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This paper concerns the recursive utility maximization problem for terminal wealth under partial information. We first transform
our problem under partial information into the one under full information. When the generator of the recursive utility is concave,
we adopt the variational formulation of the recursive utility which leads to a stochastic game problem and characterization of
the saddle point of the game is obtained. Then, we study the 𝐾-ignorance case and explicit saddle points of several examples are
obtained. At last, when the generator of the recursive utility is smooth, we employ the terminal perturbationmethod to characterize
the optimal terminal wealth.

1. Introduction

In this paper, we study the problem of an agent who invests in
a financialmarket so as tomaximize the recursive utility of his
terminal wealth𝑋(𝑇) on finite time interval [0, 𝑇], while the
recursive utility is characterized by the initial value𝑌(0) of the
following Backward stochastic differential equation (BSDE
for short)

𝑌 (𝑡) = 𝑢 (𝑋 (𝑇)) + ∫𝑇

𝑡
𝑓 (𝑠, 𝑌 (𝑠) , 𝑍 (𝑠)) 𝑑𝑠

− ∫𝑇

𝑡
𝑍 (𝑠) 𝑑𝑊̂ (𝑠) . (1)

The market consists of a riskless asset and 𝑑 risky assets,
the latter being driven by a 𝑑-dimensional Brownian motion.
And the investor has access only to the history of interest rates
and prices of risky assets, while the appreciation rate and the
driving Brownian motion are not directly observed. That is,
the filtration generated by the Brownian motion could not be
used when the investor chooses his portfolios. This is quite
practical in a real financial market. So we are interested in
this so-called recursive utility maximization problem under
partial information.

In the full information case, the problem of maximizing
the expected utility of terminal wealth is well understood
in a complete or constrained financial market [1, 2]. In an
incomplete multiple-priors model, Quenez [3] studied the
problem of maximization of utility of terminal wealth in
which the asset prices are semimartingales. Schied [4] studied
the robust utilitymaximization problem in a completemarket
under the existence of a “least favorable measure.” As for
the recursive utility optimization, El Karoui et al. [5] studied
the optimization of recursive utilities when the generator of
BSDE is smooth. Epstein and Ji [6, 7] formulated a model of
recursive utility that captures the decision-maker’s concern
with ambiguity about both the drift and ambiguity and stud-
ied the recursive utility optimization under𝐺-framework.Hu
et al. [8] introduced a BSDE driven by 𝐺-Brownian motion
from which a kind of more general recursive utility can be
defined. Then Hu and Ji [9, 10] studied the corresponding
control problem by two methods: maximum principle and
dynamic programming principle. But all the above works do
not accommodate partial information.

In the partial information case, Lakner [11] generalized
the martingale method to expected utility maximization
problem; see also Pham [12]. Cvitanić et al. [13] maximized
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the recursive utility under partial information. But the gen-
erator 𝑓 in Cvitanić et al. [13] does not depend on 𝑧. Miao
[14] studied a special case of recursive multiple-priors utility
maximization problem under partial information in which
the appreciation rate is assumed to be an F0-measurable,
unobserved random variable with known distribution. Actu-
ally, they studied the problem under Bayesian framework and
did not give the explicit solutions.

In this paper, we first transform our portfolio selection
problem under partial information into one under full infor-
mation in which the unknown appreciation rate is replaced
by its filter estimate and the Brownian motion is replaced
by the innovation process. Then a backward formulation of
the problem under full information is built in which instead
of the portfolio process, the terminal wealth is regarded as
the control variable. This backward formulation is based on
the existence and uniqueness theorem of BSDE and was
introduced in [5, 15].

When the generator 𝑓 of (1) is concave, we adopt the
variational formulation of the recursive utility which leads to
a stochastic game problem. Inspired by the convexity duality
method developed in Cvitanić and Karatzas [16], we turn the
primal “sup-inf” problem to a dual minimization problem
over a set of discounting factors and equivalent probability
measures. A characterization of the saddle point of this game
is obtained in this paper. Furthermore, the explicit saddle
points for several classical examples are worked out.

When the generator 𝑓 of the BSDE is smooth, we apply
the terminal perturbation method developed in Ji and Zhou
[17] and Ji and Peng [18] to characterize the optimal terminal
wealth of the investor. Once the optimal terminal wealth is
obtained, the determination of the optimal portfolio process
is a martingale representation problem which we do not
involve in this paper.

The rest of this paper is organized as follows. In Section 2,
we formulate the recursive utility maximization problem
under partial information, reduce the original problem to
a problem under full information, and give the backward
formulation. The case of nonsmooth generator is tackled
in Section 3. In Section 4, we specialize in 𝐾-ignorance
model and give explicit saddle points of several examples.
In Section 5, we characterize the optimal wealth when the
generator 𝑓 is smooth.

2. The Problem of Recursive Utility
Maximization under Partial Observation

2.1. Classical Formulation of the Problem. We consider a
financial market consisting of a riskless asset whose price
process is assumed for simplicity to be equal to one and𝑑 risky securities (the stocks) whose prices are stochastic
processes 𝑆𝑖(𝑡), 𝑖 = 0, 1, . . . , 𝑑 governed by the following
SDEs:

𝑑𝑆𝑖 (𝑡) = 𝑆𝑖 (𝑡)(𝜇𝑖 (𝑡) 𝑑𝑡 + 𝑑∑
𝑗=1
𝜎𝑖𝑗 (𝑡) 𝑑𝑊𝑗 (𝑡)) ,

𝑖 = 1, . . . , 𝑑,
(2)

where𝑊(⋅) = (𝑊1(⋅), . . . ,𝑊𝑑(⋅))󸀠 is a standard 𝑑-dimensional
Brownian motion defined on a filtered complete probability
space (Ω,F, {F𝑡}𝑡≥0, 𝑃). 𝜇󸀠 = {𝜇󸀠(𝑡) = (𝜇1(𝑡), . . . , 𝜇𝑑(𝑡)), 𝑡 ∈[0, 𝑇]} is the appreciation rate of the stocks which is F𝑡-
adapted, bounded, and the 𝑑×𝑑matrix 𝜎(𝑡) = (𝜎𝑖𝑗(𝑡))1≤𝑖,𝑗≤𝑑 is
the disperse rate of the stocks. Here and throughout the paper
󸀠 denotes the transpose operator.

The asset prices are assumed to be continuously observed
by the investors in this market; in other words, the informa-
tion available to the investors is represented by G = {G𝑡}𝑡≥0,
which is the 𝑃-augmentation of the filtration generated by
the price processes 𝜎(𝑆(𝑢); 0 ≤ 𝑢 ≤ 𝑡). The matrix disperse
coefficient 𝜎(𝑡) is assumed invertible, bounded uniformly,
and ∃𝜀 > 0, 𝜌󸀠𝜎(𝑡)𝜎󸀠(𝑡)𝜌 ≥ 𝜀‖𝜌‖2, ∀𝜌 ∈ R𝑑, 𝑡 ∈ [0, 𝑇], a.s. In
fact, 𝜎(𝑡) can be obtained from the quadratic variation of the
price process. So we assume w.l.o.g. that 𝜎(𝑡) is G𝑡-adapted.
However, the appreciation rate 𝜇󸀠(𝑡) fl (𝜇1(𝑡), . . . , 𝜇𝑑(𝑡)) is
not observable for the investors.

A small investor whose actions cannot affect the market
prices can decide at time 𝑡 ∈ [0, 𝑇] what amount 𝜋𝑖(𝑡) of
his wealth to invest in the 𝑖th stock, 𝑖 = 1, . . . , 𝑑. Of course,
his decision can only be based on the available information{G𝑡}𝑇𝑡=0; that is, the processes 𝜋󸀠(⋅) = (𝜋1(⋅), . . . , 𝜋𝑑(⋅)) :[0, 𝑇] × Ω → R𝑑 are {G𝑡}𝑇𝑡=0 progressively measurable and
satisfy 𝐸∫𝑇

0 ‖𝜋(𝑡)‖2𝑑𝑡 < ∞.
Then the wealth process𝑋(⋅) ≡ 𝑋𝑥,𝜋(⋅) of a self-financing

investor who is endowed with initial wealth 𝑥 > 0 satisfies the
following stochastic differential equation:

𝑑𝑋 (𝑡) = 𝑑∑
𝑖=1
𝜋𝑖 (𝑡) 𝑑𝑆𝑖 (𝑡)𝑆𝑖 (𝑡)

= 𝜋󸀠 (𝑡) 𝜇 (𝑡) 𝑑𝑡 + 𝜋󸀠 (𝑡) 𝜎 (𝑡) 𝑑𝑊 (𝑡) .
(3)

Because the only information available to the investor is
G, we could not use the Brownian motion 𝑊 to define the
recursive utility. As we will show in the following, there exists
a Brownian motion 𝑊̂ under 𝑃 in the filtered measurable
space (Ω,G) which is often referred to as an innovation
process. The recursive utility process 𝑌(𝑡) ≡ 𝑌𝑥,𝜋(𝑡) of
the investor is defined by the following backward stochastic
differential equation:

𝑌 (𝑡) = 𝑢 (𝑋 (𝑇)) + ∫𝑇

𝑡
𝑓 (𝑠, 𝑌 (𝑠) , 𝑍 (𝑠)) 𝑑𝑠

− ∫𝑇

𝑡
𝑍 (𝑠) 𝑑𝑊̂ (𝑠) ,

(4)

where 𝑓 and 𝑢 are functions satisfying the following assump-
tions.

