 𝐿

𝑝


(𝑚))-summing for all 1 ≤ 𝑝, 𝑞 < ∞. Indeed, if
𝑓1, . . . , 𝑓𝑛 ∈ 𝐿

𝑝
(𝑚), then

𝑛

∑

𝑖=1

𝐼𝑚 (𝑓𝑖)

𝑞
≤ ‖𝑚‖ (Ω)

𝑞/𝑝


⋅ sup
ℎ∈𝐵
𝐿
𝑝


(𝑚)

(

𝑛

∑

𝑖=1


∫𝑓𝑖ℎ 𝑑𝑚



𝑞

) .

(7)

3. The Dvoretzky-Rogers Theorem for
the 𝑚-Summability

Throughout this section, 1 ≤ 𝑝 ≤ ∞, 𝐸 and 𝑋 are Banach
spaces, 𝑚 is an 𝑋-valued vector measure, 𝑃 is a subspace
of 𝐿

𝑝
(𝑚), and (𝑃, 𝑃

𝑚
, 𝑃

𝑚𝑚
) is an 𝑚-dual system. We will

consider the following sequential properties associated with
compactness with respect to the 𝜏𝑚-topology.

Definition 3. An operator 𝑇 : 𝐸 → 𝑃 is 𝜏𝑚(𝑃
𝑚
)-

sequentially compact if every bounded sequence (𝑥𝑛)𝑛 in
𝐸 has a subsequence (𝑥𝑛

𝑘

)𝑘 such that (∫ 𝑇(𝑥𝑛
𝑘

)𝑔 𝑑𝑚)𝑘 is a
Cauchy sequence for each 𝑔 ∈ 𝑃

𝑚.

Definition 4. An operator 𝑇 : 𝑃 → 𝐸 is 𝜏𝑚(𝑃
𝑚
)-sequentially

completely continuous if lim𝑛‖𝑇(𝑓𝑛)‖ = 0 whenever (𝑓𝑛)𝑛 is
a bounded sequence such that lim𝑛‖ ∫ ℎ𝑓𝑛𝑑𝑚‖ = 0 for every
ℎ ∈ 𝑃

𝑚.

If we assume that 𝜒Ω ∈ 𝑃
𝑚 (we can always make 𝑃

𝑚 big
enough to have it), then 𝐼𝑚 : 𝑃 → 𝑋 is 𝜏𝑚(𝑃

𝑚
)-sequentially

continuous. In the classical summing operators theory it is
well known that any summing operator is weakly compact.
However, not every (𝑞, 𝑃

𝑚
)-summing operator is 𝜏𝑚(𝑃

𝑚
)-

sequentially compact. For instance, given a Banach function
space 𝑋(𝜇), define 𝑚(𝐴) fl 𝜒𝐴, 𝐴 ∈ Σ. Then 𝐼𝑚 : 𝐿

1
(𝑚) →

𝑋(𝜇) is an isomorphism which is (𝑞, 𝐿
∞
(𝑚))-summing but

it is not 𝜏𝑚(𝐿
∞
(𝑚))-sequentially compact in general as

in this case the norm topology and the 𝜏𝑚 = 𝜏𝑚(𝐿
∞
(𝑚))
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topology coincide. Then 𝐵𝐿1(𝑚) is not 𝜏𝑚-compact unless
𝐿
1
(𝑚) is finite dimensional. Let us see that, under some

compactness assumptions, the (𝑞, 𝑃
𝑚
)-summing operators

behave similarly as absolutely summing operators. We need
first an easy lemma.

Lemma 5. Let 1 ≤ 𝑝 ≤ ∞ and let 𝑃 be a subspace of 𝐿𝑝
(𝑚)

and𝑃
𝑚 an𝑚-norming subspace for𝑃. Consider a Banach space

valued (𝑟, 𝑃
𝑚
)-summing operator 𝑇 : 𝑃 → 𝐸. Then 𝑇 is

(𝑞, 𝑃
𝑚
)-summing for each 1 ≤ 𝑟 ≤ 𝑞 < ∞.

Proof. Let 𝑠 be such that 1/𝑞 + 1/𝑠 = 1/𝑟. Take a finite set of
functions 𝑓1, . . . , 𝑓𝑛 ∈ 𝑃. Then

(

𝑛

∑

𝑖=1

𝑇 (𝑓𝑖)

𝑞
)

1/𝑞

= sup
(𝜆
𝑖
)𝑛
𝑖=1

∈𝐵
ℓ
𝑠

(

𝑛

∑

𝑖=1

𝜆𝑖


𝑟 𝑇 (𝑓𝑖)


𝑟
)

1/𝑟

≤ min
(𝜆
𝑖
)𝑛
𝑖=1

∈𝐵
ℓ
𝑠

(

𝑛

∑

𝑖=1

𝑇 (𝜆𝑖𝑓𝑖)

𝑟
)

1/𝑟

≤ sup
(𝜆
𝑖
)𝑛
𝑖=1

∈𝐵
ℓ
𝑠

𝐾 sup
𝑔∈𝐵
𝑃
𝑚

(

𝑛

∑

𝑖=1

𝜆𝑖


𝑟

∫𝑓𝑖𝑔𝑑𝑚



𝑟

)

1/𝑟

≤ 𝐾 sup
𝑔∈𝐵
𝑃
𝑚

(

𝑛

∑

𝑖=1


∫𝑓𝑖𝑔𝑑𝑚



𝑞

)

1/𝑞

,

(8)

where 𝐾 is the constant associated with the (𝑟, 𝑃
𝑚
)-

summability of 𝑇.

