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Heat transfer enhancement in permeable tubes subjected to transverse suction flow is investigated in this work. Both momentum
and energy equations are solved analytically and numerically. Both solutions based on negligible entry regions are well matched.
Two different suction velocity distributions are considered. A parametric study including the influence of the average suction
velocity and the suction velocity profile is conducted for various Peclet numbers. It is found that enhancement of heat transfer over
that in impermeable tubes is only possible with large Peclet numbers. This enhancement increases as suction velocities towards
the tube outlet increase and as those towards the tube inlet decrease simultaneously. The identified enhancement mechanisms are
expanding the entry regions, increasing the transverse advection, and increasing the downstream excess temperatures under same
transverse advection. The average suction velocity that produces maximum enhancement increases as the Peclet number increases
until it reaches asymptotically its uppermost value at large Peclet numbers. The maximum reported enhancement ratios for the
exponential and linear suction velocity distributions are 17.62-fold and 14.67-fold above those for impermeable tubes, respectively.
This work demonstrates that significant heat transfer enhancement is attainable when the suction flow inside the permeable tubes
is distributed properly.

1. Introduction

The study of fluid flow and heat transfer inside permeable
tubes or channels exposed to surface suction is important
to many industrial applications. These applications include
transpiration cooling where channel surfaces are cooled by
passing cooled fluid through the pores of these surfaces,
controlling boundary layers over surfaces of airplane wings
or turbine blades by injection or suction of fluid at theses sur-
faces, lubrication of permeable bearings, fluid filtration pro-
cesses, cooling of combustion chambers exhaust ports, and
cooling of porous walled reactors [1]. Accordingly, the aim
of the present work is to investigate heat transfer enhance-
ment inside permeable tubes subjected to nonuniform sur-
face suction.

Bergles [2] indicated that surface suction is an effective
technique that can be used to enhance heat transfer [2, 3].
He indicated that improvement in heat transfer coefficient is

expected to reach several hundred percent for laminar flow
with suction at the solid boundary [2–5]. He pointed out
that this enhancement is due to reduction in the boundary
layer thickness [2]. This can be clearly seen for external
flows [4–8]. However, surface suction within internal flows
tends to reduce the mean velocity inside the tube or the
channel. This effect may thicken the boundary layer and
causes impediments of both flows near the boundary and
heat transfer rate. Therefore, the novelty of the present work
is to explore the various conditions that may reveal heat
transfer enhancement inside permeable tubes exposed to
surface suction.

Among initial works that analyzed the problem of fluid
flow and heat transfer inside permeable tubes or channels
with surface suction are the works of Kinney [9], Pederson
and Kinney [10], Raithby [11], and Sorour and Hassab [12].
These works illustrated the variations of the temperature
profile and Nusselt number with wall Reynolds number in
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porous tubes or channels.These works andmany others were
the motivations behind recent works that accounted for all
possible hydrodynamic conditions on heat transfer inside
channels subjected to wall suction. For example, Sorour et
al. [13] and Bubnovich et al. [14] analyzed dynamically and
thermally the developing flow inside a channel subjected to
nonuniform suction at onewall. Hwang et al. [15] investigated
numerically forced laminar convection in the entrance region
of a square duct subjected to uniform mass transpiration.
Makinde et al. [1] analyzed heat transfer in channels exposed
to wall suction in presence of nanofluids with both wall slip
and viscous dissipation effects. All of the aforementioned
works and many similar ones in the literature did not explore
the heat transfer enhancement due to surface suction inside
permeable tubes. Thus, the motivation behind the present
work is to enrich the literature with a study about the role of
surface suction and its profile inside permeable tubes on heat
transfer enhancement.

Promoting flow close to the energy exchanging bound-
ary usually results in heat transfer enhancement [2, 16].
Meanwhile, the internal flow impedance near this boundary
increases as suction Reynolds number (ReV

𝑤

) increases [9,
11]. For permeable circular tubes, the internal flow starts to
separate from the boundary when ReV

𝑤

= 4.5978 due to the
adverse pressure gradient caused by reduction in the mean
fluid velocity. To avoid this instability condition and to sustain
maximumvelocity close to tube surface, the suctionReynolds
number must be ReV

𝑤

≤ 1.04. This constraint can be shown
using Kinney [9] and Raithby [11] works to yield universal
surface friction coefficient to be at least equal to 95% of its
maximum value when ReV

𝑤

= 0. Accordingly, the flow close
to the energy exchanging boundary can be kept maximally
promoted under this constraint. Therefore, the present work
is concerned with heat transfer enhancement inside perme-
able tubes exposed to surface suction with 0 < ReV

𝑤

≤ 1.04.
In the next sections, flow and heat transfer inside a

preamble tube subjected to internal suction flow aremodelled
and analyzed. The surface suction velocity is considered to
have either linear or exponential profile distributions. Both
momentum and thermal energy transfer equations are solved
using various analytical and numerical methods. Different
heat transfer enhancement indicators are computed. Both
analytical and numerical computations of these indicators
are validated under an applicable constraint and using early
studies. An extensive parametric study has been conducted in
order to identify and explore the influence of average suction
velocity, suction velocity profile, and Peclet number on the
heat transfer enhancement indicators.