Assumption 1. (A1) 𝑓 : Ω × [0, 𝑇] × R × R𝑑 → R is G-
progressively measurable for any (𝑦, 𝑧) ∈ R ×R𝑑.

(A2) There exists a constant 𝐶 ≥ 0 such that󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑦1, 𝑧1) − 𝑓 (𝑡, 𝑦2, 𝑧2)󵄨󵄨󵄨󵄨 ≤ 𝐶 (󵄨󵄨󵄨󵄨𝑦1 − 𝑦2
󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑧1 − 𝑧2󵄨󵄨󵄨󵄨) ,

∀ (𝑡, 𝜔, 𝑦1, 𝑦2, 𝑧1, 𝑧2) ∈ Ω × [0, 𝑇] ×R ×R ×R
𝑑 ×R

𝑑. (5)
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(A3) 𝑓(𝑡, ⋅, ⋅) is continuous about 𝑡 and 𝐸∫𝑇
0 𝑓2(𝑡, 0, 0)𝑑𝑡 <+∞.

Assumption 2. 𝑢 : R+ → R is continuously differentiable and
satisfies linear growth condition.

Remark 3. Equation (4) is not a standard BSDE because in
general G is strictly larger than the augmented filtration of
the (𝑃,G)-Brownian motion 𝑊̂.

We introduce the following spaces:

𝐿2 (Ω,G𝑇, 𝑃;R) fl {𝜉 : Ω 󳨀→ R | 𝜉 is G𝑇-measurable,
𝐸 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2 < ∞} ,

𝑀2
G (0, 𝑇;R𝑑) fl {𝜙 : [0, 𝑇] × Ω 󳨀→ R

𝑑 | (𝜙𝑡)0≤𝑡≤𝑇
is G-progressively measurable process, 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩2
= 𝐸∫𝑇

0

󵄨󵄨󵄨󵄨𝜙 (𝑡)󵄨󵄨󵄨󵄨2 𝑑𝑡 < ∞} ,
𝑆2G (0, 𝑇;R) fl {𝜙 : [0, 𝑇] × Ω 󳨀→ R | (𝜙𝑡)0≤𝑡≤𝑇

is G-progressively measurable process, 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩2𝑆
= 𝐸[ sup

0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨𝜙 (𝑡)󵄨󵄨󵄨󵄨2] < ∞} .

(6)

For notational simplicity, we will oftenwrite 𝐿2
G𝑇
,𝑀2

G and𝑆2G instead of 𝐿2(Ω,G𝑇, 𝑃;R),𝑀2
G(0, 𝑇;R𝑑), and 𝑆2G(0, 𝑇;R),

respectively.
We will show in the next subsection that under Assump-

tion 1, for any 𝜉 ∈ 𝐿2
G𝑇
, the BSDE (4) has a unique solution(𝑌(⋅), 𝑍(⋅)) ∈ 𝑆2G × 𝑀2

G. Then for each 𝜋 ∈ 𝑀2
G, 𝑋(𝑇) ∈ 𝐿2

GT
,

and Assumption 2 ensures that the variable 𝑢(𝑋(𝑇)) ∈ 𝐿2
G𝑇
.

Thus, under Assumptions 1 and 2, the recursive utility process
associated with this terminal value is well defined.

Given an utility function satisfying Assumption 2 and
initial endowment 𝑥, the recursive utility maximization
problem with bankruptcy prohibition is formulated as the
investor chooses a portfolio strategy so as to

Maximize 𝑌𝑥,𝜋 (0) ,
s.t. 𝑋 (𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇] , a.s.,

𝜋 (⋅) ∈ 𝑀2
G,(𝑋 (⋅) , 𝜋 (⋅)) satisfies Eq. (3) ,

(𝑌 (⋅) , 𝑍 (⋅)) satisfies Eq. (4) ,
(7)

where𝑋(𝑡) ≥ 0means that no-bankruptcy is required.

Definition 4. A portfolio 𝜋(⋅) is said to be admissible if 𝜋(⋅) ∈𝑀2
G and the corresponding wealth processes 𝑋(𝑡) ≥ 0, 𝑡 ∈[0, 𝑇], a.s.

Given initial wealth 𝑥 > 0, denote by A(𝑥) the set of
investor’s feasible portfolio strategies; that is

A (𝑥) = {𝜋 : 𝜋 ∈ 𝑀2
G, 𝑋𝑥,𝜋 (𝑡) ≥ 0, 𝑑𝑃 ⊗ 𝑑𝑡 a.s.} . (8)

2.2. Reduction to a Problem under Full Information. Define
the risk premium process 𝜂(𝑡) = 𝜎(𝑡)−1𝜇(𝑡). Because we have
assumed the processes 𝜇(⋅) and 𝜎(⋅) are uniformly bounded,
the process

𝐿 (𝑡) fl exp(−∫𝑡

0
𝜂󸀠 (𝑠) 𝑑𝑊 (𝑠) − 12 ∫

𝑡

0

󵄨󵄨󵄨󵄨𝜂 (𝑠)󵄨󵄨󵄨󵄨2 𝑑𝑠) (9)

is a (𝑃, F) martingale. So a probability measure 𝑃̃ can be
defined by

𝑃̃ (𝐴) = 𝐸 [𝐿 (𝑇) 𝐼𝐴] ,
∀𝐴 ∈ F𝑇, where 𝑑𝑃̃𝑑𝑃 = 𝐿 (𝑇) . (10)

𝑃̃ is usually called risk neutral probability in the financial
market. The process

𝑊̃ (𝑡) fl 𝑊(𝑡) + ∫𝑡

0
𝜂 (𝑠) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇 (11)

is a Brownian motion under 𝑃̃ by Girsanov’s theorem.
Then we can rewrite the stock price processes (2) as

𝑑𝑆𝑖 (𝑡) = 𝑆𝑖 (𝑡)( 𝑑∑
𝑗=1
𝜎𝑖𝑗 (𝑡) 𝑑𝑊̃𝑗 (𝑡)) , 𝑖 = 1, . . . , 𝑑. (12)

Note that 𝜎(𝑡) is assumed to be bounded, invertible, and
G𝑡-adapted. So the filtrationG coincides with the augmented
natural filtration of 𝑊̃ byTheorem V.3.7 in [19].

Let 𝜂̂(𝑡) fl 𝐸[𝜂(𝑡) | G𝑡] be a measurable version of the
conditional expectation of 𝜂 with respect to the filtration G.
Set 𝜇̂: 𝜇̂(𝑡) = 𝐸[𝜇(𝑡) | G𝑡]. Then 𝜇̂(𝑡) = 𝜎(𝑡)𝜂̂(𝑡), since 𝜎 is
G-adapted.

We introduce the process

𝑊̂ (𝑡) fl 𝑊̃ (𝑡) − ∫𝑡

0
𝜂̂ (𝑠) 𝑑𝑠

= 𝑊 (𝑡) + ∫𝑡

0
(𝜂 (𝑠) − 𝜂̂ (𝑠)) 𝑑𝑠, 𝑡 ≥ 0. (13)

By Theorem 8.1.3 and Remark 8.1.1 in Kallianpur [20],{𝑊̂(𝑡), 𝑡 ≥ 0} is a (G, 𝑃)-Brownian motion which is the
so-called innovations process. Then, we could describe the
dynamics of stock price processes and the wealth process
within a full observation model:

𝑑𝑆𝑖 (𝑡) = 𝑆𝑖 (𝑡)(𝜇̂𝑖 (𝑡) 𝑑𝑡 + 𝑑∑
𝑗=1
𝜎𝑖𝑗 (𝑡) 𝑑𝑊̂𝑗 (𝑡)) ,

𝑖 = 1, . . . , 𝑑,
𝑑𝑋 (𝑡) = 𝜋󸀠 (𝑡) 𝜇̂ (𝑡) 𝑑𝑡 + 𝜋󸀠 (𝑡) 𝜎 (𝑡) 𝑑𝑊̂ (𝑡) .

(14)
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Now all the coefficients in our model are observable. So
we are in a full observation model and our problem (7) can
be reformulated as follows:

Maximize 𝑌𝑥0 ,𝜋 (0) ,
s.t. 𝑋 (𝑡) ≥ 0 ∀𝑡 ∈ [0, 𝑇] a.s.,

𝜋 (⋅) ∈ 𝑀2
G,(𝑋 (⋅) , 𝜋 (⋅)) satisfies Eq. (3) ,

(𝑌 (⋅) , 𝑍 (⋅)) satisfies Eq. (4) .
(15)

2.3. Backward Formulation of the Problem. In this subsection,
we first show BSDE (4) has a unique solution under some
mild conditions and then give an equivalent backward for-
mulation of problem (15).

Lemma 5. Under Assumption 1, for ∀𝜉 ∈ 𝐿2
G, there exists a

unique solution (𝑌, 𝑍) ∈ 𝑆2G ×𝑀2
G to the BSDE (4).