Theorem 6. Let 1 ≤ 𝑞 < ∞. Let 𝑇 : 𝑃 → 𝐸 be a (𝑞, 𝑃
𝑚
)-

summing operator. The following statements hold.

(i) If 𝐵𝑃𝑚 is 𝜏𝑚(𝑃
𝑚𝑚

)-compact then 𝑇 is 𝜏𝑚(𝑃
𝑚
)-sequen-

tially completely continuous.
(ii) If 𝐵𝑃 is 𝜏𝑚(𝑃

𝑚
)-compact and 𝐵𝑃𝑚 is 𝜏𝑚(𝑃

𝑚𝑚
)-compact

then 𝑇 is completely continuous.
(iii) Finally, if 𝐵𝑃𝑚 is 𝜏𝑚(𝑃

𝑚𝑚
)-compact and 𝑋 is reflexive,

then 𝑇 is also weakly compact.

Proof. (i) We have that 𝑇 satisfies that, for every finite set
𝑓1, . . . , 𝑓𝑛 ∈ 𝑃,

𝑛

∑

𝑖=1

𝑇 (𝑓𝑖)

𝑞
≤ 𝐾

𝑞 sup
𝑔∈𝐵
𝑃
𝑚

𝑛

∑

𝑖=1


∫𝑓𝑖𝑔𝑑𝑚



𝑞

. (9)

Taking into account that (𝑃, 𝑃𝑚
, 𝑃

𝑚𝑚
) is an𝑚-dual system, it

can be shown as in the case of Pietsch’s DominationTheorem
for 𝑞-summing operators (see Lemma 16 in [1] and make
the obvious modifications) that there is measure 𝜂 on the
compact space (𝐵𝑃𝑚 , 𝜏𝑚(𝑃

𝑚𝑚
)) such that

𝑇 (𝑓)
 ≤ 𝐾(∫

𝐵
𝑃
𝑚


∫𝑓𝑔𝑑𝑚



𝑞

𝑑𝜂 (𝑔))

1/𝑞

, 𝑓 ∈ 𝑃. (10)

This easily gives that 𝑇 factorizes through the following
scheme (see Theorem 17 in [1]):

P
T

j

i

u

C0
S0

E

where 𝐶0 is the subspace of 𝐶(𝐵𝑃𝑚 , 𝑋) given by the functions
𝑔  ∫𝑓𝑔𝑑𝑚 ∈ 𝑋, 𝑗 is the isomorphism given by the
identification of a function 𝑓 with the corresponding vector
valued function in 𝐶0, 𝑆0 is the closure of the image of 𝐶0 by
the natural inclusion/quotient map

𝐶 (𝐵𝑃𝑚 , 𝑋) → 𝐿
𝑞
(𝐵𝑃𝑚 , 𝜂, 𝑋) , (11)

where 𝜂 is a Radon probability measure on 𝐵𝑃𝑚 , and 𝑢 is the
map that closes the diagram. Using this scheme, an argument
based on the Dominated Convergence Theorem gives the
result. Let (ℎ𝑛)𝑛 be a bounded sequence in 𝑃 such that the
sequence of integrals (‖ ∫ ℎ𝑛𝑔𝑑𝑚‖)𝑛 is null for every 𝑔 ∈ 𝑃

𝑚.
It is enough to prove that the sequence of functions 𝑔 

∫ ℎ𝑛𝑔𝑑𝑚 ∈ 𝑋 satisfies lim𝑛 ∫𝑔∈𝐵
𝑃
𝑚

‖ ∫ ℎ𝑛𝑔𝑑𝑚‖
𝑞
𝑑𝜂(𝑔) = 0.

For each 𝑛, the function 𝜑𝑛(⋅) fl ‖ ∫ ℎ𝑛 ⋅ 𝑑𝑚‖ belongs to the
space 𝐶(𝐵𝑃𝑚) of scalar continuous functions defined on the
compact set (𝐵𝑃𝑚 , 𝜏𝑚(𝑃

𝑚𝑚
)). Since there is a constant 𝐾 > 0

such that 𝜑𝑛(𝑔) ≤ 𝐾𝜒𝐵
𝑃
𝑚
(𝑔) for all 𝑔 ∈ 𝐵𝑃𝑚 and 𝑛, we

can apply the Lebesgue Dominated ConvergenceTheorem to
obtain that

lim
𝑛

∫
𝐵
𝑃
𝑚


∫ ℎ𝑛𝑔𝑑𝑚



𝑞

𝑑𝜂 (𝑔) = lim
𝑛

∫
𝐵
𝑃
𝑚

𝜑
𝑞

𝑛
(𝑔) 𝑑𝜂 (𝑔)

= 0.