2. Problem Formulation

2.1. Modeling of Flow and Heat Transfer inside the Permeable
Tube. Consider a tube of length 𝐿 and inner diameter 𝐷.
The tube wall is permeable so as to allow fluid suction at its
boundary as shown in Figure 1. Both the flow inside the tube
and that through the permeable boundary are considered
to be laminar flows. The density, specific heat, thermal
conductivity, and the dynamic viscosity of the fluid are
𝜌, 𝑐𝑝, 𝑘, and 𝜇, respectively. The dimensionless continuity,
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Figure 1: (a) 3D viewof the tubewith suction passages embedded on
its material volume, (b) cross section of the tube, and (c) schematic
profile of the tube and the coordinates system.

momentum, and energy equations of the fluid are given by
[17–19]:

𝜕𝑢

𝜕𝑥

+

1

𝑟

𝜕

𝜕𝑟

(𝑟 V) = 0, (1)

𝑎Re𝑟 (𝑢
𝜕𝑢

𝜕𝑥

+ V
𝜕𝑢

𝜕𝑟

) = 16

𝑑𝑝

𝑑𝑥

+

2

𝑟
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(𝑟
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𝜕𝑟

) , (2)
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𝜕𝜃

𝜕𝑥

+ V
𝜕𝜃

𝜕𝑟

) =

2

𝑟

𝜕

𝜕𝑟

(𝑟

𝜕𝜃

𝜕𝑟

) , (3)
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where 𝑢 and V are the dimensionless axial and radial
velocities, respectively. 𝑥 and 𝑟 are the dimensionless axial
and radial positions, respectively. 𝑎 and Pe𝑟 are the tube
aspect ratio and the reference Peclet number, respectively.
𝑝 and 𝜃 are the dimensionless pressure and dimensionless
temperature fields, respectively. The dimensionless variables
and parameters used in (1)–(3) are given by

𝑎 =

2𝐷

𝐿

, (4a)

𝑟 =

2𝑟

𝐷

, (4b)

𝑥 =

𝑥

𝐿

, (4c)

𝑢 (𝑥, 𝑟) =

𝑢

𝑢𝑜

, (5a)

V (𝑥, 𝑟) =
V
𝑎𝑢𝑜

, (5b)

Re𝑟 =
𝜌𝑢𝑜𝐷

𝜇

, (6a)

Pe𝑟 =
𝜌𝑐𝑝𝑢𝑜𝐷

𝑘

= Re𝑟 Pr, (6b)

𝑢𝑜 =

𝑝1 − 𝑝2

32𝜇𝐿/𝐷

2
, (6c)

𝑝 (𝑥) =

𝑝 − 𝑝1

𝑝2 − 𝑝1

, (7a)

𝜃 (𝑥, 𝑟) =

𝑇 − 𝑇1

𝑞

󸀠󸀠
𝑠
𝐷/ (2𝑘)

, (7b)

where 𝑢𝑜, 𝑝1, 𝑝2, and 𝑇1 are reference axial velocity, inlet
pressure, outlet pressure, and inlet temperature, respectively.
𝑞

󸀠󸀠

𝑠
is the constant heat flux applied at the inner surface of the

tube. The boundary conditions of (1)–(3) are given by

𝑥 = 0: 𝑢avg = 1, (8a)

𝑥 = 0: 𝜃 = 0, (8b)

𝑥 = 1: 𝑝 = 1, (9)

𝑟 = 0: 𝜕𝑢

𝜕𝑟

= 0, (10a)

𝑟 = 0: 𝜕V
𝜕𝑟

= 0, (10b)

𝑟 = 0: 𝜕𝜃

𝜕𝑟

= 0, (10c)

𝑟 = 1: 𝑢 = 0, (11a)

𝑟 = 1: V = V𝑤 (𝑥) , (11b)

𝑟 = 1: 𝜕𝜃

𝜕𝑟

= 1, (11c)

where V𝑤(𝑥) = V𝑤(𝑥)/(𝑎𝑢𝑜), V𝑤(𝑥) is the dimensional local
suction velocity at the tube inner surface. 𝑢avg is the mean
dimensionless axial velocity at any given cross section. Using
Kinney [9] and Raithby [11] works, it can be shown that with
0 ≤ 𝑎Re𝑟V𝑤 ≤ 1.04, the convective terms in (2) can be
neglected.The aforementioned range results in less than 5.0%
relative error associated with calculating the universal wall
friction coefficient by neglecting the convective terms. The
previous constraint can practically be satisfied for high aspect
ratio tubes (1/𝑎 ≫ 1), viscous fluids, or with small suction
velocities. Accordingly, the solution of (2) in absence of the
convective terms with boundary conditions given by (10a)
and (11a) is the following:

𝑢 (𝑥, 𝑟) = 2𝑝

󸀠
(1 − 𝑟

2
) , (12)

where 𝑝󸀠 = 𝑑𝑝/𝑑𝑥. Substituting (12) in (1) and solving the
resulting equation yield to the following distribution of the
dimensionless radial velocity:

V (𝑥, 𝑟) = −𝑝

󸀠󸀠
(𝑟 −

𝑟

3

2

) , (13)

where 𝑝

󸀠󸀠
= 𝑑

2
𝑝/𝑑𝑥

2. Applying the boundary condition
given by (11b) results into the following differential equation:

𝑝

󸀠󸀠
= −2V𝑤 (𝑥) . (14)

The mass flow rate 𝑚̇(𝑥) and mean axial velocity 𝑢avg(𝑥)
can be calculated from the following expressions:

𝑀(𝑥) =

𝑚̇ (𝑥)

𝑚̇𝑜

= 2∫

1

0

𝑟 𝑢 𝑑𝑟 = 𝑝

󸀠
(𝑥) , (15)

𝑢avg (𝑥) ≡
𝑢avg (𝑥)

𝑢𝑜

=

𝑚̇ (𝑥) / (𝜌𝜋𝐷

2
/4)

𝑢𝑜

= 𝑝

󸀠
(𝑥) ,

(16)

where 𝑚̇𝑜 is the reference mass flow rate, 𝑚̇𝑜 = 𝜌𝑢𝑜𝜋𝐷
2
/4.