Since G is strictly larger than the augmented filtration of
the (𝑃,G)-Brownianmotion 𝑊̂ in general, equation (4) is not
a standard BSDE. Fortunately, byTheorem 8.3.1 in [20], every
square integrableG𝑡-martingale𝑀(𝑡) can be represented as

𝑀(𝑡) = 𝑀 (0) + ∫𝑡

0
𝑍󸀠 (𝑠) 𝑑𝑊̂ (𝑠) , (16)

where𝑍(⋅) ∈ 𝑀2
G. Thus, applying similar analysis as in [21], it

is easy to prove this lemma.
Let 𝑞(⋅) fl 𝜎(⋅)󸀠𝜋(⋅). Since 𝜎(⋅) is invertible, 𝑞(⋅) can

be regarded as the control variable instead of 𝜋(⋅). By the
existence and uniqueness result of BSDE (4), selecting 𝑞(⋅) is
equivalent to selecting the terminal wealth 𝑋(𝑇). If we take
the terminal wealth as control variable, the wealth equation
and recursive utility process can be written as

−𝑑𝑋 (𝑡) = −𝑞󸀠−1 (𝑡) 𝜇̂ (𝑡) 𝑑𝑡 − 𝑞󸀠 (𝑡) 𝑑𝑊̂ (𝑡) ,
𝑋 (𝑇) = 𝜉,

−𝑑𝑌 (𝑡) = 𝑓 (𝑡, 𝑌 (𝑡) , 𝑍 (𝑡)) 𝑑𝑡 − 𝑍󸀠 (𝑡) 𝑑𝑊̂ (𝑡) ,
𝑌 (𝑇) = 𝑢 (𝜉) ,

(17)

where the “control” is the terminal wealth 𝜉 to be chosen from
the following set:

𝑈 fl {𝜉 | 𝜉 ∈ 𝐿2
G𝑇
, 𝜉 ≥ 0} . (18)

From now on, we denote the solution of (17) by(𝑋𝜉(⋅), 𝑞𝜉(⋅), 𝑌𝜉(⋅), 𝑍𝜉(⋅)). We also denote 𝑋𝜉(0) and 𝑌𝜉(0) by𝑋𝜉
0 and 𝑌𝜉

0 , respectively.
As implied by the comparison theorem for BSDE (4), the

nonnegative terminal wealth (𝜉 = 𝑋(𝑇) ≥ 0) keeps the
wealth process nonnegative all the time.This gives rise to the
following optimization problem:

Maximize 𝐽 (𝜉) fl 𝑌𝜉
0 ,

s.t. 𝜉 ∈ 𝑈,
𝑋𝜉

0 = 𝑥,
(𝑋𝜉 (⋅) , 𝑞𝜉 (⋅)) , (𝑌𝜉 (⋅) , 𝑍𝜉 (⋅)) satisfies Eq. (17) .

(19)

Definition 6. A random variable 𝜉 ∈ 𝑈 is called feasible for
the initial wealth 𝑥 if and only if 𝑋𝜉(0) = 𝑥. We will denote
the set of all feasible 𝜉 for the initial wealth 𝑥 byA(𝑥).

It is clear that original problems (7) and (15) are equivalent
to the auxiliary one (19). Hence, hereafter we focus ourselves
on solving (19). Note that 𝜉 becomes the control variable.The
advantage of this approach is that the state constraint in (7)
becomes a control constraint in (19), whereas it is well known
in control theory that a control constraint is much easier to
deal with than a state constraint. The cost of this approach is
the original initial condition 𝑋𝜉(0) = 𝑥 that now becomes a
constraint.

Feasible 𝜉∗ ∈ A(𝑥) is called optimal if it attains the
maximum of 𝐽(𝜉) over A(𝑥). Once 𝜉∗ is determined, the
optimal portfolio can be obtained by solving the first equation
in (17) with𝑋𝜉∗(𝑇) = 𝜉∗.

3. Dual Method for Recursive
Utility Maximization

In this section, we impose the following concavity condition.

Assumption 7. The function (𝑦, 𝑧) 󳨃→ 𝑓(𝜔, 𝑡, 𝑦, 𝑧) is concave
for all (𝜔, 𝑡) ∈ Ω × [0, 𝑇].

We also need the following assumption on 𝑢.
Assumption 8. 𝑢 : (0,∞) → R is strictly increasing, strictly
concave, and continuously differentiable, and satisfies

𝑢󸀠 (0+) fl lim
𝑥↓0

𝑢󸀠 (𝑥) = ∞,
𝑢󸀠 (∞) fl lim

𝑥→∞
𝑢󸀠 (𝑥) = 0. (20)

Under Assumption 8, Assumption 2 seems too restrictive
and it precludes some interesting examples. So in the following
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two sections, for any given utility function 𝑢 satisfying
Assumption 8, we set

𝑈 = {𝜉 | 𝜉 ∈ 𝐿2
G𝑇
, 𝑢 (𝜉) ∈ 𝐿2

G𝑇
, 𝜉 ≥ 0} . (21)

In this section, we assume 𝜎 ≡ 𝐼𝑑, the 𝑑-dimensional
identity matrix. Let 𝐹(𝑡, 𝛽, 𝛾) be the Fenchel-Legendre trans-
form of 𝑓:
𝐹 (𝜔, 𝑡, 𝛽, 𝛾) fl sup

(𝑦,𝑧)∈R×R𝑑
[𝑓 (𝜔, 𝑡, 𝑦, 𝑧) − 𝑦𝛽 − 𝑧󸀠𝛾] ,

(𝛽, 𝛾) ∈ R ×R
𝑑. (22)

Let the effective domain of 𝐹 be D𝐹 fl {(𝜔, 𝑡, 𝛽, 𝛾) ∈ Ω ×[0, 𝑇] × R × R𝑑|𝐹(𝜔, 𝑡, 𝛽, 𝛾) < +∞}. As was shown in [22],
the (𝜔, 𝑡)-section ofD𝐹, denoted byD(𝜔,𝑡)

𝐹 is included in the
bounded domain 𝐵 = [−𝐶, 𝐶]𝑑+1 ⊂ R × R𝑑, where 𝐶 is the
Lipschitz constant of 𝑓.

We have the duality relation by the concavity of 𝑓,
𝑓 (𝜔, 𝑡, 𝑦, 𝑧) = inf

(𝛽,𝛾)∈D(𝜔,𝑡)𝐹
[𝐹 (𝜔, 𝑡, 𝛽, 𝛾) + 𝑦𝛽 + 𝑧󸀠𝛾] . (23)

For every (𝜔, 𝑡, 𝑦, 𝑧) the infimum is achieved in this relation
by a pair (𝛽, 𝛾) which depends on (𝜔, 𝑡).

Set

B = {(𝛽, 𝛾) | (𝛽, 𝛾) is G-progressively measurable,
𝐵-valued, 𝐸 ∫𝑇

0
𝐹 (𝑡, 𝛽𝑡, 𝛾𝑡)2 𝑑𝑡 < +∞} .

(24)

ThenB is a convex set. For any (𝛽, 𝛾) ∈ B, let

𝑓𝛽,𝛾 (𝑡, 𝑦, 𝑧) = 𝐹 (𝑡, 𝛽𝑡, 𝛾𝑡) + 𝑦𝛽𝑡 + 𝑧󸀠𝛾𝑡, (25)

and denote by (𝑌𝛽,𝛾, 𝑍𝛽,𝛾) the unique solution to the linear
BSDE (4) with 𝑓𝛽,𝛾.

By similar analysis as Proposition 3.4 in [22], we have the
following variational formulation of𝑋𝜉(𝑡) and 𝑌𝜉(𝑡).
Lemma 9. Under Assumptions 1 and 7, for any 𝜉 ∈ 𝑈, the
solutions (𝑋𝜉(⋅), 𝑞𝜉(⋅)), (𝑌𝜉(⋅), 𝑍𝜉(⋅)) of (17) can be represented
as

𝑋𝜉 (𝑡) = 𝐿̂−1 (𝑡) 𝐸 [𝐿̂ (𝑇) 𝜉 | G𝑡] ,
𝑌𝜉 (𝑡) = ess inf

(𝛽,𝛾)∈B
𝑌𝛽,𝛾
𝑡 , 𝑡 ∈ [0, 𝑇] , 𝑎.𝑠., (26)

where

𝐿̂ (𝑡) fl 𝑒−∫
𝑡

0
𝜇̂󸀠(𝑠)𝑑𝑊̂(𝑠)−(1/2) ∫

𝑡

0
|𝜇̂(𝑠)|2𝑑𝑠,

𝑌𝛽,𝛾
𝑡 = 𝐸[∫𝑇

𝑡
Γ𝛽,𝛾𝑡,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠 + Γ𝛽,𝛾𝑡,𝑇 𝑢 (𝜉) | G𝑡] ,

Γ𝛽,𝛾𝑡,𝑠 = 𝑒∫𝑠𝑡 (𝛽𝑟−(1/2)|𝛾𝑟|2)𝑑𝑟+∫𝑠𝑡 𝛾󸀠𝑟𝑑𝑊̂(𝑟).
(27)

In particular, we have 𝑌𝜉(0) = inf (𝛽,𝛾)∈B 𝐸[∫𝑇
0 Γ𝛽,𝛾0,𝑠 𝐹(𝑠, 𝛽𝑠,𝛾𝑠)𝑑𝑠 + Γ𝛽,𝛾0,𝑇𝑢(𝜉)].