(12)

Therefore, using the factorization we obtain that
lim𝑛‖𝑇(ℎ𝑛)‖ = 0 and so 𝑇 is 𝜏𝑚(𝑃

𝑚
)-sequentially completely

continuous.
(ii) Let (𝑓𝑛)𝑛 be a weakly null sequence in 𝑃. Since

(𝐵𝑃𝑚 , 𝜏𝑚(𝑃
𝑚𝑚

)) is compact, using the factorization given in
(i) and taking into account that each continuous operator
is weak-to-weak continuous we get that for each element
𝛿𝑔 ⊗ 𝑥


∈ (𝐶(𝐵𝑃𝑚 , 𝑋))

, 𝑔 ∈ 𝑃
𝑚, 𝑥

∈ 𝑋
, we have that

lim
𝑛

⟨∫𝑓𝑛 ⋅ 𝑑𝑚, 𝛿𝑔 ⊗ 𝑥

⟩ = lim

𝑛
⟨∫𝑓𝑛𝑔𝑑𝑚, 𝑥


⟩ = 0. (13)

Due to an easy adaptation of Proposition 1, since we
are assuming that (𝐵𝑃, 𝜏𝑚(𝑃

𝑚
)) is compact, the topolo-

gies 𝜏𝑤,𝑚(𝑃
𝑚
), generated by the seminorms 𝛾𝑥∗,𝑔(𝑓) fl

⟨∫𝑓𝑔𝑑𝑚, 𝑥
∗
⟩ when varying 𝑥

∗
∈ 𝑋

 and 𝑔 ∈ 𝑃
𝑚, and

𝜏𝑚(𝑃
𝑚
) coincide on 𝐵𝑃.

Consequently for each 𝑔 ∈ 𝑃
𝑚, lim𝑛‖ ∫𝑓𝑛𝑔𝑑𝑚‖ = 0.

Using the domination in (i), we obtain the result on the
complete continuity.

(iii) Finally, by Lemma 5 if 𝑇 is (𝑞, 𝑃
𝑚
)-summing it is

(𝑠, 𝑃
𝑚
)-summing for 𝑞 < 𝑠 < ∞, and so the reflexivity of 𝑋

implies the reflexivity of 𝐿𝑠
(𝐵𝑃𝑚 , 𝜂, 𝑋).Thus, the factorization

of𝑇 through a subspace of 𝐿𝑠
(𝐵𝑃𝑚 , 𝜂, 𝑋) gives that𝑇 is weakly

compact.
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The following result is a direct consequence of statements
(ii) and (iii) of Theorem 6.

Corollary 7. Suppose that 𝑚 is an 𝑋-valued vector measure
and 𝑋 is reflexive. Let 𝑇 : 𝑃 → 𝑃 be a (𝑞, 𝑃

𝑚
)-summing

operator, and suppose that 𝐵𝑃 is 𝜏𝑚(𝑃
𝑚
)-compact and 𝐵𝑃𝑚 is

𝜏𝑚(𝑃
𝑚𝑚

)-compact. Then 𝑇 ∘ 𝑇 is compact.

In particular, if 𝑇 : 𝑃 → 𝐸 is isomorphism in Corollary 7,
we obtain that 𝑃 has to be finite dimensional.

Example 8. Let us show an example of a proper infinite
dimensional subspace of a space 𝐿

2
(𝑚) with an 𝑚-dual

system in which 𝑃, 𝑃
𝑚, and 𝑃

𝑚𝑚 coincide. However, the
identity map is not (𝑞, 𝑃

𝑚
)-summing for any 1 ≤ 𝑞 <

∞. Take an infinite nontrivial measurable partition {𝐴 𝑖}
∞

𝑖=1

of the Lebesgue space ([0, 1],B, 𝜇), and define the vector
measure 𝑚 : B → ℓ

2 given by 𝑚(𝐵) fl ∑
∞

𝑖=1
𝜇(𝐴 𝑖 ∩ 𝐵)𝑒𝑖,

where {𝑒𝑖 : 𝑖 = 1, . . .} is the canonical basis of ℓ
2 and

𝐵 ∈ B (see Example 10 in [20]). Consider the (infinite
dimensional closed) subspace 𝑃 of 𝐿2

(𝑚) generated by the
functions 𝜒𝐴

𝑖

/𝜇(𝐴 𝑖)
1/2, 𝑖 ∈ N. A direct calculation shows

that, for each 𝑓 = ∑
∞

𝑖=1
𝜆𝑖𝜒𝐴

𝑖

/𝜇(𝐴 𝑖)
1/2

∈ 𝑃,

𝑓
𝐿2(𝑚)

= (

∞

∑

𝑖=1

𝜆𝑖


4
)