TheNusselt number at the tube inner boundary is defined
as

Nu ≡

ℎ𝐷

𝑘

=

2

𝜃𝑊 − 𝜃𝑚

, (17)

where ℎ, 𝜃𝑚, and 𝜃𝑊 are the convection heat transfer coeffi-
cient between the tube inner boundary and the fluid flow (ℎ =

𝑞

󸀠󸀠

𝑠
/[𝑇𝑊 − 𝑇𝑚]), dimensionless mean bulk temperature, and

the dimensionless temperature of the tube inner boundary
(𝜃𝑊 = 𝜃(𝑥, 𝑟 = 1)), respectively. 𝑇𝑊 and 𝑇𝑚 are the tem-
perature at the tube inner boundary and the mean bulk
temperature of the fluid, respectively. 𝜃𝑚 can be computed
from the following equation:

𝜃𝑚 (𝑥) ≡
𝑇𝑚 (𝑥) − 𝑇1

𝑞

󸀠󸀠
𝑠
𝐷/ (2𝑘)

= 4∫

1

0

𝑟 (1 − 𝑟

2
) 𝜃 (𝑥, 𝑟) 𝑑𝑟. (18)

The Integral Energy Equation.The integral form of the energy
equation can be formed using (3). It can be expressed in the
following form:

𝑢avg
𝑑𝜃𝑚

𝑑𝑥

+ 4(

V𝑤
Nu

) =

4

𝑎Pe𝑟
. (19)
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The Fully Developed Nusselt Number. Under fully developed
condition, 𝜕𝜃/𝜕𝑥 = 𝑑𝜃𝑚/𝑑𝑥. As such, (3) can be reduced to
the following using (19):

8 (1 − 𝑟

2
) {1 −

𝑎Pe𝑟V𝑤
Nufd

} + 2𝑎Pe𝑟V𝑤 (𝑟 −
𝑟

3

2

)

𝜕𝜃fd
𝜕𝑟

=

2

𝑟

𝜕

𝜕𝑟

(𝑟

𝜕𝜃fd
𝜕𝑟

) ,

(20)

where Nufd is the fully developed Nusselt number. Equation
(20) can be solved analytically and Nufd expression can be
arranged in the following form:

Nufd
𝑍

= (8{1 − exp(3𝑍
8

)}

+ 2𝑍 exp(3𝑍
8

)∫

0

−3/4

exp (𝑍𝑦/2)
√𝑦 + 1

𝑑𝑦)

⋅ (𝑍 + 8 {1 − exp(3𝑍
8

)}

+ 2𝑍 exp(3𝑍
8

)∫

0

−3/4

exp (𝑍𝑦/2)
√𝑦 + 1

𝑑𝑦)

−1

,

(21)

where 𝑍 = 𝑎Pe𝑟V𝑤(𝑥). The following approximation can be
used:

1

√𝑦 + 1

≅ 𝑎1 exp (𝑎2𝑦) + 𝑎3 exp (𝑎4𝑦) , −

3

4

≤ 𝑦 ≤ 0.

(22)

This approximation has maximum relative error less than
0.3% when the coefficients are equal to

𝑎1 = 9.8075 × 10

−3
; 𝑎2 = −5.3965;

𝑎3 = 0.9874; 𝑎4 = −0.49834.

(23)

By substituting (22) in (21), Nufd can be approximated by the
following expression:

Nufd
𝑍

= (8 {1 − exp(3𝑍
8

)} − 𝐴1 {exp (𝑎5) − exp(3𝑍
8

)}

−𝐴2 {exp (𝑎6) − exp(3𝑍
8

)})

⋅ (8 {1 − exp(3𝑍
8

)} − 𝐴1 {exp (𝑎5) − exp(3𝑍
8

)}

−𝐴2 {exp (𝑎6) − exp(3𝑍
8

)} + 𝑍)

−1

,

(24)

where

𝑎5 = −(

3

4

) 𝑎2, 𝑎6 = −(

3

4

) 𝑎4,

𝐴1 =
4𝑎1𝑍

2𝑎2 + 𝑍

, 𝐴2 =
4𝑎3𝑍

2𝑎4 + 𝑍

.

(25)

2.1.1. Case I: Linear Distribution of the Suction Velocity. For
this case, the dimensionless suction velocity denoted by V𝑤,𝐴
has the following linear distribution:

V𝑤,𝐴 (𝑥) = 𝐵 + 2 (V𝑜 − 𝐵) 𝑥, (26)

where V𝑜 = V𝑜/(𝑎𝑢𝑜), V𝑜 is the average suction velocity over
the length of tube inner surface. 𝐵 is an arbitrary controlling
parameter.

2.1.2. Case II: Exponential Distribution of the Suction Velocity.
For this case, the dimensionless suction velocity denoted by
V𝑤,𝐵 has the following exponential distribution:

V𝑤,𝐵 (𝑥) = V𝑜
𝐶 exp (𝐶𝑥)
exp (𝐶) − 1

, (27)

where 𝐶 is an arbitrary controlling parameter.

