Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 2727684, 10 pages
http://dx.doi.org/10.1155/2016/2727684

Research Article

Hindawi

Signal Denoising Method Based on Adaptive
Redundant Second-Generation Wavelet for Rotating

Machinery Fault Diagnosis

Na Lu,' Guangtao Zhang,” Yuanchu Cheng,’ and Diyi Chen*

!School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450000, China

2Henan Electric Power Research Institute, Zhengzhou 450000, China

’School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

*College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China

Correspondence should be addressed to Yuanchu Cheng; yccheng@whu.edu.cn

Received 17 January 2016; Revised 9 August 2016; Accepted 10 August 2016

Academic Editor: Stefan Balint

Copyright © 2016 Na Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Vibration signal of rotating machinery is often submerged in a large amount of noise, leading to the decrease of fault diagnosis
accuracy. In order to improve the denoising effect of the vibration signal, an adaptive redundant second-generation wavelet
(ARSGW) denoising method is proposed. In this method, a new index for denoising result evaluation (IDRE) is constructed
first. Then, the maximum value of IDRE and the genetic algorithm are taken as the optimization objective and the optimization
algorithm, respectively, to search for the optimal parameters of the ARSGW. The obtained optimal redundant second-generation
wavelet (RSGW) is used for vibration signal denoising. After that, features are extracted from the denoised signal and then input
into the support vector machine method for fault recognition. The application result indicates that the proposed ARSGW denoising

method can effectively improve the accuracy of rotating machinery fault diagnosis.

1. Introduction

At present, rotating machinery has been widely applied in
industrial field. Meanwhile, its safety and stability operat-
ing problems have gained comprehensive attention [1, 2].
Rotating machinery failure often causes equipment damage,
significant economic losses, and even causalities. Therefore,
its fault diagnosis is of great significance for ensuring the
safety and stability operation as well as the prevention of
catastrophe accidents. Vibration signal processing and analy-
sis are one of the most favored means to diagnose the rotating
machinery fault [3, 4]. However, because of the complicated
operating conditions and harsh operating environment, the
vibration signal is often submerged in a large amount of noise,
which may decrease the accuracy of the fault diagnosis [5-7].
Therefore, it is necessary to study an effective vibration signal
denoising method to improve the accuracy of the rotating
machinery fault diagnosis.

Signal denoising problem has always been the hotspot
in signal processing field. Up to now, various signal denois-
ing methods have been developed to analyze the vibration
signals, such as finite impulse response filter (FIR) [8],
time-frequency manifold [9], empirical mode decomposition
(EMD) [10], curvelet transform [11], quantum Hadamard
transformation [12], wavelet [13], and multiwavelets [14].
Among these methods, FIR and wavelet are two of the
most popular time-frequency analysis tools. However, the
frequency response of FIR depends on its coefficients, which
is related to the cut-off frequency and the order of the filter
[15]. Hence, the choice of cut-off frequency and order may
have a great impact on the denoising result. Wavelet has been
widely applied for mechanical vibration signal denoising [16-
18]. However, the denoising effect is influenced by the wavelet
base function selection to a large extent [19]. Inappropriate
base function may lead to unsatisfactory denoising result.
Furthermore, the existing wavelet base functions cannot



change adaptively according to the characteristics of the
acquired vibration signal. This may degrade the denoising
result [20].

Second-generation wavelet (SGW) is a new wavelet
theory that emerged in recent years. Compared with the
traditional wavelet, the construction of SGW avoids Fourier
transform. In addition, it has fast computational speed [21].
Because of the advantages of SGW, it has been widely applied
in vibration signal processing field. For example, Li et al. [22,
23] combined lifting wavelet with morphological wavelet to
construct an adaptive morphological gradient lifting wavelet,
which is used for bearing and gear vibration signal denoising
and feature extraction; Bao et al. [24] adopted lifting wavelet
for weak fault feature extraction from vibration signal; Fan
et al. [25] applied SGW to decompose bearing vibration
signal and then input the result to independent component
analysis (ICA) approach for fault diagnosis; Chen et al. [26]
employed SGW to test and diagnose crack location of rotor;
Bao et al. [27] applied two-dimensional lifting wavelet for
rotating mechanical vibration data compression, and so forth.
Even though multiple achievements have been obtained,
SGW suffers from some defects. Because the split and merge
operations are needed in the SGW transformation process,
frequency aliasing problem often emerged. This makes the
decomposition result contain fake frequency components
and decreases the fault diagnosis accuracy.

