
Research Article
Sufficient and Necessary Condition to Decide Compatibility for
a Class of Interorganizational Workflow Nets

Guanjun Liu1,2 and Lijing Chen3

1Department of Computer Science, Tongji University, Shanghai 201804, China
2Department of Computer Science, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
3Department of Software Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Correspondence should be addressed to Guanjun Liu; liugj1116@163.com

Received 5 June 2014; Revised 23 August 2014; Accepted 26 August 2014

Academic Editor: Xingsheng Gu

Copyright © 2015 G. Liu and L. Chen. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

InterorganizationalWorkflow nets (IWF-nets) can well model many concurrent systems such as web service composition, in which
multiple processes interact via sending/receiving messages. Compatibility of IWF-nets is a crucial criterion for the correctness
of these systems. It guarantees that a system has no deadlock, livelock, or dead tasks. In our previous work we proved that the
compatibility problem is PSPACE-complete for safe IWF-nets. This paper defines a subclass of IWF-nets that can model many
cases about interactions. Necessary and sufficient condition is presented to decide their compatibility, and it depends on the net
structures only. Finally, an algorithm is developed based on the condition.

1. Introduction

Petri nets are widely used to model concurrent/distributed
systems due to both the intuitive descriptions for these
systems and the diversified analysis methods. Researchers
usually define different Petri net classes for different systems
with different features.

For example, in flexible manufacturing systems [1–7],
every product corresponds to one or several manufacturing
processes. Every process uses a group of resources (like
machines or robots) by a fixed order. These processes are
not required to interact or collaborate with each other but
have to share common resources. S3PRs [8–10] are famous
in modeling these systems. Particularly, researchers utilize
structures of Petri nets, such as siphons, resource-transition
circuits, and structurally circular waits, to decide liveness or
deal with deadlock for these systems [11–14].

Another important application of Petri nets is to model
and analyze such concurrent systems as web services, in
which multiple parallel processes interact/collaborate via
sending/receiving messages. Interorganizational workflow
nets (IWF-nets for short) [15–19] are famous in these Petri
net classes to model these concurrent systems. They can well

characterize the system features, especially on synchronous
and/or asynchronous communication. This paper focuses on
IWF-nets.

Compatibility [20, 21] is a crucial property of IWF-nets.
It implies that the target state can always be reached, no
deadlock or livelock takes place, and each event/activity
has a (potential) right to execute. If the target state is not
reached for a given run, the designed system possibly have
problems (e.g., deadlocks). If an event/activity of the designed
system is not triggered for any run, then the event/activity
should not have been defined. Notice that Section 2 will show
that compatibility of IWF-nets is identical with soundness
of workflow nets (WF-nets) [22] since an IWF-net can be
translated into an equivalentWF-net. IWF-nets mainly focus
on interactions/collaborations among different processes. In
the next text, terminologies of soundness and compatibility
are used without distinction.

van der Aalst et al. have proven that the soundness
problem is decidable for general WF-nets [17, 22, 23]. It was
also proven that the soundness problem is PSPACE-complete
for bounded WF-nets [24]. Fortunately, van der Aalst et
al. [22, 25] gave a polynomial-time algorithm to solve the
soundness problem for free-choice WF-nets (FCWF-nets for
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short), which is based on the rank theory proposed for well-
formed free-choice nets by Desel and Esparza [26]. FCWF-
nets can well model the structures of business processes
such as AND-split, AND-join, OR-split, and OR-join [22,
25, 27]. However, some concurrent systems like web services
composite have to consider the interaction among different
components/processes [15, 20, 21, 28–30], which makes the
related models more and more complex so that FCWF-
nets cannot model them in many cases. So far, only van
der Aalst proposed net-structure-based conditions to decide
soundness for a few subclasses ofWF-nets such as free-choice
ones and well-structured ones [25]. There is not too much
work on the soundness decision for IWF-nets, especially on
the basis of the net structures.