1/4

, (14)

and so𝑃 is isometric to ℓ
4 (see Proposition 11 in [20]).We can

define the 𝑚-dual space 𝑃
𝑚

⊆ 𝐿
2
(𝑚) and the 𝑚-bidual space

𝑃
𝑚𝑚 as 𝑃𝑚

= 𝑃
𝑚𝑚

= 𝑃. It is clear that 𝑃𝑚 norms 𝑃 and 𝑃
𝑚𝑚

norms𝑃𝑚. However, the identitymap is not (𝑞, 𝑃𝑚
)-summing

for any 1 ≤ 𝑞 < ∞. In order to see this, consider the sequence
of functions (𝜒𝐴

𝑖

/𝜇(𝐴 𝑖)
1/2

)
∞

𝑖=1
. Then, if 1 ≤ 𝑞 < ∞, for each

𝑘 ∈ N we get

𝑘

∑

𝑖=1



𝜒𝐴
𝑖

𝜇 (𝐴 𝑖)
1/2



𝑞

𝐿2(𝑚)

= 𝑘, (15)

but

sup
𝑔∈𝐵
𝑃
𝑚

𝑘

∑

𝑖=1



∫
𝜒𝐴
𝑖

𝜇 (𝐴 𝑖)
1/2

𝑔𝑑𝑚



𝑞

ℓ2

= sup
(𝜏
𝑖
)∞
𝑖=1

∈𝐵
ℓ
4

𝑘

∑

𝑖=1

𝜏𝑖

𝑞

≤ sup
(𝜏
𝑖
)∞
𝑖=1

∈𝐵
ℓ
4

(

𝑘

∑

𝑖=1

𝜏𝑖

4𝑞
)

1/4

⋅ 𝑘
3/4

≤ 𝑘
3/4

.

(16)

This gives a contradiction and shows that the identity map
cannot be (𝑞, 𝑃

𝑚
)-summing for any 1 ≤ 𝑞 < ∞. Note that

the range of 𝑚 is relatively compact, since it can be included
in the convex hull of a null sequence of ℓ

2. Corollary 8 in
[18] establishes that for a reflexive and separable space 𝐿

2
(𝑚)

(our space satisfies both requirements) relative compactness
of the range of 𝑚 implies compactness of (𝐵𝐿2(𝑚), 𝜏𝑚). 𝐵𝑃 is
𝜏𝑚-closed, since by Proposition 1, 𝜏𝑚 is finer than the weak
topology on 𝐿

2
(𝑚). This gives compactness of (𝐵𝑃, 𝜏𝑚(𝑃

𝑚
)),

since the topology 𝜏𝑚(𝑃
𝑚
) is weaker than the topology 𝜏𝑚 on

𝐵𝑃, and so compactness of (𝐵𝑃𝑚 , 𝜏𝑚(𝑃
𝑚𝑚

)). The topological
requirements of Corollary 7 are then satisfied and 𝑃 is
reflexive, but obviously the identitymap is not compact. Since
ℓ
4 is not a Schur space, the identity map is not completely
continuous. This shows that the summability condition in
Theorem 6(ii) and in Corollary 7 cannot be dropped.

The following is our main result and gives a vector
measure version of the Dvoretzky-Rogers theorem.

Theorem 9. Let 𝐸 be a Banach space, 𝑃 a subspace of 𝐿𝑝
(𝑚),

and 𝑇 : 𝑃 → 𝐸 isomorphism. The following statements are
equivalent.

(i) There is an 𝑚-dual system (𝑃, 𝑃
𝑚
, 𝑃

𝑚𝑚
) such that

𝐵𝑃 is 𝜏𝑚(𝑃
𝑚
)-sequentially compact, 𝐵𝑃𝑚 is 𝜏𝑚(𝑃

𝑚𝑚
)-

compact, and 𝑇 is (𝑞, 𝑃𝑚
)-summing for some and then,

for all, 1 ≤ 𝑞 < ∞.
(ii) 𝑃 has finite dimension.

Proof. (i) ⇒ (ii) Assume that 𝑇 is (𝑞, 𝑃𝑚
)-summing for fixed

1 ≤ 𝑞 < ∞. Let us show that the composition 𝑇 ∘ 𝑇
−1 is

compact. As a consequence of Theorem 6(i), we know that
𝑇 is 𝜏𝑚(𝑃

𝑚
)-sequentially completely continuous. Since 𝐵𝑃 is

𝜏𝑚(𝑃
𝑚
)-sequentially compact, 𝑇−1

: 𝑇(𝐸) → 𝑃 is 𝜏𝑚(𝑃
𝑚
)-

sequentially compact.Then the identity map 𝑇 ∘𝑇
−1

: 𝑃 → 𝑃

is compact, and so 𝑃 has finite dimension.
(ii)⇒ (i) Since𝑃 is finite dimensional, we have that (𝑆𝑃, ‖⋅

‖𝐿𝑝(𝑚)) is compact. The norm topology is finer than 𝜏𝑚, and
so the unit sphere (𝑆𝑃, 𝜏𝑚) is compact too. For each element
𝑓 ∈ 𝑆𝑃, take a norm one function 𝑔𝑓 ∈ 𝐿

𝑝


(𝑚) that satisfies
that 1/2 ≤ ‖ ∫𝑓𝑔𝑓𝑑𝑚‖ ≤ 1. Consider the 𝜏𝑚-open covering
of 𝑆𝑃 given by the sets