Remark 10. By Theorem 3.1 in [11], we have 𝐿̂(𝑡) =𝐸[𝐿(𝑡)|G𝑡], 𝑡 ∈ [0, 𝑇], a.s.
By Lemma 9,A(𝑥) = {𝜉 ∈ 𝑈 | 𝐸[𝐿̂(𝑇)𝜉] = 𝑥}. Thus, our

problem is equivalent to the following problem:

Maximize 𝐽 (𝜉)
= inf

(𝛽,𝛾)∈B
𝐸[∫𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠 + Γ𝛽,𝛾0,𝑇𝑢 (𝜉)]

s.t. 𝜉 ∈ A (𝑥) .
(28)

The maximum recursive utility that the investor can
achieve is

𝑉 (𝑥) fl sup
𝜉∈A(𝑥)

inf
(𝛽,𝛾)∈B

𝐸[∫𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠

+ Γ𝛽,𝛾0,𝑇𝑢 (𝜉)] .
(29)

It is dominated by its “min-max” counterpart

𝑉 (𝑥) fl inf
(𝛽,𝛾)∈B

sup
𝜉∈A(𝑥)

𝐸[∫𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠

+ Γ𝛽,𝛾0,𝑇𝑢 (𝜉)] .
(30)

If we can find (𝛽̂, 𝛾̂, 𝜉̂) ∈ B ×A(𝑥) such that

𝑉 (𝑥) = 𝐸 [∫𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇𝑢 (𝜉̂)]

= 𝑉 (𝑥) , (31)

then the optimal solution of problem (28) is 𝜉̂.
Let us introduce the monotone decreasing function 𝐼(⋅)

as the inverse of the marginal utility function 𝑢󸀠(⋅) and the
convex dual

𝑢̃ (𝜁) fl max
𝑥>0

[𝑢 (𝑥) − 𝜁𝑥] = 𝑢 (𝐼 (𝜁)) − 𝜁𝐼 (𝜁) , 𝜁 > 0. (32)

Then, ∀𝜉 ∈ A(𝑥), ∀(𝛽, 𝛾) ∈ B, ∀𝜁 > 0,
𝐸[∫𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠 + Γ𝛽,𝛾0,𝑇𝑢 (𝜉)]

≤ 𝐸[[∫
𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠 + Γ𝛽,𝛾0,𝑇 𝑢̃ (𝜁 𝐿̂ (𝑇)Γ𝛽,𝛾0,𝑇

)

+ 𝜁𝜉𝐿̂ (𝑇)]] = 𝐸[[∫
𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠

+ Γ𝛽,𝛾0,𝑇 𝑢̃ (𝜁 𝐿̂ (𝑇)Γ𝛽,𝛾0,𝑇

)]] + 𝜁𝑥.

(33)
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Furthermore, we have equality in the above formula for
some 𝜉̂ ∈ A(𝑥), (𝛽̂, 𝛾̂) ∈ B, 𝜁̂ > 0 if and only if the conditions

𝐸 [𝜉̂𝐿̂ (𝑇)] = 𝑥,
𝜉̂ = 𝐼(𝜁̂ 𝐿̂ (𝑇)Γ𝛽̂,𝛾̂0,𝑇

) , a.s. (34)

are satisfied simultaneously. And in this case, we have

𝐸[∫𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇𝑢 (𝜉̂)]

= 𝐸[[∫
𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇 𝑢̃(𝜁̂ 𝐿̂ (𝑇)Γ𝛽̂,𝛾̂0,𝑇

)]]
+ 𝜁̂𝑥.

(35)

Lemma 11. Under Assumptions 1, 7, anfd 8, suppose that there
exists a quadruple (𝜉̂, 𝛽̂, 𝛾̂, 𝜁̂) ∈ (A(𝑥) × B × (0,∞)) which
satisfies (34) and

𝐸[∫𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇𝑢 (𝜉̂)]

≤ 𝐸 [∫𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠 + Γ𝛽,𝛾0,𝑇𝑢 (𝜉̂)] ,

∀ (𝛽, 𝛾) ∈ B.
(36)

Then we have ∀𝜉 ∈ A(𝑥), ∀(𝛽, 𝛾) ∈ B, and

𝐸[∫𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇𝑢 (𝜉)]

≤ 𝐸 [∫𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇𝑢 (𝜉̂)]

≤ 𝐸 [∫𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠 + Γ𝛽,𝛾0,𝑇𝑢 (𝜉̂)] .

(37)

That is, (𝜉̂, 𝛽̂, 𝛾̂) is a saddle point satisfying (31).
Proof. Weonly prove the first relationship in (37). Let (𝛽, 𝛾) =(𝛽̂, 𝛾̂) and 𝜁 = 𝜁̂ in (33). We get

𝐸[∫𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇𝑢 (𝜉)]

≤ 𝐸[[∫
𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇 𝑢̃(𝜁̂ 𝐿̂ (𝑇)Γ𝛽̂,𝛾̂0,𝑇

)]]
+ 𝜁̂𝑥 = 𝐸 [∫𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇𝑢 (𝜉̂)] ,

∀𝜉 ∈ A (𝑥) ,

(38)

by (35). This completes the proof.

Let us introduce the value function

𝑉̃ (𝜁) ≡ 𝑉̃ (𝜁; 𝑥) fl inf
(𝛽,𝛾)∈B

𝐸[[∫
𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠

+ Γ𝛽,𝛾0,𝑇 𝑢̃ (𝜁 𝐿̂ (𝑇)Γ𝛽,𝛾0,𝑇

)]] , 0 < 𝜁 < ∞.
(39)

By (33), we have

𝑉 (𝑥) ≤ 𝑉∗ (𝑥) , (40)

where

𝑉∗ (𝑥) fl inf
𝜁>0,(𝛽,𝛾)∈B

𝐸[[∫
𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠

+ Γ𝛽,𝛾0,𝑇 𝑢̃ (𝜁 𝐿̂ (𝑇)Γ𝛽,𝛾0,𝑇

) + 𝜁𝑥]] = inf
𝜁>0

[𝑉̃ (𝜁) + 𝜁𝑥] .
(41)

Lemma 12. Under the assumptions of Lemma 11, the follow-
ings hold:

(i) (𝛽̂, 𝛾̂) attains the infimum in (39) with 𝜁 = 𝜁̂.
(ii) The triple (𝜁̂, 𝛽̂, 𝛾̂) attains the first infimum in (41).

(iii) The number 𝜁̂ ∈ (0,∞) attains the second infimum in
(41).

(iv) There is no “duality gap” in (40); that is,

𝑉∗ (𝑥) = 𝑉 (𝑥) = 𝑉 (𝑥)
= 𝐸 [∫𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇𝑢 (𝜉̂)] . (42)

Proof. (i) By (35) and (36),

𝐸[[∫
𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇 𝑢̃(𝜁̂ 𝐿̂ (𝑇)Γ𝛽̂,𝛾̂0,𝑇

)]]
= 𝐸[∫𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇𝑢 (𝜉̂)] − 𝜁̂𝑥

≤ 𝐸 [∫𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠 + Γ𝛽,𝛾0,𝑇𝑢 (𝜉̂)] − 𝜁̂𝑥

≤ 𝐸[[∫
𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠 + Γ𝛽,𝛾0,𝑇 𝑢̃ (𝜁̂ 𝐿̂ (𝑇)Γ𝛽,𝛾0,𝑇

)]] ,
∀ (𝛽, 𝛾) ∈ B,

(43)

where the last inequality is due to (33).
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(ii) By (35) and (36), we have

𝐸[[∫
𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇 𝑢̃(𝜁̂ 𝐿̂ (𝑇)Γ𝛽̂,𝛾̂0,𝑇

)]] + 𝜁̂𝑥
= 𝐸 [∫𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇𝑢 (𝜉̂)]

≤ 𝐸 [∫𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠 + Γ𝛽,𝛾0,𝑇𝑢 (𝜉̂)]

≤ 𝐸[[∫
𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠 + Γ𝛽,𝛾0,𝑇 𝑢̃ (𝜁 𝐿̂ (𝑇)Γ𝛽,𝛾0,𝑇

)]]
+ 𝜁𝑥, ∀ (𝛽, 𝛾) ∈ B, ∀𝜁 ∈ (0,∞)

(44)

where the last inequality is an application of (33) to 𝜉 = 𝜉̂.
(iii) By (i), (35), and (36),

𝑉̃ (𝜁̂) + 𝜁̂𝑥
= 𝐸[[∫

𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇 𝑢̃(𝜁̂ 𝐿̂ (𝑇)Γ𝛽̂,𝛾̂0,𝑇

)]]
+ 𝜁̂𝑥 = 𝐸 [∫𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇𝑢 (𝜉̂)]

≤ 𝐸 [∫𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠 + Γ𝛽,𝛾0,𝑇𝑢 (𝜉̂)]

≤ 𝐸[[∫
𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠 + Γ𝛽,𝛾0,𝑇 𝑢̃ (𝜁 𝐿̂ (𝑇)Γ𝛽,𝛾0,𝑇

)]]
+ 𝜁𝑥, ∀ (𝛽, 𝛾) ∈ B, ∀𝜁 ∈ (0,∞) .