Additionally, many design patterns were proposed in
order to standardize the system design and reduce the
occurrence of some bad things (e.g., deadlocks) [16, 31]. For
example, van der Aalst et al. defined some service interaction
patterns that should be observed when a complex service is
composed of some simpler services [16]. They also proposed
some antipatterns that should be avoided because these
patterns possibly introduce some errors like deadlock [16].
These patterns can reduce but hardly eradicate these bad
things. In general, one still needs to verify soundness after a
WF-net is built by observing these patterns.

Therefore, how to decide compatibility for IWF-nets is
interesting and important.

This paper defines a subclass of IWF-nets called SIWF-
nets. A necessary and sufficient condition is proposed to
decide compatibility. The condition is based on the net
structures only. Furthermore, an algorithm is developed on
the basis of this condition. SIWF-nets can model many cases
of interactions. To the best of our knowledge, it is the first
time to propose a net-structure-based condition to solve the
compatibility problem for IWF-nets. Therefore, the method
proposed in this paper opens up a new way to explore the
net-structure-based conditions of deciding the compatibility
for more complex subclasses of IWF-nets.

The remainder of this paper is organized as follows.
Section 2 reviews some notions and notations. Section 3
defines SIWF-nets. Section 4 proposes a net-structure-based
condition to decide compatibility, and Section 5 develops a
decision algorithm. Section 6 concludes this paper.

2. Basic Notions

For readability, in this section Petri nets and WF-nets are
recalled that are from [22, 32, 33].

2.1. Petri Nets. First, let N = {0, 1, 2, . . .} be the set of
nonnegative integers. Given 𝑚 ∈ N and 𝑚 > 0, denote
N
𝑚
= {1, 2, . . . , 𝑚} by the set of integers from 1 to 𝑚. Denote

N
0
= {0}.

Definition 1 (net). A net is a 3-tuple𝑁 = (𝑃, 𝑇, 𝐹), where 𝑃 is
a finite set of places, 𝑇 is a finite set of transitions, 𝐹 ⊆ (𝑃 ×

𝑇) ∪ (𝑇 × 𝑃) is a set of arcs, and 𝑃 ∩ 𝑇 = 0.

A netmay be seen as a directed bipartite graph. Generally,
a transition is represented by a rectangle and a place by a
circle in a net graph. A path of a net is a nonempty sequence
𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑛
of nodes such that for all 𝑗 ∈ N

𝑛−1
: (𝑥
𝑛
, 𝑥
𝑛+1

) ∈ 𝐹.
A path 𝑥

1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑛
is elementary if and only if for any two

nodes 𝑥
𝑗
and 𝑥

𝑘
of the path, 𝑗 ̸= 𝑘 ⇒ 𝑥

𝑗
̸= 𝑥
𝑘
. A path

𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑛
is a circuit if and only if no node occurs more

than once in it and (𝑥
𝑛
, 𝑥
1
) ∈ 𝐹. A net is acyclic if and only

if it has no circuits. A net is strongly connected if and only
if for any two nodes 𝑥 and 𝑦 there is a path from 𝑥 to 𝑦.

A transition 𝑡 is called an input transition of a place 𝑝

and 𝑝 is called an output place of a transition 𝑡 if and only
if (𝑡, 𝑝) ∈ 𝐹. Input place and output transition can be defined
accordingly. Given a net𝑁 = (𝑃, 𝑇, 𝐹) and a node 𝑥 ∈ 𝑃 ∪ 𝑇,
∙
𝑥 = {𝑦 ∈ 𝑃 ∪ 𝑇 | (𝑦, 𝑥) ∈ 𝐹} and 𝑥

∙
= {𝑦 ∈ 𝑃 ∪ 𝑇 |

(𝑥, 𝑦) ∈ 𝐹} are called the preset and postset of 𝑥, respectively.
Two different transitions 𝑡