To overcome the frequency aliasing problem, [24] ana-
lyzed the reason why it appears and proposed a redundant
second-generation wavelet (RSGW) method. RSGW trans-
form does not include split and merge operations and thus
can overcome the frequency aliasing problem to a large
extent. Therefore, RSGW is superior to SGW in application
to signal denoising. However, similar to the base function
of wavelet, the prediction operator length, update operator
length, and decomposition level of RSGW should be prede-
termined. In general, these parameters have a great impact on
signal denoising performance. But it is difficult to select them
properly.

In order to select the optimal parameters of RSGW
according to the characteristics of signal and obtain a
favorable denoising result, an adaptive redundant second-
generation wavelet (ARSGW) denoising method for rotating
machinery fault diagnosis is proposed in this paper. This
method is mainly composed of three phases. In the first
phase, parameters like the prediction operator length, update
operator length, and decomposition level of RSGW are
initialized to some default values within their certain range.
In the second phase, the optimal value of an index for signal
denoising result evaluation and the genetic algorithm are
taken as the optimization objective and the optimization
algorithm, respectively, to search for the optimal values of
these parameters. After that, the RSGW with optimal param-
eters is applied to vibration signal denoising for rotating
machinery in the last phase. It can be seen that an effective
index for signal denoising result evaluation is essential for
optimal parameters searching in the second phase of this
method. Signal-to-noise ratio (SNR) [28] is a commonly used
index for evaluation of noise intensity in signal. However,
it can only be used in the circumstance that the real signal
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without noise component is known beforehand. Because
the real signal component in the actual vibration signal is
unavailable, SNR is not applicable for its denoising result
evaluation. Therefore, a new index for rotating machinery
signal denoising result evaluation (IDRE) is constructed in
this paper. Based on IDRE, the newly proposed method can
enable the parameters of RSGW to change adaptively with the
characteristics of the acquired vibration signal and improve
the signal denoising performance effectively.

The rest of this paper is arranged as follows. In Section 2,
theory of SGW and RSGW is reviewed briefly. In Section 3, a
new IDRE is constructed and the ARSGW denoising method
is proposed. Then this method is applied for a hydroturbine
unit vibration simulation signal denoising in Section 4 to
demonstrate the effectiveness of the IDRE and the ability of
ASGW to obtain an optimal denoising result. In Section 5,
vibration signals of a rotating machinery system are denoised.
Features in both time and frequency domains are extracted
from the denoised signals and then input into the support
vector machine method for fault recognition to validate the
ability of ARSGW denoising method to improve the accuracy
of rotating machinery fault diagnosis. Conclusions are given
in Section 6.

2. Redundant Second-Generation Wavelet

2.1. Summary of Second-Generation Wavelet Theory. As a
branch of wavelet theory, SGW inherited its excellent charac-
teristics of time-frequency location. Furthermore, SGW has
higher calculation efficiency and more clear principle and
needs lower space [24]. SGW transform includes decomposi-
tion and reconstruction processes demonstrated in Figure 1.
The decomposition process of SGW includes the following
steps:

(1) Split: the signal X = {x[n],n € Z} is divided into two
subsets: the odd sample set X, = {x,[n],n € Z} and
the even sample set X, = {x,[n],n € Z}:

x, [n] =x[2n+1],

@

x, [n] = x[2n].