2.1.3. The Pressure Gradient for Both Cases. Substituting (26)
and (27) in (14) and solving for the dimensionless pressure
gradient, the following expressions can be obtained:

𝑑𝑝

𝑑𝑥

=

{
{
{
{

{
{
{
{

{

1 − 2V𝑜𝑥
2
+ 2𝐵 (𝑥

2
− 𝑥) , Case I,

1 − 2V𝑜 [
exp (𝐶𝑥) − 1

exp (𝐶) − 1

] , Case II.
(28)

The ranges of 𝐵 and V𝑜 that result in having both 𝑢avg,𝐴 and
V𝑤,𝐴 larger than zero can be shown to be

0 ≤ V𝑜 <
1

2

, 0 ≤ 𝐵 ≤ 2V𝑜. (29)

The ranges of 𝐶 and V𝑜 that result in having both 𝑢avg,𝐵 and
V𝑤,𝐵 larger than zero can be shown to be

0 ≤ V𝑜 <
1

2

, −∞ < 𝐶 < ∞. (30)

2.2. Perfect Fluid Slip Case (Ideal Case). The ideal case of the
present problem is constructed when the fluid is subjected
to perfect slip condition at the solid boundary. For this ideal
case, the conservation of mass and the continuity equation
reveal the following expressions:

𝑑𝑢𝑠

𝑑𝑥

= −2V𝑤, (31)

𝑢𝑠 =

{
{
{
{

{
{
{
{

{

1 − 2V𝑜𝑥
2
+ 2𝐵 (𝑥

2
− 𝑥) , Case I,

1 − 2V𝑜 {
exp (𝐶𝑥) − 1

exp (𝐶) − 1

} , Case II,
(32)

V = V𝑤𝑟, (33)
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where 𝑢𝑠 = 𝑢s/𝑢𝑜, 𝑢𝑠 is the fluid velocity for this ideal case.
Under this ideal condition, the energy equation reduces to
the following:

𝑎Pe𝑟 (𝑢𝑠
𝜕𝜃𝑠

𝜕𝑥

+ V𝑤𝑟
𝜕𝜃𝑠

𝜕𝑟

) =

2

𝑟

𝜕

𝜕𝑟

(𝑟

𝜕𝜃𝑠

𝜕𝑟

) , (34)

where 𝜃𝑠 is the dimensionless temperature for the ideal case.
For fully developed condition where 𝜕𝜃𝑠/𝜕𝑥 = 𝑑𝜃𝑚/𝑑𝑥, (34)
can be reduced to the following when (19) is implemented:

4{1 −

𝑍

Nu𝑠,fd
} + 𝑍(𝑟

𝜕𝜃𝑠,fd

𝜕𝑟

) =

2

𝑟

𝜕

𝜕𝑟

(𝑟

𝜕𝜃𝑠,fd

𝜕𝑟

) , (35)

where Nu𝑠,fd is the fully developed value of the Nusselt
number for the ideal case. By solving (35) and application of
the boundary condition given by (10c), Nu𝑠,fd can be found.
It is equal to

Nu𝑠,fd
𝑍

=

4 {1 − exp (𝑍/4)}
4 {1 − exp (𝑍/4)} + 𝑍

. (36)

For this case, the dimensionless mean bulk temperature can
be found to be equal to

𝜃𝑚,𝑠 (𝑥) ≡

𝑇𝑠,𝑚 (𝑥) − 𝑇1

𝑞

󸀠󸀠
𝑠
𝐷/ (2𝑘)

= 2∫

1

0

𝑟𝜃𝑠𝑑𝑟. (37)

2.3. Heat Transfer Enhancement Indicators. Let the heat
transfer enhancement indicator 𝜆 be defined as ratio of the
tube inner boundary excess temperature at the exit section
for the reference case (V𝑤 = 0) to that quantity when V𝑤 > 0.
Mathematically, the enhancement indicator 𝜆 is written as

𝜆 =

𝜃 (𝑥 = 1, 𝑟 = 1)|V
𝑤
=0

𝜃 (𝑥 = 1, 𝑟 = 1)

. (38)

When V𝑤 = 0, the system becomes an impermeable tube
confining an internal flow and subjected to uniform heat flux.
For this case, the Nusselt number at the exit can be shown to
be correlated to 𝑎Pe𝑟 according to the following expression:

Nu (𝑥 = 1, V𝑤 = 0)

= (4.38 − 1.3 × 10

−3
𝑎Pe𝑟 + 3.9 × 10

−4
(𝑎Pe𝑟)

2

+ 6.5 × 10

−7
(𝑎Pe𝑟)

3
)

⋅ (1 − 4.6 × 10

−5
𝑎Pe𝑟 + 8.6 × 10

−5
(𝑎Pe𝑟)

2

+ 4.3 × 10

−8
(𝑎Pe𝑟)

3
)

−1

(39)

with maximum relative error less than 0.3% when 1 ≤ 𝑎Pe𝑟 ≤
1000.

The second performance indicator 𝜂𝑠 is defined as ratio
of the tube inner boundary excess temperature at the exit
section for the perfect fluid slip case to that quantity under
no-slip condition. Mathematically, 𝜂𝑠 is written as

𝜂𝑠 =
𝜃𝑠 (𝑥 = 1, 𝑟 = 1)

𝜃 (𝑥 = 1, 𝑟 = 1)

. (40)

2.4. Enhancement Indicators for Fully Developed Flow with
Uniform Suction. For uniform suction case, the mean veloc-
ity inside the tube can be found using (32) by setting 𝐵 = V𝑜.
It is equal to

𝑢𝑠 = 𝑢avg = 1 − 2V𝑜𝑥, V𝑜 <
1

2

. (41)

By substituting (41) in (19) and solving the resulting equation,
the mean bulk temperature distribution can be obtained. It is
given by

𝜃𝑚 (𝑥) = ln [1 − 2V𝑜𝑥]
2([1/Nufd]−1/[𝑎Pe𝑟V𝑜])

. (42)

Accordingly, the dimensionless temperature at the exit is
equal to

𝜃 (𝑥 = 1, 𝑟 = 1)

= 𝜃𝑊 (𝑥 = 1) = ln [1 − 2V𝑜]
2([1/Nufd]−1/[𝑎Pe𝑟V𝑜])

+

2

Nufd
.