{ℎ ∈ 𝐿
𝑝
(𝑚) :


∫ (ℎ − 𝑓) 𝑔𝑓𝑑𝑚


<

1

4
, 𝑓 ∈ 𝑆𝑃} . (17)

There is finite subcovering given by a finite setC = {𝑔𝑓
𝑖

: 𝑖 =

1, . . . , 𝑛} of such functions 𝑔𝑓. Then we define 𝑃
𝑚 to be the

subspace generated by C. Note that for each 𝑓 ∈ 𝑆𝑃 there is
an index 𝑖 ∈ {1, . . . , 𝑛} such that ‖ ∫(𝑓𝑖 − 𝑓)𝑔𝑓

𝑖

𝑑𝑚‖ < 1/4 and
so

1

2
≤


∫𝑓𝑖𝑔𝑓

𝑖

𝑑𝑚



≤


∫𝑓𝑔𝑓

𝑖

𝑑𝑚


+


∫ (𝑓𝑖 − 𝑓) 𝑔𝑓

𝑖

𝑑𝑚



≤


∫𝑓𝑔𝑓

𝑖

𝑑𝑚


+

1

4
≤ sup

𝑔∈𝐵
𝑃
𝑚


∫𝑓𝑔𝑑𝑚


+

1

4

≤
𝑓

𝐿𝑝(𝑚)
⋅ sup
𝑔∈𝐵
𝑃
𝑚

𝑔
𝐿𝑝


(𝑚)
+

1

4
≤ 1 +

1

4
.

(18)

Consequently, for each 𝑓 ∈ 𝑃,

1

4

𝑓
𝐿𝑝(𝑚)

≤ sup
𝑔∈𝐵
𝑃
𝑚


∫𝑓𝑔𝑑𝑚


≤

𝑓
𝐿𝑝(𝑚)

. (19)
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Therefore, the space𝑃𝑚 is𝑚-norming for𝑃 and𝐵𝑃 is 𝜏𝑚(𝑃
𝑚
)-

sequentially compact since the norm topology and 𝜏𝑚(𝑃
𝑚
)

coincide in the finite dimensional space 𝑃.
Note that we can also define a finite dimensional subspace

𝑃
𝑚𝑚 containing 𝑃 that is 𝑚-norming for 𝑃

𝑚 following the
same procedure in the definition of 𝑃𝑚. The finite dimension
of 𝑃𝑚 proves also that 𝐵𝑃𝑚 is 𝜏𝑚(𝑃

𝑚𝑚
)-compact.

Finally, let us see that 𝑇 is (𝑞, 𝑃𝑚
)-summing for all 1 ≤ 𝑞.

By Lemma 5 it suffices to prove that 𝑇 is (1, 𝑃
𝑚
)-summing.

Write now 𝑃
 for the (usual topological) dual of 𝑃. Since

𝑃 is finite dimensional, we have that the identity map is 1-
summing, and so for each finite family ℎ1, . . . , ℎ𝑙 ∈ 𝑃

𝑙

∑

𝑖=1

𝑇 (ℎ𝑖)
 ≤ ‖𝑇‖

𝑙

∑

𝑖=1

ℎ𝑖

𝐿𝑝(𝑚)

≤ ‖𝑇‖𝐾 sup
𝑦∈𝐵
𝑃


𝑙

∑

𝑖=1


⟨ℎ𝑖, 𝑦


⟩


= ‖𝑇‖𝐾 sup
𝜖
𝑖
=±1



𝑙

∑

𝑖=1

𝜖𝑖ℎ𝑖

𝐿𝑝(𝑚)

≤ 4 ‖𝑇‖𝐾 sup
𝜖
𝑖
=±1

sup
𝑔∈𝐵
𝑃
𝑚



∫

𝑙

∑

𝑖=1

𝜖𝑖ℎ𝑖𝑔𝑑𝑚



≤ 4 ‖𝑇‖𝐾sup
𝑔∈𝐵
𝑅

𝑛

∑

𝑖=1


∫ ℎ𝑖𝑔𝑑𝑚


,

(20)

where𝐾 is the 1-summing norm of the identity map and the
constant 4 comes from (19). Therefore, 𝑇 is (1, 𝑃𝑚

)-summing
and so (𝑞, 𝑃

𝑚
)-summing for every 𝑞 ≥ 1.

When 𝑚 is a scalar measure then the spaces 𝐿
𝑝
(𝑚) and

𝐿
𝑝


(𝑚), 1 < 𝑝 < ∞, are reflexive and hence their closed
unit balls are weakly compact or, equivalently, 𝜏𝑚-compact.
Besides, in this case (𝑞, 𝐿

𝑝


(𝑚))-summability coincides with
the usual absolute 𝑞-summability for operators. Therefore
Theorem 9 can be considered an extension of the classical
Dvoretzky-Rogers Theorem to spaces of integrable functions
with respect to a vector measure.

Let us present some examples that show that all the
requirements in (i) are needed for the result to be true. Recall
that𝑋(𝜇) is an order continuous Banach function space over
a finite measure space (Ω, Σ, 𝜇).