(2) Predict: the prediction operator P is used to predict
the odd sample set X, based on the even sample
set X,. Then, the prediction error between x,[n] and
P(X,) gives the detail coefficients d[n]:

d[n] =x,[n] - P(X,). (2)

(3) Update: use the update operator U to update the detail
coeflicients D = {d[n],n € Z} and add the result U(D)
to x,[n]; the approximation coefficients c[#n] can be
obtained:

cn] =x,[n]+U(D). (3)

After the above three steps, the detail coefficients
D = {d[nl, n € Z} and the approximation coeffi-
cients C = {c[n], n € Z} are obtained. Multilayer
decomposition of SGW can be carried out through the
iteration of these three steps. Here, the prediction operator
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FIGURE 2: Principle of RSWG transform. (a) Decomposition of RSWG. (b) Reconstruction of RSWG.

P = [pQ1),p(2),...,p(M)] and update operator U =
[u(1),u(2),...,u(N)] are vectors with length of M and
N, respectively. They can be designed by the interpolating
subdivision method [29]. The obtained SGW is denoted as
(M, N) SGW.

With the decomposition transform of SGW, the recon-
struction transform of SGW can be implemented easily by
inversing (1), (2), and (3).

2.2. Summary of Redundant Second-Generation Wavelet The-
ory. Although SGW has got extensive application, it suffers
from some defects. Because of the split and merge operations
in SGW transformation processes, frequency aliasing prob-
lem may be encountered. This will cause wrong estimation of
the noise intensity in signal and degrade the denoising result.

RSGW does not need split and merge in its transforma-
tion processes and thus can overcome the frequency aliasing
problem to a large extent. Assume that P/, and U}, are the
prediction operator and the update operator of RSGW at the
27 scale, respectlvely, the initial prediction operator P, =
[p (1), p °02), ..., p O(M)] and the initial update operator

= [1°1),u4°Q),...,u’(N)] can be calculated according
to the prediction operator length M and the update operator
length N; then P(JJ and U{J can be calculated as [27]

P’ (1),0,...,0,p"(2),0,...,0,p° (3)..

2/-1 2/-1

pPPM-1), 0,...,0, P’ (M)
oa

3
) xelnl
cln] & l
Merge A}
] C
D Ml [T
2
-1
| e o
é C;; [n] l
2
(b)
U= (1),0,...,0,u°(2),0,...,0,u" (3),.
2]71 2171
u° (N-1),0,...,0, u° (N)
2]—1
(4)

The principle of RSGW transform at 2/ scale is shown in
Figure 2. And the decomposition equation of RSGW at 2/
scale is expressed as

dn=cd"[n- PLj] (Cj_l) ,
. : S (5)
c/[n] =7 [n] + U, (D7).
Correspondingly, the reconstruction equation of RSGGW
at 2/ scale is expressed as

ccj_1 [n] = J [n] — Ug] (Dj)

¢ b =d i+ Py (C7) (6)
. 1. 1
! l[n]zicj Yn ]+2ch Yn].

3. Signal Denoising Method Based on Adaptive
Redundant Second-Generation Wavelet

As mentioned above, RSGW is superior to SGW in the aspect
of frequency aliasing problem. However, the prediction oper-
ator length M, update operator length N, and decomposition
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FIGURE 3: Flow chart of ARSGW denoising method.

level L are often predetermined based on experience in the
process of vibration signal denoising. Inappropriate selection
of these parameters may lead to unsatisfactory denoising
result.

To overcome the drawbacks of RSGW, an adaptive
redundant second-generation wavelet denoising method is
proposed. This section will discuss in detail the new denoising
method based on RSGW. To obtain optimal parameters of
RSGW, an optimization algorithm is needed. Genetic algo-
rithm can generate near-optimal solutions in complex and
nonlinear search spaces with time efficiency [30] and solve
large-scale problems [31]. Considerable research has applied
genetic algorithm-based methods to machinery fault diag-
nosis [32-34]. Therefore, in the proposed method, genetic
algorithm is taken as the optimization algorithm to search
for the optimal parameters of M, N, and L. Because the
parameters M, N, and L can change adaptively according to
the signal characteristics using ARSGW denoising method,
better denoising result can be obtained.

3.1. Procedure of the Denoising Method. The flow chart of
the proposed method is shown in Figure 3, and the specific
procedure is given as follows:

(1) Input the acquired vibration signal x[»] and initialize
the iteration variable i = 0.