(45)

So we get 𝑉̃(𝜁̂) + 𝜁̂𝑥 ≤ inf (𝛽,𝛾)∈B 𝐸[∫𝑇
0 Γ𝛽,𝛾0,𝑠 𝐹(𝑠, 𝛽𝑠, 𝛾𝑠)𝑑𝑠 +Γ𝛽,𝛾0,𝑇 𝑢̃(𝜁(𝐿̂(𝑇)/Γ𝛽,𝛾0,𝑇))] + 𝜁𝑥 = 𝑉̃(𝜁) + 𝜁𝑥, ∀𝜁 ∈ (0,∞).

(iv) By (ii) and (35),

𝑉∗ (𝑥)
= 𝐸[[∫

𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇 𝑢̃(𝜁̂ 𝐿̂ (𝑇)Γ𝛽̂,𝛾̂0,𝑇

)]]
+ 𝜁̂𝑥 = 𝐸 [∫𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇𝑢 (𝜉̂)]

= 𝑉 (𝑥) = 𝑉 (𝑥) .

(46)

This completes the proof.

In the following, we prove the existence of the quadruple(𝜉̂, 𝛽̂, 𝛾̂, 𝜁̂) which is postulated in Lemma 11.
Notice that the function 𝑥 󳨃→ 𝑥𝑢̃(1/𝑥) is convex. By

similar analysis as inAppendix B of [23], the following lemma
holds.

Lemma 13. UnderAssumptions 1, 7, and 8, for any given 𝜁 > 0,
there exists a pair (𝛽̂, 𝛾̂) = (𝛽̂𝜁, 𝛾̂𝜁) ∈ B which attains the
infimum in (39).

Lemma 14. Under Assumptions 1, 7, and 8, suppose

𝐸[[∫
𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠 + Γ𝛽,𝛾0,𝑇 𝑢̃ (𝜁 𝐿̂ (𝑇)Γ𝛽,𝛾0,𝑇

)]] < ∞,
∀𝜁 > 0, ∀ (𝛽, 𝛾) ∈ B.

(47)

Then for any given 𝑥 > 0, there exists a number 𝜁̂ = 𝜁̂𝑥 ∈(0,∞) which attains 𝑉∗(𝑥) = inf𝜁>0 [𝑉̃(𝜁) + 𝜁𝑥].
Proof.

Step 1. By the convexity of 𝑢̃ and Lemma 13, 𝑉̃(⋅) is convex. Fix𝜁 > 0; denote (𝛽̂, 𝛾̂) = (𝛽̂𝜁, 𝛾̂𝜁) as in Lemma 13. For any 𝛿 > 0,
we have

𝑉̃ (𝜁 + 𝛿) − 𝑉̃ (𝜁)𝛿
≤ 𝐸 [Γ𝛽̂,𝛾̂0,𝑇 𝑢̃ ((𝜁 + 𝛿) (𝐿̂ (𝑇) /Γ𝛽̂,𝛾̂0,𝑇)) − Γ𝛽̂,𝛾̂0,𝑇 𝑢̃ (𝜁 (𝐿̂ (𝑇) /Γ𝛽̂,𝛾̂0,𝑇))]𝛿
≤ 𝐸 [𝐿̂ (𝑇) 𝑢̃󸀠 ((𝜁 + 𝛿) (𝐿̂ (𝑇) /Γ𝛽̂,𝛾̂0,𝑇))]
= −𝐸 [𝐿̂ (𝑇) 𝐼 ((𝜁 + 𝛿) (𝐿̂ (𝑇) /Γ𝛽̂,𝛾̂0,𝑇))] .

(48)

Then, by Levi’s lemma,

lim
𝛿→0+

𝑉̃ (𝜁 + 𝛿) − 𝑉̃ (𝜁)𝛿 ≤ −𝐸[[𝐿̂ (𝑇) 𝐼(𝜁
𝐿̂ (𝑇)
Γ𝛽̂,𝛾̂0,𝑇

)]] ,

lim
𝛿→0+

𝑉̃ (𝜁) − 𝑉̃ (𝜁 − 𝛿)𝛿 ≥ −𝐸[[𝐿̂ (𝑇) 𝐼(𝜁
𝐿̂ (𝑇)
Γ𝛽̂,𝛾̂0,𝑇

)]] .
(49)

Since 𝑉̃(⋅) is convex, we obtain that 𝑉̃(⋅) is differentiable on(0,∞) and 𝑉̃󸀠(𝜁) = −𝐸[𝐿̂(𝑇)𝐼(𝜁(𝐿̂(𝑇)/Γ𝛽̂,𝛾̂0,𝑇))].
Step 2. Because 𝜇(⋅) is bounded, we have that, for any 𝜁 ∈(0,∞), 𝐿̂(𝑇)/Γ𝛽̂,𝛾̂0,𝑇 < +∞, a.s. Then,

𝑉̃󸀠 (+∞) fl lim
𝜁→+∞

𝑉̃󸀠 (𝜁)
= − lim

𝜁→∞
𝐸[[𝐿̂ (𝑇) 𝐼(𝜁

𝐿̂ (𝑇)
Γ𝛽̂,𝛾̂0,𝑇

)]] = 0,
𝑉̃󸀠 (0) fl lim

𝜁→0+
𝑉̃󸀠 (𝜁)

= − lim
𝜁→0+

𝐸[[𝐿̂ (𝑇) 𝐼(𝜁
𝐿̂ (𝑇)
Γ𝛽̂,𝛾̂0,𝑇

)]] = −∞.

(50)
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Thus, there exists a number 𝜁̂ which attains 𝑉∗(𝑥) and𝑉̃󸀠(𝜁̂) = −𝑥 ∈ (−∞, 0). This completes the proof.

Lemma 15. Under Assumptions 1, 7, and 8, 𝑉∗(𝑥) =𝐸[∫𝑇
0 Γ𝛽̂,𝛾̂0,𝑠 𝐹(𝑠, 𝛽̂𝑠, 𝛾̂𝑠)𝑑𝑠+Γ𝛽̂,𝛾̂0,𝑇𝑢(𝜁̂(𝐿̂(𝑇)/Γ𝛽̂,𝛾̂0,𝑇))]+ 𝜁̂𝑥with 𝜁̂ = 𝜁̂𝑥

as in Lemma 14 and (𝛽̂, 𝛾̂) = (𝛽̂𝜁̂, 𝛾̂𝜁̂) as in Lemma 13.

Proof. We have

𝐸[[∫
𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇 𝑢̃(𝜁̂ 𝐿̂ (𝑇)Γ𝛽̂,𝛾̂0,𝑇

)]] + 𝜁̂𝑥
= 𝑉̃ (𝜁̂) + 𝜁̂𝑥 ≤ 𝑉̃ (𝜁) + 𝜁𝑥
≤ 𝐸[[∫

𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠 + Γ𝛽,𝛾0,𝑇 𝑢̃ (𝜁 𝐿̂ (𝑇)Γ𝛽,𝛾0,𝑇

)

+ 𝜁𝑥]] , ∀ (𝛽, 𝛾) ∈ B, ∀𝜁 ∈ (0,∞) , ∀𝑥 > 0.

(51)

This completes the proof.

Our main result is the following theorem.

Theorem 16. Under Assumptions 1, 7, and 8, let (𝜁̂, 𝛽̂, 𝛾̂) as in
Lemma 15 and define 𝜉̂ = 𝐼(𝜁̂(𝐿̂(𝑇)/Γ𝛽̂,𝛾̂0,𝑇)) 𝑎.𝑠. If 𝜉̂ ∈ 𝑈, then(𝜁̂, 𝛽̂, 𝛾̂, 𝜉̂) satisfies all the conditions in Lemma 11, that is, (34)
and (36).

Proof. Notice that

𝑉̃ (𝜁̂) = inf
(𝛽,𝛾)∈B

𝐸[[∫
𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠

+ Γ𝛽,𝛾0,𝑇 𝑢̃ (𝜁̂ 𝐿̂ (𝑇)Γ𝛽,𝛾0,𝑇

)]] = 𝐸[[∫
𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠

+ Γ𝛽̂,𝛾̂0,𝑇 𝑢̃(𝜁̂ 𝐿̂ (𝑇)Γ𝛽̂,𝛾̂0,𝑇

)]] .