Remark 10.

(1) 𝜏𝑚(𝑃
𝑚
)-Sequential Compactness of 𝐵𝑃 Is a Necessary

Requirement. Consider the vector measure 𝑚 : Σ → 𝑋(𝜇)

given by 𝑚(𝐴) fl 𝜒𝐴, 𝐴 ∈ Σ. In this case, 𝐿1
(𝑚) = 𝑋(𝜇)

and the integration map 𝐼𝑚 : 𝐿
1
(𝑚) → 𝑋(𝜇) is isomorphism.

Take 𝑃 = 𝐿
1
(𝑚) that is not finite dimensional by assumption.

The subspace 𝑃
𝑚 of 𝐿∞

(𝑚) generated by 𝜒Ω is 𝑚-norming
for 𝑃. Consider the 𝑚-bidual space 𝑃

𝑚𝑚 for 𝑃 defined as
𝑃

𝑚𝑚
= 𝐿

1
(𝑚). Obviously, 𝐵𝑃𝑚 is 𝜏𝑚(𝑃

𝑚𝑚
)-compact. Since

the seminorm on 𝐿
1
(𝑚) defined by 𝑓  ‖ ∫𝑓𝜒Ω𝑑𝑚‖ = ‖𝑓‖

coincides with the norm, we have that 𝑃𝑚 is 𝑚-norming for

𝑃 but clearly 𝐵𝑃 is not 𝜏𝑚(𝑃
𝑚
)-sequentially compact. Note

that any other 𝑚-dual space for 𝑃 containing a function
𝑔(𝑤) > 𝛿 for some 𝛿 > 0 satisfies the same property: 𝐵𝑃

is not compact for the topology 𝜏𝑚(𝑃
𝑚
). Observe also that

the identity 𝐿
1
(𝑚) → 𝐿

1
(𝑚) is (𝑞, 𝑃

𝑚
)-summing for each

1 ≤ 𝑞 < ∞, since for each finite set 𝑓1, . . . , 𝑓𝑚 ∈ 𝐿
1
(𝑚),

𝑛

∑

𝑖=1

𝑓𝑖


𝑞

𝐿1(𝑚)
=

𝑛

∑

𝑖=1


∫𝑓𝑖𝜒Ω𝑑𝑚



𝑞

𝑋(𝜇)

. (21)

Note that the identity is 𝜏𝑚(𝑃
𝑚
) sequentially completely

continuous trivially.This example shows clearly the difference
between 𝑞-summing and (𝑞, 𝑃

𝑚
)-summing operators. In the

first case, Alaoglu’s Theorem assures that the unit ball of the
dual space is weak∗-compact, and this is enough to prove
the Dvoretzky-Rogers theorem via Pietsch’s Factorization
Theorem. In the second case, the topological properties
for the unit balls of the spaces involved must be given as
additional requirements. This means that the corresponding
summability property for the isomorphism does not assure
our Dvoretzky-Rogers type theorem to hold.

(2) Not All the𝑚-Dual Systems for a Finite Dimensional Space
𝑃 Satisfy the Requirements of Theorem 9. Consider again
the vector measure given in the example given in (1). Take
𝑃 as the (finite dimensional) subspace of 𝐿

1
(𝑚) generated

by 𝜒Ω. First, take the 𝑚-dual system 𝑃 = 𝑃
𝑚

= 𝑃
𝑚𝑚,

with the understanding that 𝑃 and 𝑃
𝑚𝑚 are subspaces of

𝐿
1
(𝑚) and 𝑃

𝑚 is a subspace of 𝐿
∞
(𝑚). In this case, 𝐵𝑃 is

𝜏𝑚(𝑃
𝑚
)-sequentially compact, 𝐵𝑃𝑚 is 𝜏𝑚(𝑃

𝑚𝑚
)-compact, and

the identity map on 𝑃 that coincides with the integration
operator is (𝑞, 𝑃𝑚

)-summable for each 1 ≤ 𝑞 < ∞, providing
all the requirements in (i) of Theorem 9.

However, take now 𝑃
𝑚

= 𝐿
∞
(𝑚) and 𝑃

𝑚𝑚
= 𝐿

1
(𝑚).

Assume that the vector measure 𝑚 does not have relatively
compact range. This happens, for example, when 𝑋(𝜇) =

𝐿
𝑟
[0, 1], 1 ≤ 𝑟 < ∞ (see Example 3.61 in [6]). Then

𝐵𝑃 is 𝜏𝑚(𝑃
𝑚
)-sequentially compact but 𝐵𝑃𝑚 = 𝐵𝐿∞(𝑚) is

not 𝜏𝑚(𝑃
𝑚𝑚

)-compact, since the topology 𝜏𝑚 induced on
𝐿
∞
(𝑚) = 𝐿

∞
(𝜇) by 𝐿

1
(𝑚) coincides with the topology of

𝑋(𝜇) on this space. To see this, just consider the seminorm

𝐿
∞

(𝑚) ∋ 𝑔 


∫𝜒Ω𝑔𝑑𝑚


=

𝑔
𝑋(𝜇)

. (22)

Thus if 𝐵𝑃𝑚 is 𝜏𝑚(𝑃
𝑚𝑚

)-compact, this would imply compact-
ness of 𝐵𝐿∞(𝑚) with respect to the topology of𝑋(𝜇), and so it
would imply that the range of the vector measure is relatively
compact, since it is included in 𝐵𝐿∞(𝑚).