(2) Assign some default values to the adaptive parameters
M, N, and L.

(3) Calculate the prediction operator and update opera-
tor according to (4).

(4) According to (5), carry out L-layer RSGW decompo-
sition on the signal x[n].

(5) Apply thresholding to the obtained detail coefficients
to suppress the signal noise.

(6) Reconstruct the signal with the processed detail coef-
ficients and the approximation coefficients according
to (6).

(7) Calculate the IDRE of the reconstructed signal, and
increase the iteration variable i toi + 1.

(8) Compare the value of the iteration variable with the
evolutional generations. Turn to step (2) if the value
of the iteration variable is smaller; otherwise output
the optimized parameters M, N, L, and the denoised
signal.

3.2. Index for Denoising Result Evaluation. It can be seen
from Figure 3 that, to realize the optimal denoising of
rotating machinery vibration signal, an index for signal
denoising result evaluation is essential to be the optimization
objective. SNR is a ratio between the real signal and the noise
component. A larger SNR means that the denoising result is
better. However, because the real signal of rotating machinery
vibration signal is unknown beforehand, the SNR could not
be calculated. Therefore, IDRE is constructed for the rotating
machinery vibration signal.

Generally, signal noise is mainly divided into white
Gaussian noise, colored noise, and impulsive noise. Among
these types, white Gaussian noise, easily aroused by signal
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recording device and transmission system [35], is commonly
contained in vibration signal. Numerous methods have been
invited into denoising of the signal contaminated with white
Gaussian noise, such as EMD [10], wavelet [13], and multi-
wavelets [14]. The denoising method proposed in this paper
is also mainly applied to denoising of white noise.

Assume that the acquired vibration signal x[n] is com-
posed of the real signal f[n] and white Gaussian noise
component e[n]; namely, x[n] = f[n] + ¢[n]; then, the
autocorrelation function of x[#n] can be expressed as

N
r, [m] :%Z(f[n]+s[n])(f[n+m]+s[n+m])
-1

n

7)

=rp(ml+rg[ml+ry[m]+r,

[m],

where 7 ¢[m] and r,[m] are the autocorrelation functions of

fIn] and &[n], respectively, and Tfe [m] and rsf[m] are the

cross correlation functions of f[n] and e[n], respectively.
Analyzing (7), the following can be known:

(1) The noise component g[n] is random and irrelevant
with the real signal f[n]. Hence, rfs[m] and Tef [m]
are almost equal to zero; the maximum value of r, [m]
appears atm = 0 and as m increases, the value of r,[m]
decreases rapidly.

(2) For a rotating machinery signal, f[n] is mainly com-
posed of period signal components, and so is r¢[m].
In addition, when f[n] contains signal component
with the period of T, r ¢[m] has maximum values at
m=0,T,2T,....

Considering the above analysis, at the point m = 0, r, [m]
has a maximum value rf:la"l, and the value of r}f’m is related to
the real signal f[n] and the intensity of the noise component
e[n]. When f[n] is fixed, the more intense the noise, the larger
™ will be. Suppose that 7% is the secondary maximum
value of r, [m]. Since as m increases from 0, the value of r, [m]

decreases rapidly, 7 mainly depends on r¢[m] and related

to the real signal f[n]. Hence, when f[n] is fixed, r;naxz keeps
nearly the same. Therefore, IDRE is constructed as

max2

IDRE = o5 (8)

It can be concluded from (8) that the fewer the noise
components the signal contains, the better the denoising
result, and the larger the value of IDRE.

4. Simulation Signal Denoising

4.1. Construction of Hydroturbine Unit Vibration Simulation
Signal. Assume the rotating frequency f of a hydroturbine
unit vibration signal is 1.25 Hz. According to the characteris-
tics of hydroturbine unit vibration signal, a signal function,

TABLE L: Settings of some relevant parameters used in genetic
algorithm.