(43)

Therefore, the performance indicators 𝜆 and 𝜂𝑠 for this case
are equal to

𝜆fd =
96 + 11𝑎Pe𝑟

ln [1 − 2V𝑜]
48([𝑎Pe

𝑟
/Nufd]−1/V𝑜)

+ 48 (𝑎Pe𝑟/Nufd)
,

(44)

𝜂𝑠,fd =
ln [1 − 2V𝑜]

2([𝑎Pe
𝑟
/Nu
𝑠,fd]−1/V𝑜)

+ 2 (𝑎Pe𝑟/Nu𝑠,fd)

ln [1 − 2V𝑜]
2([𝑎Pe

𝑟
/Nufd]−1/V𝑜)

+ 2 (𝑎Pe𝑟/Nufd)
.

(45)

The plots of 𝜃𝑚(𝑥 = 1), 𝜃𝑠,𝑚(𝑥 = 1), Nufd, Nu𝑠,fd, and 𝜆fd
for various 𝑎Pe𝑟 and V𝑜 values are seen in Figures 2–4. The
upper value of V𝑜 that makes 𝜆fd = 1 can be obtained using
numerical solving techniques [20]. It is denoted by V𝑜,𝑝. V𝑜,𝑝
can be correlated to 𝑎Pe𝑟 through the following correlation:

V𝑜,𝑝 = (−2.8076 × 10

6
+ 820470 (𝑎Pe𝑟)

− 83102 (𝑎Pe𝑟)
2
+ 18754 (𝑎Pe𝑟)

3
)

⋅ (1 + 713480 (𝑎Pe𝑟) − 123760 (𝑎Pe𝑟)
2

+ 37172 (𝑎Pe𝑟)
3
)

−1

.

(46)

The percentage error associated with (46) is less than 0.62%
when 𝑎Pe𝑟 ≥ 4. The plot of 𝑎Pe𝑟 versus V𝑜,𝑝 is shown in Fig-
ure 3. Surprisingly, the value of V𝑜 making 𝜂𝑠,fd = 1 is found
to be independent on 𝑎Pe𝑟. This value is denoted by V𝑜,𝑒 and
it is equal to

V𝑜,𝑒 = 0.31606. (47)

The plots of 𝜂𝑠,fd for various 𝑎Pe𝑟 and V𝑜 are seen in Figure 4.
𝜂𝑠,fd ≥ 1 when V𝑜 > V𝑜,𝑒.
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Figure 2: Effects of V𝑜 on outlet mean bulk temperature under fully
developed flow condition.

3. Numerical Methodology and Results

Equations (3) and (35) are solvable numerically without iter-
ations using the implicit finite difference method discussed
by Khaled [21] and Blottner [22].They were discretized using
two-point backward and three-point central differencing
quotients for the first derivative with respect to 𝑥-direc-
tion and both first and second derivatives with respect to
𝑟-direction, respectively. The finite difference equation of
(3) is given by

[

𝑟𝑗 − 0.5Δ𝑟

Δ𝑟

2
+

𝑎Pe𝑟𝑟𝑗V𝑖,𝑗
4Δ𝑟

] 𝜃𝑖,𝑗−1 − [

2𝑟𝑗

Δ𝑟

2
+

𝑎Pe𝑟𝑟𝑗𝑢𝑖,𝑗
2Δ𝑥

] 𝜃𝑖,𝑗

+ [

𝑟𝑗 + 0.5Δ𝑟

Δ𝑟

2
−

𝑎Pe𝑟𝑟𝑗V𝑖,𝑗
4Δ𝑟

] 𝜃𝑖,𝑗+1

= −(

𝑎Pe𝑟𝑟𝑗𝑢𝑖,𝑗
2Δ𝑥

)𝜃𝑖−1,𝑗.

(48)

The pair (𝑖, 𝑗) represents the location of the discretized point
in the numerical grid of the fluid domain. The number 𝑛
represents the total number of 𝑗-nodes along each 𝑖-section.
The tube inner surface is located in the numerical grid at
(𝑖, 𝑗 = 𝑛) while the center of the tube is located in the
numerical grid at (𝑖, 𝑗 = 1). The resulting 𝑛 − 1 (𝑛 = 401)
tridiagonal systemof algebraic equations obtained by (48) at a
given 𝑖-section was solved usingThomas algorithm [22]. The
previous procedure step was repeated for the consecutive 𝑖-
values until 𝑖 reached the value 𝑚 (𝑚 = 2001) at which 𝑥 =

1. Numerical investigations were performed using different
mesh sizes to assess and ascertain grid-size independent
results. Furthermore, doubling the values of𝑚 and 𝑛 resulted
in less than 0.4% error in the calculated parameters for
moderate 𝑎Pe𝑟 values.

The results of the present work are shown in Figures 2–
14. Those obtained using the described numerical method
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V𝑜,𝑝.

0.60

0.74

0.88

1.02

1.16

1.30

1.44

0.00

1.15

2.30

3.45

4.60

5.75

6.90

0.00 0.10 0.20 0.30 0.40 0.50

�w = �o

Fully developed flow condition

aPer = 1, 2, 4, 8, 16, 32, 50

𝜆
fd

𝜆fd

𝜂
s,

fd

𝜂s,fd

�o

Figure 4: Effects of V𝑜 on the first and second performance indica-
tors under fully developed flow condition.

are shown in Figures 5–14. The numerical results for the case
with 𝑎Pe𝑟 = 1 shown in Figures 4–8 were compared with
the analytical solution utilizing (17), (24), (26), (27), (38), and
(40). The numerical results match well with the analytical
solutions since the case with 𝑎Pe𝑟 = 1 results in fully
developed flow condition at the tube exit. Also, it is shown
from Figure 3 that the fully developed Nusselt number when
𝑎Pe𝑟V𝑤 = 10 is equal to Nufd = 10.725. This quantity can
be shown from Figure 9 of Raithby [11] work to be equal to
Nufd = 10.83 when 𝑎Re𝑟V𝑤 → 0. The relative error between
these values is 0.98% which is very small. These validations
increased the confident levels in the obtained results.