(52)

Applying the maximum principle in Peng [24], we obtain a
necessary condition for (𝛽̂, 𝛾̂):
𝐹 (𝑡, 𝛽𝑡, 𝛾𝑡) + 𝑝𝑡𝛽𝑡 + 𝑞𝑡𝛾𝑡 ≥ 𝐹 (𝑡, 𝛽̂𝑡, 𝛾̂𝑡) + 𝑝𝑡𝛽̂𝑡 + 𝑞𝑡𝛾̂𝑡,

∀ (𝛽, 𝛾) ∈ B, (53)

where (𝑝𝑡, 𝑞𝑡) is the solution of the adjoint equation

−𝑑𝑝𝑡 = (𝐹 (𝑡, 𝛽̂𝑡, 𝛾̂𝑡) + 𝑝𝑡𝛽̂𝑡 + 𝑞󸀠𝑡𝛾̂𝑡) 𝑑𝑡 − 𝑞󸀠𝑡𝑑𝑊̂ (𝑡) ,
𝑝𝑇 = 𝑢(𝐼(𝜁̂ 𝐿̂ (𝑇)Γ𝛽̂,𝛾̂0,𝑇

)) . (54)

∀(𝛽, 𝛾) ∈ B; let (𝑦𝑡, 𝑧𝑡) and (𝑦̃𝑡, 𝑧̃𝑡) be the unique
solutions of the following two linear BSDEs:

𝑦𝑡 = 𝑢 (𝜉̂) + ∫𝑇

𝑡
(𝑦𝑠𝛽̂𝑠 + 𝑧󸀠𝑠𝛾̂𝑠 + 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠)) 𝑑𝑠

− ∫𝑇

𝑡
𝑧󸀠𝑠𝑑𝑊̂ (𝑠) ,

(55)

𝑦̃𝑡 = 𝑢 (𝜉̂) + ∫𝑇

𝑡
(𝑦̃𝑠𝛽𝑠 + 𝑧̃󸀠𝑠𝛾𝑠 + 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠)) 𝑑𝑠

− ∫𝑇

𝑡
𝑧̃󸀠𝑠𝑑𝑊̂ (𝑠) .

(56)

By (53) and the comparison theorem of BSDE, we have𝑦𝑡 ≤ 𝑦̃𝑡, 𝑡 ∈ [0, 𝑇], a.s., especially 𝑦0 ≤ 𝑦̃0.
Solving the above linear BSDEs gives

𝑦0 = 𝐸[∫𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇𝑢 (𝜉̂)] ,

𝑦̃0 = 𝐸[∫𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠 + Γ𝛽,𝛾0,𝑇𝑢 (𝜉̂)] .

(57)

So

𝐸[∫𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇𝑢 (𝜉̂)]

≤ 𝐸 [∫𝑇

0
Γ𝛽,𝛾0,𝑠 𝐹 (𝑠, 𝛽𝑠, 𝛾𝑠) 𝑑𝑠 + Γ𝛽,𝛾0,𝑇𝑢 (𝜉̂)] ,

∀ (𝛽, 𝛾) ∈ B,
(58)

which exactly is (36).
By Lemma 14, 𝑉̃󸀠(𝜁̂) = −𝑥. By Lemma 13,

𝑉̃ (𝜁̂)
= 𝐸[[∫

𝑇

0
Γ𝛽̂,𝛾̂0,𝑠 𝐹 (𝑠, 𝛽̂𝑠, 𝛾̂𝑠) 𝑑𝑠 + Γ𝛽̂,𝛾̂0,𝑇 𝑢̃(𝜁̂ 𝐿̂ (𝑇)Γ𝛽̂,𝛾̂0,𝑇

)]] .
(59)

Differentiating both sides of (59) as functions of 𝜁̂, we get
𝐸[[𝐼(𝜁̂

𝐿̂ (𝑇)
Γ𝛽̂,𝛾̂0,𝑇

)𝐿̂ (𝑇)]] = 𝑥. (60)

This completes the proof.

Remark 17. It is worth pointing out that the adjoint process 𝑝𝑡
in the proof of the above theorem coincides with the optimal
utility process 𝑦𝑡 in (55).

4. 𝐾-Ignorance

In this section, we study a special case which is called𝐾-ignorance by Chen and Epstein [25]. In this case, the
generator 𝑓 is specified as

𝑓 (𝑡, 𝑦, 𝑧) = −𝐾 |𝑧| , 𝐾 ≥ 0. (61)
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Chen and Epstein interpreted the term 𝐾|𝑧| as modeling
ambiguity aversion rather than risk aversion. 𝑓(𝑧) = −𝐾|𝑧| is
not differentiable. But it is concave and 𝑓(𝑧) = inf |𝛾|≤𝐾 (𝛾𝑧).
Then our results in the above section are still applicable.

In this section, we assume 𝑑 = 1, 𝜎 ≡ 1. The wealth
equation and recursive utility become

−𝑑𝑋 (𝑡) = −𝑞󸀠 (𝑡) 𝜇̂ (𝑡) 𝑑𝑡 − 𝑞󸀠 (𝑡) 𝑑𝑊̂ (𝑡) ,
𝑋 (𝑇) = 𝜉,

−𝑑𝑌 (𝑡) = −𝐾 |𝑍 (𝑡)| 𝑑𝑡 − 𝑍󸀠 (𝑡) 𝑑𝑊̂ (𝑡) ,
𝑌 (𝑇) = 𝑢 (𝜉) .

(62)

Our problem is formulated as follows:

Maximize 𝐽 (𝜉) fl 𝑌𝜉
0 ,

s.t. 𝜉 ∈ 𝑈,
𝑋 (0) = 𝑥,
(𝑋 (⋅) , 𝑞 (⋅)) , (𝑌 (⋅) , 𝑍 (⋅)) satisfies Eq. (62) .

(63)

Now Lemma 9 can be simplified to the following lemma.

Lemma 18. For 𝜉 ∈ 𝑈, the solutions (𝑋(⋅), 𝑞(⋅)) and(𝑌(⋅), 𝑍(⋅)) of (62) can be represented as

𝑋 (𝑡) = 𝐿̂−1 (𝑡) 𝐸 [𝐿̂ (𝑇) 𝜉 | G𝑡] ,
𝑌 (𝑡) = ess inf

𝛾∈B
(Γ0,𝛾0,𝑡 )−1 (𝑡) 𝐸 [Γ0,𝛾0,𝑇𝑢 (𝜉) | G𝑡] , (64)

where

𝐿̂ (𝑡) = 𝑒−∫
𝑡

0
𝜇̂(𝑠)𝑑𝑊̂(𝑠)−(1/2) ∫

𝑡

0
|𝜇̂(𝑠)|2𝑑𝑠,

Γ0,𝛾0,𝑡 = 𝑒∫𝑡0 𝛾𝑠𝑑𝑊̂(𝑠)−(1/2) ∫
𝑡

0
|𝛾𝑠|
2𝑑𝑠,

B = {𝛾 = {𝛾𝑡}𝑡≥0 | 𝛾𝑡 is
⋅ G-𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖V𝑒𝑙𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒, 󵄨󵄨󵄨󵄨𝛾𝑡󵄨󵄨󵄨󵄨 ≤ 𝐾, 𝑡
∈ [0, 𝑇] , 𝑎.𝑠.} .

(65)

For any 𝛾 ∈ B, Γ0,𝛾0,𝑡 is (G, 𝑃)-martingale. Then, a new
probability measure 𝑃𝛾 is defined onG𝑇 by

𝑑𝑃𝛾𝑑𝑃 = Γ0,𝛾0,𝑇
(66)

and 𝑊̂𝛾(𝑡) = 𝑊̂(𝑡) − ∫𝑡
0 𝛾𝑠𝑑𝑠 is a Brownian motion under 𝑃𝛾.

Thus, 𝑌(0) = inf𝛾∈B𝐸𝛾[𝑢(𝜉)] where 𝐸𝛾[⋅] is the expectation
operator with respect to 𝑃𝛾.

Our problem (63) is equivalent to the following problem:

Maximize 𝐽 (𝜉) = inf
𝛾∈B

𝐸𝛾𝑢 (𝜉)
s.t. 𝜉 ∈ A (𝑥) . (67)

The auxiliary dual problem in (39) becomes

𝑉̃ (𝜁) ≡ 𝑉̃ (𝜁; 𝑥) fl inf
𝛾∈B

𝐸𝛾𝑢̃ (𝜁𝑍𝛾 (𝑇)) , 0 < 𝜁 < ∞, (68)

where 𝑍𝛾(𝑡) fl 𝐿̂(𝑡)/Γ0,𝛾0,𝑡 , 𝑡 ∈ [0, 𝑇] a.s. and
𝑉∗ (𝑥) fl inf

𝜁>0,𝛾∈B
[𝐸𝛾𝑢̃ (𝜁𝑍𝛾 (𝑇)) + 𝜁𝑥]

= inf
𝜁>0

[𝑉̃ (𝜁) + 𝜁𝑥] . (69)

Applying the procedure in the previous section, we can
find the saddle point. So we list the results without proof
except Lemma 19 in which a new proof is given.

Lemma 19. Under Assumption 8, for any given 𝜁 > 0, there
exists a unique 𝛾̂ = 𝛾̂𝜁 ∈ B which attains the infimum in (68).

Proof. Set B󸀠 = {Γ0,𝛾0,𝑇 | 𝛾 ∈ B}, M = {𝑀𝛾(𝑇) fl Γ0,𝛾0,𝑇/𝐿̂(𝑇) |𝛾 ∈ B}, and 𝑔(𝑥) = 𝑥𝑢̃(𝜁/𝑥) for 𝑥 > 0. Then problem (68)
becomes

𝑉̃ (𝜁) = inf
𝑀𝛾(𝑇)∈M

𝐸̃ [𝑀𝛾 (𝑇) 𝑢̃ (𝜁 1𝑀𝛾 (𝑇))]
= inf

𝑀𝛾(𝑇)∈M
𝐸̃ [𝑔 (𝑀𝛾 (𝑇))] ,

(70)

where 𝐸̃[⋅] is the expectation operator with respect to the risk
neutral measure 𝑃̃. By Theorem 2.1 in [25], we know B󸀠 is
norm closed in 𝐿1(Ω). SoB is closed under a.s. convergence
because 𝐵 is uniformly integrable. As a consequence, M is
closed under a.s. convergence.