Parameters Values

Decomposition layer L Integer within [1, 6]

Prediction operator length M Even number within [2, 14]

Update operator length N Even number within [2, 14]

Population scale 30
Evolution generation 20
Probability of crossover 0.8
Probability of mutation 0.02

composed of 0.2 ~ 0.45f, f,2f, 3f, and 4f signal compo-
nents, is given as

f () =20sin (2.57t) + 4.5 sin (57t) + 2.55 sin (7.57t)
+ 1.5sin (1077t) + 0.4 sin (0.57t) 9)
+ 0.3 sin (0.757t) .

Assuming the sampling frequency is 2048 Hz and the
measurement time is 10s, the signal without noise can be
obtained as shown in Figure 4(a). Adding Gauss white noise
&(t) with SNR;, =18 db to this signal, a noisy vibration signal
x(t) = f(t) +&(t) can be constructed as shown in Figure 4(b).

4.2. Hydroturbine Unit Vibration Simulation Signal Denoising.
The ARSGW denoising method is adopted to denoise the
constructed hydroturbine unit vibration simulation signal.
In this process, settings of some relevant parameters used in
genetic algorithm are listed in Table 1.

After performing the procedure illustrated in Section 3.1,
the optimal denoising result can be obtained as shown in
Figure 4(c). The optimal parameters M = 2, N = 2, L = 5,
SNR,,, = 273924, and IDRE = 0.9987.

To illustrate the effectiveness of ARSGW and IDRE on
getting the optimal signal denoising result and the denoising
result evaluation, respectively, the constructed signal is also
denoised by RSGW with different values of M, N, and L.
Table 2 shows SNR, and IDRE of the denoised signal with L
setting to the integer within [1, 6] and (M, N) setting to (2, 2),
(2,4), (4,2), and (4, 4), respectively.

From Table 2, the following conclusions can be reached:

(1) When using RSGW to denoise the constructed signal,
the optimal denoising result is obtained when the
parameters M = 2, N = 2, and L = 5. In this case,
the obtained SNR_,, = 27.3924 and IDRE = 0.9987.
These values are equal to those obtained by ARSGW
denoising method, which indicates that the ARSGW
denoising method can find out the optimal denoising
result exactly.

(2) The variation tendency of IDRE is consistent with that
of SNR;, which indicates the IDRE could be used to
evaluate the denoising result.

To test the effectiveness of IDRE further, denoising
simulation when there is no noise was conducted. To simulate
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FIGURE 4: Hydroturbine unit vibration simulation signal denoising

based on ARSGW denoising method. (a) Real signal, (b) noisy 2 2 27.3924 0.9987
signal, and (c) denoised signal. 5 2 4 26.3497 0.9983
4 2 26.0228 0.9976
4 4 25.2368 0.9971
2 2 26.7456 0.9985
the no-noise condition, SNR;, was set to 1000, and other 6 2 4 25.8345 0.9981
parameters were set as the optimal ones obtained above. The 4 2 25.5388 0.9980
result shows that the value of IDRE equals 1. This is consistent 4 4 24.7874 0.9975

with (8) that when there is no noise, r;“axl and r;“axz are equal.

Compared with SNR, because IDRE can be calculated
without needing to know the real signal beforehand, it
is suitable not only to simulation signal denoising result
evaluation but also to actual vibration signal denoising result
evaluation. Therefore, the maximum value of IDRE can be
taken as the optimization objective when ARSGW denoising
method is adopted for rotating machinery vibration signal
denoising.

5. Vibration Fault Diagnosis for Rotating
Machinery

5.1. Vibration Signal Acquisition. In this paper, the rotating
machinery system shown in Figure 5 is used to generate vibra-
tion signals under different operating conditions. The rotor
with a diameter of 10 mm and a length of 850 mm is driven by
a DC motor controlled by a speed controller. It is composed
of two single shafts coupled together and supported by four
bearing blocks. Two mass disks with a diameter of 75 mm
are fixed on the rotor and two rub screw housings are
installed on the rack of the system. The sensors for signal
acquisition are composed of two eddy current sensors for
displacement measurement, a photoelectric sensor for speed
measurement, and a piezoelectric accelerometer for vibration
measurement. The signals measured by eddy current sensors
and piezoelectric accelerometer are sent to a proximitor
for filtering and amplification and then transmitted to the
computer for storage and analysis.