4. Discussion of the Results

4.1. The System Thermal Performance for Uniformly Dis-
tributed Suction Flow. As suction velocity V𝑤 increases, the
outlet mean axial velocity 𝑢𝑚(𝑥 = 𝐿) decreases causing
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Figure 12: Effects of 𝑎Pe𝑟 on performance indicators 𝜂𝑠 for various
𝐶 values for Case II.

the axial convection which is proportional to 𝑎Pe𝑟𝑢avg𝑑𝜃𝑚/𝑥
to decrease. This may cause an increase in the outlet mean
bulk temperature 𝑇𝑚(𝑥 = 𝐿) as shown in Figure 2 for
small 𝑎Pe𝑟 values, 𝑎Pe𝑟 ≤ 4. When 𝑎Pe𝑟 ≥ 8, the trans-
verse convection becomes significant as it is proportional
to 2𝑎Pe𝑟V𝑤(𝜃𝑊 − 𝜃𝑚). The latter expression is equivalent to
4𝑎Pe𝑟V𝑤/Nu. This expression increases as 𝑎Pe𝑟V𝑜 increases.
This increase causes significant reduction in the temperature
boundary layer thicknesswhich causes reduction in the outlet
mean bulk temperature as shown in Figure 2. The sum of the
axial and transverse convection is constant which is equal
to the total convection heat transfer rate given by 𝑞conv =

𝑞

󸀠󸀠

𝑠
𝜋𝐷𝐿. When V𝑜 approaches V𝑜 = 0.5, the axial advection

which is proportional to 𝑢avg approaches zero at the tube
outlet. This causes 𝑇𝑚(𝑥 = 𝐿) to increase apparently as V𝑜
approaches V𝑜 = 0.5 asymptotically as can be seen from
Figure 2.
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The Nusselt number for perfect fluid slip at the solid
boundary (36) case is larger than that for the no-slip condi-
tion case (24) as shown in Figure 3; that is, Nu𝑠 > Nu. This
indicates that the tube excess temperature at the boundary for
the perfect fluid slip condition is smaller than that for the no-
slip condition case. That excess temperature is proportional
to 𝜃𝑊 − 𝜃𝑚. Consequently, the transverse convection due to
fluid slip is smaller than that due to no-slip condition as this
convection is proportional to both 𝑎Pe𝑟V𝑤 and 𝜃𝑊 − 𝜃𝑚. As a
result, the axial convection due to fluid slip condition is larger
than that due to no-slip condition as the total convection
heat transfer rate is constant. Therefore, 𝑇𝑚(𝑥 = 𝐿) for the
fluid slip condition is always larger than that for the no-slip
condition as shown in Figure 2. It is shown from Figure 3 that
the asymptotic value of Nufd is equal to Nufd = 𝑎Pe𝑟V𝑤. This
finding is shown in the works of Kinney [9] and Raithby [11].

Figure 4 shows that the first heat transfer performance
indicator 𝜆fd is larger than one when 0 < V𝑜 < V𝑜,𝑝,
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where the variation of V𝑜,𝑝 with 𝑎Pe𝑟 is shown in Figure 3
and given by (46). It can be shown from Figure 3 that when
𝑎Pe𝑟 ≥ 9.78, V𝑜,𝑝 ≥ 0.495. It should be mentioned here
that having 𝜆fd > 1 indicates that the heat transfer to the
permeable tube exposed to suction flow results in having
lower tube outlet temperature than that for the impermeable
tube. Consequently, more thermal energy can be transferred
from the permeable tube to the fluid in order to raise its
outlet temperature to reach that of the impermeable tube.
Furthermore, Figure 4 shows that the second heat transfer
performance indicator 𝜂𝑠,fd becomes above one when V𝑜 >

V𝑜,𝑒 = 0.31606. Having 𝜂𝑠,fd > 1 indicates that the
permeable tube subjected to no-slip condition has smaller
outlet boundary temperature than that for the permeable tube
subjected to perfect fluid slip at the solid boundary. This is
not the case for impermeable tubes as 𝜂𝑠,fd < 1 when V𝑜 = 0

as shown in Figure 4.

4.2. The SystemThermal Performance for Linearly Distributed
Suction Flow. When 𝐵 = 0, the suction flow increases
linearly from V𝑤 = 0 at the inlet (𝑥 = 0) to maximum
value of V𝑤 = 2V𝑜 at the tube outlet (𝑥 = 1). For this
case, the thermal entry region effect is maximum as 𝑢avg
is maximum at inlet. In this region, the axial convection
coefficient is substantial as it is the coldest fluid region inside
the tube. The thermal entry region influences the flow by
causing reductions in the boundary excess temperatures near
the inlet. Also, the transverse convection is maximum at the
tube outlet when 𝐵 = 0 as the suction velocity is maximum
there. This decreases the boundary excess temperatures near
the tube outlet. As 𝐵 increases, 𝑢avg close to the tube inlet
decreases due to the increase in V𝑤 and V𝑤 close to the
tube outlet decreases. Accordingly, both thermal entry region
effect and transverse convection at the tube outlet decrease as
𝐵 increases. Both effects tend to increase both the boundary
excess temperature and outlet mean bulk temperature. As a
result, 𝜃𝑚(𝑥 = 1) increases and 𝜆 decreases as 𝐵 increases as
shown in Figure 5.