Consider a minimizing sequence {𝑀𝛾𝑛(𝑇)}𝑛≥1 for (70);
that is

lim
𝑛→∞

𝐸̃ [𝑔 (𝑀𝛾𝑛 (𝑇))] = 𝑉̃ (𝜁) . (71)

By Komlos’ theorem, there exists a sequence 𝑀𝛾𝑛(𝑇) ∈
conv(𝑀𝛾𝑛(𝑇),𝑀𝛾𝑛+1(𝑇), . . . , ); that is, 𝑀𝛾𝑛(𝑇) =∑𝑇𝑛

𝑘=𝑛 𝜆𝑘𝑀𝛾𝑘(𝑇), 𝜆𝑘 ∈ [0, 1], and ∑𝑇𝑛
𝑘=𝑛 𝜆𝑘 = 1, such that

the sequence {𝑀𝛾𝑛(𝑇)}𝑛≥1 converges a.s. to a random variable𝑀. By a.s. closedness ofM, we have𝑀 ∈ M; that is, ∃𝛾̂ ∈ B,
s.t. 𝑀 = 𝑀𝛾̂(𝑇). Note that 𝑔 is a strictly convex continuous
function; we have

𝐸̃ [𝑔 (𝑀)] = 𝐸̃ [ lim
𝑛→∞

𝑔 (𝑀𝛾𝑛 (𝑇))]
≤ lim inf

𝑛→∞
𝐸̃ [𝑔 (𝑀𝛾𝑛 (𝑇))]

≤ lim inf
𝑛→∞

𝜆𝑘

𝑇𝑛∑
𝑘=𝑛
𝐸̃ [𝑔 (𝑀𝛾𝑘 (𝑇))]

= lim inf
𝑛→∞

𝐸̃ [𝑔 (𝑀𝛾𝑛 (𝑇))] = 𝑉̃ (𝜁) .

(72)

The uniqueness follows from the strict convexity of 𝑔. This
completes the proof.
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Lemma 20. Under Assumption 8, if 𝐸̃[𝐼(𝜁𝑍𝛾(𝑇))] < ∞,∀𝜁 > 0, ∀𝛾 ∈ B, then for any given 𝑥 > 0, there exists
a number 𝜁̂ = 𝜁̂𝑥 ∈ (0,∞) which attains the infimum of𝑉∗(𝑥) = inf𝜁>0 [𝑉̃(𝜁) + 𝜁𝑥].
Lemma 21. Under Assumption 8, 𝑉∗(𝑥) = 𝐸𝛾̂𝑢̃(𝜁̂𝑍𝛾̂(𝑇)) + 𝜁̂𝑥
with 𝜁̂ = 𝜁̂𝑥 as in Lemma 20 and 𝛾̂ = 𝛾̂𝜁̂ as in Lemma 19.

Theorem 22. Under Assumption 8, let (𝜁̂, 𝛾̂) be the same as in
Lemma 21; then the optimal terminal wealth of problem (67) is

𝜉̂ = 𝐼 (𝜁̂𝑍𝛾̂ (𝑇)) , 𝑎.𝑠. (73)

if 𝜉̂ belongs to 𝑈.
In the following, we give some examples to illustrate our

above analysis.

Example 23 (constant absolute risk aversion). Suppose that𝑢(𝑥) = 1 − 𝑒−𝛼𝑥, 𝑥 ∈ R, 𝛼 > 0, and the wealth of the investor
may be negative. This utility function 𝑢 does not satisfy
Assumption 8. But it satisfies the following assumption.

Assumption 24. 𝑢 is strictly increasing, strictly concave, and
continuously differentiable, and

𝑢󸀠 (−∞) fl lim
𝑥↓−∞

𝑢󸀠 (𝑥) = ∞,
𝑢󸀠 (∞) fl lim

𝑥→∞
𝑢󸀠 (𝑥) = 0. (74)

Note that under Assumption 24, the wealth process of the
investor is allowed to be negative; the results in this section
still hold.

For this example, 𝐼(𝜁) = −(1/𝛼) ln(𝜁/𝛼), 𝜁 > 0, and 𝑢̃(𝜁) =1 − 𝜁/𝛼 + (𝜁/𝛼) ln(𝜁/𝛼), 𝜁 > 0. Then the value function of the
auxiliary dual problem (68) is

𝐸𝛾𝑢̃ (𝜁𝑍𝛾 (𝑇)) = 1 − 𝜁𝛼 + 𝜁𝛼 ln 𝜁𝛼 + 𝜁𝛼𝐸̃ [ln𝑍𝛾 (𝑇)]
= 1 − 𝜁𝛼 + 𝜁𝛼 ln 𝜁𝛼
+ 𝜁2𝛼𝐸̃ ∫

𝑇

0
(𝜇̂ (𝑡) + 𝛾𝑡)2 𝑑𝑡, 𝜁 > 0.

(75)

Apparently, 𝛾̂𝑡 (optimal 𝛾𝑡) which attains the infimum of
Problem (68) is independent of 𝜁. It is easy to see that

𝛾̂𝑡 = ((−𝐾) ∨ (−𝜇̂ (𝑡))) ∧ 𝐾, 𝑡 ∈ [0, 𝑇] , a.s. (76)

The optimal value of problem (68) is

𝑉̃ (𝜁) = 1 − 𝜁𝛼 + 𝜁𝛼 ln 𝜁𝛼 + 𝜁2𝛼𝐸̃ ∫
𝑇

0
(𝜇̂ (𝑡) + 𝛾̂𝑡)2 𝑑𝑡, (77)

and the Lagrange multiplier in Lemma 20 is

𝜁̂ ≡ 𝜁̂𝑥 = 𝛼𝑒−(1/2)𝐸̃ ∫
𝑇

0
(𝜇̂(𝑡)+𝛾̂𝑡)

2𝑑𝑡−𝛼𝑥

= argmin
𝜁>0

[𝑉̃ (𝜁) + 𝜁𝑥] . (78)

Thus, the optimal terminal wealth inTheorem 22 is

𝜉̂ = − 1𝛼 ln
𝜁̂𝑍𝛾̂ (𝑇)𝛼 . (79)

Moreover, it is easy to check that (𝑌(𝑡), 𝑍(𝑡)) fl (1 −(𝜁̂/𝛼)𝑍𝛾̂(𝑡), (𝜁̂/𝛼)(𝜇̂(𝑡) + 𝛾̂𝑡)𝑍𝛾̂(𝑡)) and 𝑡 ∈ [0, 𝑇] uniquely
solves the utility equation in (62) when 𝜉 = 𝜉̂.

Note that 𝜇̂(𝑡) and 𝛾̂𝑡 are bounded; it is easy to verify 𝜉̂ ∈𝐿2
G𝑇

and 𝑢(𝜉̂) ∈ 𝐿2
G𝑇
.

Example 25 (logarithmic utility function). Suppose 𝑢(𝑥) =
ln𝑥, 𝑥 > 0. In this case,

𝐼 (𝜁) = 1𝜁 ,
𝑢̃ (𝜁) = − ln 𝜁 − 1,

𝜁 > 0.
(80)

Then the value function of the auxiliary dual problem (68) is

𝐸𝛾𝑢̃ (𝜁𝑍𝛾 (𝑇)) = 𝐸𝛾 [− ln (𝜁𝑍𝛾 (𝑇)) − 1]
= 𝐸𝛾 [− ln𝑍𝛾 (𝑇)] − ln 𝜁 − 1
= 12𝐸𝛾 ∫𝑇

0
(𝜇̂ (𝑡) + 𝛾𝑡)2 𝑑𝑡 − ln 𝜁 − 1,

𝜁 > 0.
(81)

So the optimal 𝛾̂𝑡 is independent of 𝜁. Consider the following
BSDE:

𝑦𝛾 (𝑡) = 𝐸𝛾 [∫𝑇

𝑡
(𝜇̂ (𝑠) + 𝛾𝑠)2 𝑑𝑠 | G𝑡]

= ∫𝑇

𝑡
[(𝜇̂ (𝑠) + 𝛾𝑠)2 + 𝛾𝑠𝑧𝛾 (𝑠)] 𝑑𝑠

− ∫𝑇

𝑡
𝑧𝛾 (𝑠) 𝑑𝑊̂ (𝑠) .

(82)

Set

𝑓 (𝑡, 𝑧𝑡) = inf
𝛾∈B

[(𝜇̂ (𝑡) + 𝛾𝑡)2 + 𝛾𝑡𝑧𝑡] =
{{{{{{{{{

𝐾2 − 2𝐾𝜇̂ (𝑡) − 𝐾𝑧𝑡 + 𝜇̂ (𝑡)2 , if − 2𝜇̂ (𝑡) + 2𝐾 < 𝑧𝑡;−14𝑧2𝑡 − 𝜇̂ (𝑡) 𝑧𝑡, if − 2𝜇̂ (𝑡) − 2𝐾 ≤ 𝑧𝑡 ≤ −2𝜇̂ (𝑡) + 2𝐾;
𝐾2 + 2𝐾𝜇̂ (𝑡) + 𝐾𝑧𝑡 + 𝜇̂ (𝑡)2 , if 𝑧𝑡 < −2𝜇̂ (𝑡) − 2𝐾, 𝑡 ∈ [0, 𝑇] , a.s.