The considered machine states include normal, unbal-
ance, misalignment, and rotor-to-stator rub state. The unbal-
ance state is simulated by screwing a 2g mass block into
the threaded hole near the edge of mass disk 1, while the
misalignment state is simulated by misaligning the coupling
of the rotor. In the rotor-to-stator rub case, screw housing
1 is screwed into a rub screw. During the signal acquisition
process, the speed of the system is assigned to 1200 rpm, and
the sampling frequency is 2048 Hz. A set of signals acquired
under these four operating states are shown in Figure 6.

5.2. Vibration Signal Denoising. To validate the effectiveness
of the proposed denoising method, both ARSGW and SGW
denoising method are used to denoise the acquired 40 sets of
vibration signals for comparison.

5.2.1. Signal Denoising Using ARSGW Denoising Method.
During the process of ARSGW denoising, the decomposition
layer is set to an integer within [1,4]; the other relevant
parameters are set to the values, the same as those illustrated
in Table 1. A set of denoised signals by ARSGW denoising
method is shown in Figure 7.

5.2.2. Signal Denoising Using SGW Denoising Method. Dur-
ing the process of SGW denoising, the values of the prediction
operator length M, the update operator length N, and the
decomposition layer L are set to the same values with those
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assigned in ARSGW denoising method. The waveforms of a From the denoised signals shown in Figures 7 and 8,

set of denoised signals are demonstrated in Figure 8. it can be seen that ARSGW denoising method, compared
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TaBLE 3: Classification accuracy.

Denoising method Normal Unbalance Misalignment Rub
ARSGW 100% 100% 100% 90%
SGW 90% 95 95% 90%

with SWG denoising method, can suppress more noise
components and make the periodic features of the signal
more obvious; furthermore, the difference among the sig-
nals under the four operating states denoised by ARSGW
denoising method becomes larger, which is beneficial to the
improvement of the fault diagnosis accuracy.

5.3. Rotating Machinery Fault Diagnosis. To further validate
the ability of ARSGW denoising method on improving
the accuracy of the rotating machinery fault diagnosis, the
commonly used support vector machine method [36] is
applied for the four operating states’ classification.

Firstly, features, including means, variances, 1f, 2 f, and
3f, are extracted from the 40 sets of signals denoised by
ARSGW and SGW denoising method. Then, features of 20
sets of denoised signals are used to train the support vector
machine and those of the other 20 sets are used for test.
Table 3 illustrates the classification accuracy of the four
operating states using ARSGW and SGW denoising method,
respectively.

Table 3 shows that the classification result adopting
ARSGW as the denoising method is better than that adopting
SGW as the denoising method. This indicates that the
proposed ARSGW denoising method can effectively improve
the accuracy of the rotating machinery fault diagnosis.

Mathematical Problems in Engineering

6. Conclusions

The vibration signal denoising effect directly affects the rotat-
ing machinery fault diagnosis performance. In this paper,
a new IDRE is constructed, and based on IDRE, ARSGW
denoising method is proposed for rotating machinery vibra-
tion signal denoising. The application of ARSGW denoising
method on the vibration signal denoising of a rotating
machinery system gets a better result than that obtained
by SGW denoising method. Moreover, after inputting the
extracted features from the denoised signal into support
vector machine method for classification, the result shows
that the recognition rate using ARSGW denoising method
is higher than that using SGW denoising method. Therefore,
ARSGW denoising method can effectively improve the accu-
racy of rotating machinery vibration fault diagnosis.

ARSGW denoising method, compared with SGW denois-
ing method, can be applied to denoise rotating machinery
vibration signal adaptively and obtain optimal denoising
results. The newly constructed IDRE, verified to be effective
in evaluating the vibration signal denoising result for rotating
machinery, also provides some reference for signal denoising
of other kinds of machinery.
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