(3) The Topological Requirements for the 𝑚-Dual System Are
Not Enough: The Assumption on the (𝑞, 𝑃𝑚)-Summability of
the Isomorphism Is Also Needed.Consider the vector measure
𝑚 defined as Lebesgue measure 𝜇 on [0, 1]. Take any 1 <

𝑝 < ∞ and consider 𝑃 = 𝐿
𝑝
(𝜇). Then we have that 𝑃𝑚

=

𝐿
𝑝


(𝜇) is 𝑚-dual for 𝐿
𝑝
(𝜇), and so the topology 𝜏𝑚(𝐿

𝑝


(𝜇))

gives the weak topology for the reflexive space 𝐿
𝑝
(𝑚) (see

Proposition 1). If we define the 𝑚-bidual 𝑃𝑚𝑚
= 𝐿

𝑝
(𝑚), we

have that the topology 𝜏𝑚(𝑃
𝑚𝑚

) for 𝑃𝑚 is given by the weak
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topology for 𝐿𝑝


[0, 1]. So both topological requirements in (i)
of Theorem 9 are satisfied. Of course, no isomorphism from
𝑃 is 𝑞-summing for any 1 ≤ 𝑞 < ∞, and so no isomorphism
is (𝑞, 𝑃

𝑚
)-summing, since in this case both definitions of

summability coincide.

Example 11. The Vector Measure Associated with the Volterra
Operator. Let 1 ≤ 𝑟 < ∞ and let ]𝑟 : B([0, 1]) → 𝐿

𝑟
([0, 1])

be theVolterrameasure, that is, the vectormeasure associated
with the Volterra operator. This measure is defined as

]𝑟 (𝐴) (𝑡) fl ∫

𝑡

0

𝜒𝐴 (𝑢) 𝑑𝑢 ∈ 𝐿
𝑟
([0, 1]) , 𝐴 ∈ Σ (23)

(see the explanation in [6, p. 113]; all the information about
this measure can be found in different sections of [6]). It is
known that the range of ]𝑟 is relatively compact. This is a
consequence of the compactness of the Volterra operator (see
the comments after [6, Proposition 3.47]).

Let 1 < 𝑝 < ∞, 𝑚 = ]𝑟, and consider a subspace 𝑃

of 𝐿
𝑝
(𝑚) = 𝐿

𝑝
(]𝑟). Assume that there is an 𝑚-dual space

𝑃
𝑚 for 𝑃 such that 𝐵𝑃 ⊆ 𝐾𝐵𝐿∞(𝑚) for certain 𝐾 > 0 (e.g.,

a subspace generated by a finite set of functions in 𝐿
∞
(𝑚)

with 𝐿
𝑝
(𝑚)-norm greater than 𝛿 > 0). Take 𝑃

𝑚𝑚 as 𝐿
𝑝
(𝑚).

Then 𝐵𝑃𝑚 is 𝜏𝑚(𝑃
𝑚𝑚

)-compact as a consequence of Theorem
10 in [18]. In this case, we have a simplified version of our
Dvoretzky-Rogers type theorem for the subspace𝑃:𝑃 is finite
dimensional if there is 1 ≤ 𝑞 < ∞ such that the identity map
is (𝑞, 𝑃𝑚

)-summing and 𝐵𝑃 is 𝜏𝑚(𝑃
𝑚
)-sequentially compact.

4. An Application: Subspaces of 𝐿
𝑝
(𝑚) That

Are Fixed by the Integration Map

In what follows we use our results in order to obtain
information about subspaces of 𝐿𝑝

(𝑚) spaces that are fixed
by the integration map 𝐼𝑚. This topic has been studied since
the very beginning of the investigations on the structure of
the spaces of integrable functions with respect to a vector
measure, and several papers on this topic have been published
recently (mainly regarding subspaces that are isomorphic to
𝑐0 and ℓ

1, see [21] and the references therein). Let us show an
easy example.

Example 12. Consider as in Remark 10 for 𝑋(𝜇) = 𝐿
𝑟
[0, 1]

the vector measure 𝑚 : Σ → 𝐿
𝑟
[0, 1] given by 𝑚(𝐴) fl 𝜒𝐴,

𝑟 ≥ 1. Consider the subspace 𝑆 generated by the Rademacher
sequence in 𝐿

𝑟
[0, 1]. By the Khintchine inequalities, 𝑆 is a

subspace in 𝐿
𝑟
[0, 1] that is isomorphic to ℓ

2. Recall that
𝐿
1
(𝑚) = 𝐿

𝑟
[0, 1] and the integration map is isomorphism.