(83)
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It is easy to show that 𝑓(𝑡, 𝑧𝑡) is uniformly Lipschitz, so the
following BSDE has a unique solution which we still denoted
by (𝑦𝑡, 𝑧𝑡).

𝑦𝑡 = ∫𝑇

𝑡
𝑓 (𝑠, 𝑧𝑠) 𝑑𝑠 − ∫𝑇

𝑡
𝑧𝑠𝑑𝑊̂ (𝑠) . (84)

Then the infimum in problem (68) is attained at

𝛾̂𝑡 = arg inf
𝛾∈B

[(𝜇̂ (𝑡) + 𝛾𝑡)2 + 𝛾𝑡𝑧𝑡]
= −𝐾𝐼{−2𝜇̂(𝑡)+2𝐾<𝑧𝑡}

+ (−𝜇̂ (𝑡) − 𝑧𝑡2 ) 𝐼{−2𝜇̂(𝑡)−2𝐾≤𝑧𝑡≤−2𝜇̂(𝑡)+2𝐾}

+ 𝐾𝐼{𝑧𝑡<−2𝜇̂(𝑡)−2𝐾}, 𝑡 ∈ [0, 𝑇] , a.s.
(85)

The Lagrange multiplier in Lemma 20 is

𝜁̂ ≡ 𝜁̂𝑥 = 1𝑥 = argmin
𝜁>0

[𝑉̃ (𝜁) + 𝜁𝑥] . (86)

The optimal terminal wealth inTheorem 22 is

𝜉̂ = 𝑥𝑍𝛾̂ (𝑇) . (87)

Note that 𝜇̂(𝑡) and 𝛾̂𝑡 are bounded; it is easy to verify 𝜉̂ ∈𝐿2
G𝑇

and 𝑢(𝜉̂) ∈ 𝐿2
G𝑇
.

Example 26. Suppose that the appreciation rate 𝜇(𝑡) is a
bounded deterministic function of 𝑡. In this case, G𝑡 = F𝑡,𝑡 ≥ 0, and we claim that

𝛾̂𝑡 = ((−𝐾) ∨ (−𝜇 (𝑡))) ∧ 𝐾, 𝑡 ∈ [0, 𝑇] . (88)

Proof. We show that 𝛾̂ defined above attains the infimum of
(68). Denote

V (𝑡, 𝑥) ≡ V (𝑡, 𝑥; 𝜁) fl 𝐸̃ [𝑔(𝑥𝑀𝛾̂ (𝑇)𝑀𝛾̂ (𝑡) )] . (89)

Then V(𝑡, 𝑥) is the solution of the partial differential equation𝜕V/𝜕𝑡 + (1/2)(𝜕2V/𝜕𝑥2)𝑥2(𝜇𝑡 + 𝛾̂𝑡)2 = 0.∀𝛾 ∈ B; applying Itô’s formula to V(𝑡,𝑀𝛾(𝑡)), we have
𝑑V (𝑡,𝑀𝛾 (𝑡))
= [𝜕V𝜕𝑡 + 12 𝜕

2V𝜕𝑥2 (𝑀𝛾 (𝑡))2 (𝜇 (𝑡) + 𝛾𝑡)2]𝑑𝑡
+ 𝜕V𝜕𝑥𝑀𝛾 (𝑡) (𝜇 (𝑡) + 𝛾𝑡) 𝑑𝑊̃ (𝑡)

= 12 𝜕
2V𝜕𝑥2 (𝑀𝛾 (𝑡))2 [(𝜇 (𝑡) + 𝛾𝑡)2 − (𝜇 (𝑡) + 𝛾̂𝑡)2] 𝑑𝑡

+ 𝜕V𝜕𝑥𝑀𝛾 (𝑡) (𝜇 (𝑡) + 𝛾𝑡) 𝑑𝑊̃ (𝑡) .

(90)

By the definition of 𝛾̂𝑡 (88), we have (𝜇(𝑡) + 𝛾𝑡)2 − (𝜇(𝑡) +𝛾̂𝑡)2 ≥ 0, 𝑡 ∈ [0, 𝑇]. The convexity of V(𝑡, ⋅) guarantees that
V(𝑡,𝑀𝛾(𝑡)) is a submartingale. Thus, ∀𝛾 ∈ B,

𝐸𝛾 [𝑢̃ (𝜁𝑍𝛾 (𝑇))] = 𝐸̃ [𝑔 (𝑀𝛾 (𝑇))] = 𝐸̃V (𝑇,𝑀𝛾 (𝑇))
≥ 𝐸̃V (0,𝑀𝛾 (0)) = 𝐸̃ [𝑔 (𝑀𝛾̂ (𝑇))]
= 𝐸𝛾̂ [𝑢̃ (𝜁𝑍𝛾̂ (𝑇))] .

(91)

This completes the proof.

Example 27. Suppose that |𝜇(⋅)| ≤ 𝐾, a.e., a.s. Then we have

𝛾̂𝑡 = −𝜇̂ (𝑡) , 𝑡 ∈ [0, 𝑇] , a.s. (92)

Note that 𝜇 belongs toB when |𝜇(⋅)| ≤ 𝐾, a.e. a.s. Due to the
convexity of 𝑔, we have that ∀𝛾 ∈ B,

𝐸̃ [𝑔 (𝑀𝛾 (𝑡))] ≥ 𝑔 (𝐸̃ (𝑀𝛾 (𝑇))) = 𝑔 (1)
≡ 𝑔 (𝑀𝛾̂ (𝑇)) ≡ 𝐸̃ [𝑔 (𝑀𝛾̂ (𝑇))] . (93)

In this case, 𝑃𝛾 coincides with the risk neutral probability 𝑃̃
onG𝑇 which leads to the optimal terminal wealth 𝜉̂ = 𝑥. This
means that the investor will not invest in the risk assets at all.

Remark 28. For recursive utility for consumption of the form

𝑌 (𝑡) = 𝑢 (𝑋 (𝑇)) + ∫𝑇

𝑡
(𝑢 (𝑐𝑠) + 𝑓 (𝑠, 𝑌 (𝑠) , 𝑍 (𝑠))) 𝑑𝑠

− ∫𝑇

𝑡
𝑍 (𝑠) 𝑑𝑊̂ (𝑠) ,

(94)

where 𝑢 and 𝑓 satisfy Assumptions 2 and 8 and Assumptions
1 and 7, respectively, our method still works well.

5. Terminal Perturbation Method

When the generator of the recursive utility (4) is nonconcave,
the dual method is not applicable. In this case, we apply the
terminal perturbation method to obtain a characterization of
the optimal terminal wealth. We need the following smooth
assumption.

Assumption 29. 𝑓 is continuously differentiable in (𝑦, 𝑧).
Let 𝜉∗ be an optimal terminal wealth for (19); that is,

𝑌𝜉∗ (0) = sup
𝜉∈A(𝑥)

𝑌𝜉 (0) , (95)

And let (𝑋∗(⋅), 𝑞∗(⋅), 𝑌∗(⋅), 𝑍∗(⋅)) be the corresponding state
processes of (17).

Set

Ω fl {𝜔 ∈ Ω | 𝜉∗ (𝜔) = 0} . (96)

By the terminal perturbation method in [17, 18], we have the
following stochastic maximum principle.
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Theorem 30. Under Assumptions 1, 2, and 29, if 𝜉∗ is the
optimal wealth of problem (19), then there exist ℎ0 ∈ R, ℎ1 ≥ 0,
and |ℎ0|2 + ℎ21 = 1 such thatℎ0𝑚(𝑇) + ℎ1𝑢󸀠 (𝜉∗) 𝑛 (𝑇) ≥ 0, 𝑎.𝑠. on Ω;

ℎ0𝑚(𝑇) + ℎ1𝑢󸀠 (𝜉∗) 𝑛 (𝑇) = 0, 𝑎.𝑠. on Ω𝑐, (97)

where

𝑑𝑚 (𝑡) = −𝜇̂󸀠 (𝑡) 𝜎󸀠−1 (𝑡)𝑚 (𝑡) 𝑑𝑊̂ (𝑡) , 𝑚 (0) = 1;
𝑑𝑛 (𝑡) = 𝑓∗

𝑌 (𝑡) 𝑛 (𝑡) 𝑑𝑡 + 𝑓∗󸀠
𝑍 (𝑡) 𝑛 (𝑡) 𝑑𝑊̂ (𝑡) ,

𝑛 (0) = 1,
(98)

and 𝑓∗
𝑌 (𝑡) fl 𝑓𝑌(𝑡, 𝑌∗(𝑡), 𝑍∗(𝑡)), 𝑓∗

𝑍(𝑡) fl 𝑓𝑍(𝑡, 𝑌∗(𝑡), 𝑍∗(𝑡)).
Remark 31. Note that we do not need the concavity property
of 𝑢 in the above theorem.
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