For large 𝑎Pe𝑟 values, both thermal entry region effect
and the transverse convection at the tube outlet are larger
than those for smaller 𝑎Pe𝑟 values. Accordingly, 𝜆 values
when 𝑎Pe𝑟 = 10 are larger than those when 𝑎Pe𝑟 = 1

as shown in Figure 5. When 𝑎Pe𝑟 = 10 and 𝐵 = 0, it is
noticed that 𝜆 increases as V𝑜 increases. This is because the
outlet mean bulk temperature decreases as V𝑜 increases for
large 𝑎Pe𝑟 values as seen from Figure 2. Figure 5 shows that
𝜆 values for V𝑜 = 1/3 plot are larger than those for V𝑜 = 0.49

plot when 𝐵 > 0.46. This indicates that the convection due
to thermal entrance region effect as compared to transverse
convection increases as V𝑜 decreases when 𝐵 > 0.46 and
𝑎Pe𝑟 = 10. When 𝑎Pe𝑟 = 10, 𝜂𝑠 is noticed from Figure 6
to decrease as 𝐵 increases. It is because that both thermal
entry region effect and V𝑤 at the tube outlet decrease as 𝐵
increases. The former effect is due to the increase in V𝑤 near
the tube inlet as 𝐵 increases. Both effects tend to increase the
excess of Nu𝑠 above Nu. Accordingly, transverse convection
due to fluid slip condition decreases due to the decrease in
the boundary excess temperature. Consequently, the axial
convection due to the fluid slip condition is increased more

than that due to the no-slip condition. This causes 𝜃𝑠,𝑚 to
increase as compared to 𝜃𝑚.Thus, 𝜂𝑠 decreases as 𝐵 increases.

Figure 7 shows that 𝜆 increases as 𝑎Pe𝑟 increases. At small
𝑎Pe𝑟 values, the transverse convection is negligible, and Nu𝑠
approaches Nu for large 𝑎Pe𝑟 values. These lead to have 𝜂𝑠
approaching one either as 𝑎Pe𝑟 decreases towards 𝑎Pe𝑟 =

0 or as 𝑎Pe𝑟 increases above 𝑎Pe𝑟 = 100. These trends
can be seen from Figure 8. For moderate 𝑎Pe𝑟 values, the
increase in 𝑎Pe𝑟 not only causes an increase in the transverse
convection but it also results in reducing the boundary excess
temperature due to the increases in Nu. This reduction is
more distinct for the case of the perfect fluid slip condition as
Nu𝑠 > Nu. The combined aforementioned effects can result
in reduction of transverse convection as 𝑎Pe𝑟 increases for the
perfect fluid slip case. It is because the transverse convection
is proportional to 𝑎Pe𝑟V𝑤(𝜃𝑊 − 𝜃𝑚) as mentioned before.
Accordingly, 𝜂𝑠 may have one local maximum at a specific
𝑎Pe𝑟 value as clearly shown in Figure 8 for V𝑜 = 0.49 plots.

4.3. The System Thermal Performance for Exponentially Dis-
tributed Suction Flow. For the upper 𝐶 value (𝐶 = 2),
the thermal entry region effect is maximum since 𝑢avg is
maximum at tube inlet because V𝑤 is minimum there. Also,
the transverse convection at the tube outlet is maximum
as V𝑤 is maximum there. These effects tend to decrease
the boundary excess temperatures at the tube outlet. As 𝐶
decreases, 𝑢avg close to the tube inlet decreases due to the
increase in V𝑤 and V𝑤 close to the tube outlet decreases.
Accordingly, both thermal entry region effect and trans-
verse convection at the tube outlet decrease as 𝐶 decreases.
Both effects increase both the boundary excess temperature
and outlet mean bulk temperature. As a result, the 𝜃𝑚(𝑥 =

1) increases and 𝜆 decreases as 𝐶 decreases as shown in
Figure 9.

For large 𝑎Pe𝑟 values, both thermal entry region effect
and outlet transverse convection are larger than those for
smaller 𝑎Pe𝑟 values. Accordingly, 𝜆 values when 𝑎Pe𝑟 = 10

are larger than those when 𝑎Pe𝑟 = 1 as shown in Figure 9.
When 𝑎Pe𝑟 = 10 and 𝐶 = 2, it is noticed that 𝜆 increases as
V𝑜 increases. It is because the outlet mean bulk temperature
decreases as V𝑜 increases for large 𝑎Pe𝑟 values as shown from
Figure 2. Figure 9 shows that 𝜆 values for V𝑜 = 1/3 plot are
larger than those for V𝑜 = 0.49 plot when 𝐶 < 0.6. This
indicates that the flow gets more dominated by the thermal
entry region effect than by the transverse convection as V𝑜
decreases when 𝐶 < 0.6 and 𝑎Pe𝑟 = 10. Figure 11 shows
that 𝜆 increases as 𝑎Pe𝑟 increases. When 𝑎Pe𝑟 = 10, 𝜂𝑠
is noticed from Figure 10 to decrease as 𝐶 decreases. It is
because both thermal entry region effect and V𝑤 at the outlet
decrease as 𝐶 decreases. As indicated previously, both effects
tend to increase the excess of Nu𝑠 above Nu. Accordingly, the
transverse convection due to fluid slip condition decreases
due to the decrease in the boundary excess temperature.
Consequently, the axial convection due to fluid slip condition
is increased more than that due to no-slip condition causing
𝜃𝑠,𝑚 to increase. Thus, 𝜂𝑠 decreases as 𝐶 decreases. Figure 12
shows that for moderate 𝑎Pe𝑟 values 𝜂𝑠 may have one local
maximumat a specific 𝑎Pe𝑟 value.The physical interpretation
for this phenomenon is discussed in Section 4.2.
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4.4. The System Maximum Thermal Performance Indicator.
Figure 13 shows that the maximum first performance indica-
tor 𝜆max increases as 𝑎Pe𝑟 increases. Also, the critical suction
parameter V𝑜,𝑐 that produces 𝜆max is seen from this figure to
increase as 𝑎Pe𝑟 increases. Moreover, Figure 13 demonstrates
that 𝜆max for the exponential suction flow distribution is
always larger than that for the linear suction flowdistribution.
Two interesting findings can be withdrawn from Figure 14.
The first one is that, when 𝑎Pe𝑟 = 11, both suction flow dis-
tributions will have their maximum 𝜂𝑠,𝐶 values, where 𝜂𝑠,𝐶 is
the value of 𝜂𝑠 at the conditions that produce𝜆max.The second
one is that, when 𝑎Pe𝑟 = 4, both suction flow distributions
will have 𝜂𝑠 = 𝜂𝑠,𝐶 = 1. It is shown from Figure 13 that
the maximum enhancement ratios are 17.62-fold and 14.67-
fold above those for impermeable tubes for the exponential
and linear suction velocity distributions, respectively. These
values are obtained at 𝑎Pe𝑟 = 100. Finally, the phenomenon
that there is proper flux distribution that maximizes the heat
transfer enhancement indicator agrees with the findings of
Khaled [23] andWang et al. [24].The flux in the present work
is considered to be the mass flux of the suction flow while it
is the heat flux in Khaled’s [23] work and it is a localized mass
flux close to the boundary in Wang et al.’s [24] work.