Obviously the restriction of the integral operator 𝐼𝑚 :

𝐿
1
(𝑚) → 𝐿

𝑟
[0, 1] to 𝑆 is in fact the identity map. For 𝑝 ≥ 1

we have that 𝐿𝑝
(𝑚) = 𝐿

𝑝𝑟
[0, 1], and again by the Khintchine

inequalities 𝑆 is a subspace of 𝐿
𝑝
(𝑚) that is fixed by the

integration map 𝐼𝑚 : 𝐿
𝑝
(𝑚) → 𝐿

𝑟
[0, 1].

As we noted after the definition of (𝑞, 𝐿𝑝


(𝑚))-summing
operator, the integration map from 𝐿

𝑝
(𝑚) for any 1 ≤

𝑝 < ∞ is always (𝑞, 𝐿
𝑝


(𝑚))-summing for every 𝑞 ≥ 1;
in fact it is in a sense the canonical example of this kind

of operators. Thus, our Dvoretzky-Rogers type result can be
directly applied to obtain negative results on the existence of
infinite dimensional subspaces of 𝐿𝑝

(𝑚) that are fixed by 𝐼𝑚.
We say that a subspace 𝑃 of 𝐿𝑝

(𝑚) is fixed by the integration
map if 𝐼𝑚|𝑃 is isomorphism.

The following result shows that, under some compactness
requirements, any subspace 𝑆 of 𝐿

𝑝
(𝑚) that is fixed by 𝐼𝑚

has to be finite dimensional. For the case in which the 𝑚-
dual system that is considered is 𝑃

𝑚
= 𝐿

𝑝


(𝑚) and 𝑃
𝑚𝑚

=

𝐿
𝑝
(𝑚), conditions under which the balls of these spaces are

𝜏𝑚 compact are given in Corollary 8 of [18].

Corollary 13. Let 1 ≤ 𝑝 < ∞, and let𝑃 be a subspace of𝐿𝑝
(𝑚)

that is fixed by the integrationmap. If there is an𝑚-dual system
for 𝑃 such that 𝐵𝑃 is 𝜏𝑚(𝑃

𝑚
)-sequentially compact and 𝐵𝑃𝑚 is

𝜏𝑚(𝑃
𝑚𝑚

)-compact, then 𝑃 is finite dimensional.

Proof. It is a consequence of Theorem 9 and the fact that the
integration map is (𝑞, 𝐿

𝑝


(𝑚))-summing for every 1 ≤ 𝑞 ≤

∞.

In particular, the subspace 𝑃 generated by the
Rademacher functions that has been shown in Example 12
does not have an 𝑚-dual system satisfying the compactness
requirements in Corollary 13.

Remark 14. By [11, Theorem 3.6], if the vector measure𝑚 has
relatively compact range and 1 < 𝑝 < ∞, then the restriction
of the integration map to 𝐿

𝑝
(𝑚) is compact. Thus, if 𝑆 is a

subspace of 𝐿𝑝
(𝑚) that is fixed by the integration map, it has

always finite dimension.

To finish, let us remark that as a consequence of the
following result the ideas that prove Corollary 13 can be
applied to maps acting in a subspace 𝑃 that is fixed by the
integration map, other than the inclusion map.

Proposition 15. Let 1 ≤ 𝑝 < ∞. Let 𝑃 be a subspace of 𝐿𝑝
(𝑚)

that is fixed by the integration map and let 𝑃𝑚
⊆ 𝐿

𝑝


(𝑚) be
an 𝑚-dual space of 𝑃 containing 𝜒Ω. Then every operator 𝑇 :

𝑃 → 𝐹 with values on a Banach space 𝐹 is (𝑞, 𝑃𝑚
)-summable

for every 1 ≤ 𝑞 < ∞.

Proof. Let 𝑇 : 𝑃 → 𝐹 be an operator with values on a Banach
space 𝐹, and let 𝑓1, . . . , 𝑓𝑛 ∈ 𝑃. Then

𝑛

∑

𝑖=1

𝑇 (𝑓𝑖)

𝑞
≤ ‖𝑇‖

𝑞
⋅

𝑛

∑

𝑖=1

𝑓𝑖


𝑞

𝐿𝑝(𝑚)

≤ ‖𝑇‖
𝑞
⋅

(𝐼𝑚)

−1

𝑞

⋅

𝑛

∑

𝑖=1


∫𝑓𝑛𝑑𝑚



𝑞

≤ ‖𝑇‖
𝑞
⋅

(𝐼𝑚)

−1

𝑞

⋅ ‖𝑚‖ (Ω)
𝑞/𝑝

⋅ sup
𝑔∈𝐵
𝑃
𝑚

𝑛

∑

𝑖=1


∫𝑓𝑛𝑔𝑑𝑚



𝑞

.

(24)

This gives the result.
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Birkhäuser, Basel, Switzerland, 2008.

[7] I. Ferrando, Duality in spaces of p-integrable functions
with respect to a vector measure [Ph.D. thesis], Universidad
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ideal properties of vector measures with finite variation,” Studia
Mathematica, vol. 205, no. 3, pp. 215–249, 2011.

[15] I. Ferrando and E. A. Sánchez Pérez, “Tensor product repre-
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