5. Conclusions

Flow and heat transfer in permeable tubes subjected to
transverse suction flow were analyzed in this work. The
continuity, momentum, and energy equations of the internal
fluid were solved analytically and numerically.The numerical
and the analytical results based on negligible combined entry
regions were well matched. Two different suction velocity
distributions were considered. They are the linear and expo-
nential distributions. The influence of the average suction
velocity, the suction velocity profile, and the Peclet number
on the heat transfer enhancement indicators was studied.
It was found that heat transfer enhancement over that in
impermeable tubes is only attainable if large Peclet numbers
are encountered. This enhancement is further increased
as suction velocities towards the tube outlet increase and
as those towards the tube inlet decrease simultaneously.
The enhancement mechanisms were identified and they are
expanding the entry regions, increasing the transverse advec-
tion, and increasing the downstream excess temperatures
under same transverse advection. The maximum reported
enhancement ratios in this work are 17.62-fold and 14.67-fold
above those for impermeable tubes for the exponential and
linear suction velocity distributions, respectively.The average
suction velocity that maximizes the heat transfer enhance-
ment indicator increases as the Peclet number increases
until it reaches asymptotically its uppermost value at large
Peclet numbers. Finally, this work reveals that significant heat
transfer enhancement is attainable when the suction flow
inside the permeable tube is managed properly.

Nomenclature
𝑎: Aspect ratio (𝑎 = 𝐷/[2𝐿])
𝐵: Controlling parameter for suction flow

with linear profile; (26)

𝐶: Controlling parameter for suction flow
with exponential profile; (27)

𝑐𝑝: Fluid specific heat (J/kgK)
𝐷: Tube inner diameter (m)
ℎ: Convection heat transfer coefficient

(W/m2K)
𝑘: Fluid thermal conductivity (W/m⋅K)
𝐿: Tube length (m)
𝑚̇: Mass flow rate at given section; (15)
𝑚̇𝑜: Mass flow rate at inlet section; (kg/s)
Nu: Nusselt number (Nu = ℎ𝐷/𝑘)
Pe𝑟: Reference Peclet number

(Pe𝑟 = 𝜌𝑐𝑝𝑢𝑜𝐷/𝑘)
Pr: Fluid Prandtl number
𝑝1, 𝑝2: (Inlet, outlet) fluid pressures (N/m2)
𝑝: Dimensionless fluid pressure (N/m2)
𝑞

󸀠󸀠

𝑠
: Constant heat flux applied at the tube

inner boundary (W/m2)
Re𝑟: Reference Reynolds number

(Re𝑟 = 𝜌𝑢𝑜𝐷/𝜇)
𝑟, 𝑟: (Dimensional, dimensionless) radial

distance (𝑟 = 2𝑟/𝐷)
𝑇: Fluid temperature field (K)
𝑇1: Inlet fluid temperature (K)
𝑇𝑚: Fluid mean bulk temperature field (K)
𝑇𝑊: Tube inner boundary temperature (K)
𝑢, 𝑢: (Dimensional, dimensionless) axial

velocity field (𝑢 = 𝑢/𝑢𝑜)
𝑢𝑠: Axial velocity field under perfect slip

condition (m/s)
𝑢𝑠: Dimensionless axial velocity field under

perfect slip condition (𝑢𝑠 = 𝑢𝑠/𝑢𝑜)
𝑢𝑜: Reference axial velocity; (6c)
V, V: (Dimensional, dimensionless) transverse

velocity (V = V/𝑎𝑢𝑜)
V𝑤, V𝑤: (Dimensional, dimensionless) local

suction velocity (m/s)
V𝑜, V𝑜: (Dimensional, dimensionless) average

suction velocity (m/s)
𝑥, 𝑥: Dimensional and dimensionless axial

distances (𝑥 = 𝑥/𝐿).

Greek Symbols

𝜂𝑠: Second heat transfer enhancement
indicator; (40)

𝜆: First heat transfer enhancement
indicator; (38)

𝜇: Fluid dynamic viscosity (Ns/m2)
𝜃: Dimensionless temperature field; (7b)
𝜃𝑠: Dimensionless temperature field

under perfect slip condition; (34)
𝜃𝑚: Dimensionless mean bulk

temperature; (18)
𝜃𝑊: Tube dimensionless inner boundary

temperature; (17)
𝜌: Fluid density (kg/m3).
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Subscripts

avg: Average value of the quantity
fd: Fully developed value of the quantity
𝑠: Quantity under perfect slip flow at

the solid boundary.
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