1
and 𝑡
2
are in conflict if and only if

∙
𝑡
1
∩

∙
𝑡
2

̸= 0.
𝑁


= (𝑃


, 𝑇


, 𝐹


) is a subnet of 𝑁 = (𝑃, 𝑇, 𝐹) if and only

if 𝑃 ⊆ 𝑃, 𝑇 ⊆ 𝑇, and 𝐹


= 𝐹 ∩ ((𝑇


× 𝑃


) ∪ (𝑃


× 𝑇


)). 𝑁

contains𝑁 if the latter is a subnet of the former.
A marking of 𝑁 = (𝑃, 𝑇, 𝐹) is a mapping 𝑀:𝑃 → N. A

place 𝑝 ∈ 𝑃 ismarked at𝑀 if and only if𝑀(𝑝) > 0.
Notice that amarkingmay be viewed as a |𝑃|-dimensional

nonnegative integer vector in which every element repre-
sents the number of tokens in corresponding place at this
marking. For example, 𝑀 = (1, 0, 6) over 𝑃 = {𝑝

1
, 𝑝
2
, 𝑝
3
}

represents that 𝑝
1
, 𝑝
2
, and 𝑝

3
have 1, 0, and 6 tokens at

𝑀, respectively. When the number of places is very large
and the distribution of tokens is sparse, the above two kinds
of presentation of a marking are relatively complex. For
convenience, 𝑀 is denoted as a multiset 𝑀 = ∑

𝑝∈𝑃
𝑀(𝑝) ⋅

𝑝 in this paper. For the above example, it is written
as𝑀 = 𝑝

1
+ 6𝑝
3
or𝑀 = {𝑝

1
, 6𝑝
3
}.

If for all 𝑝 ∈

∙
𝑡:𝑀(𝑝) > 0, then 𝑡 is said to be enabled at

𝑀, which is denoted as 𝑀[𝑡⟩. If ∃𝑝 ∈

∙
𝑡:𝑀(𝑝) = 0, then 𝑡 is

said to be disabled at 𝑀, which is denoted by ¬𝑀[𝑡⟩. Firing
an enabled transition 𝑡 produces a newmarking𝑀, which is
denoted by𝑀[𝑡⟩𝑀

, such that𝑀(𝑝) = 𝑀(𝑝)−1 if 𝑝 ∈

∙
𝑡\𝑡

∙;
𝑀


(𝑝) = 𝑀(𝑝)+1 if 𝑝 ∈ 𝑡

∙
\

∙
𝑡; and𝑀(𝑝) = 𝑀(𝑝) otherwise.

A marking𝑀
𝑘
is reachable from a marking𝑀 if and only

if there exists a transition sequence 𝜎 = 𝑡
1
𝑡
2
⋅ ⋅ ⋅ 𝑡
𝑘
such that

𝑀[𝑡
1
⟩𝑀
1
[𝑡
2
⟩ ⋅ ⋅ ⋅ ⟩𝑀

𝑘−1
[𝑡
𝑘
⟩𝑀
𝑘
. 𝑀[𝜎⟩𝑀

𝑘
represents that 𝑀

reaches 𝑀
𝑘
after firing sequence 𝜎. The set of all markings

reachable from 𝑀 in a net 𝑁 is denoted by 𝑅(𝑁,𝑀). Given
a transition sequence 𝜎, Ψ(𝜎) is denoted by the multiset of
transitions occurring in 𝜎. For an example of 𝜎 = 𝑡

1
𝑡
4
𝑡
2
𝑡
1
,

Ψ(𝜎) = {2𝑡
1
, 𝑡
2
, 𝑡
4
}.

A net𝑁with an initial marking 𝑀
0
is called a Petri net or

net system and denoted by (𝑁,𝑀
0
).

A Petri net (𝑁,𝑀
0
) = (𝑃, 𝑇, 𝐹,𝑀

0
) is called k-

bounded if and only if ∃𝑘 ∈ N, for all 𝑝 ∈ 𝑃, for
all 𝑀 ∈ 𝑅(𝑁,𝑀

0
):𝑀(𝑝) ≤ 𝑘. A Petri net is bounded

if and only if it is k-bounded for some integer 𝑘. A 1-
bounded Petri net is also called safe. A net 𝑁 is structurally
bounded if and only if (𝑁,𝑀

0
) is bounded for any initial

marking𝑀
0
.
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A transition 𝑡 is said to be dead at amarking𝑀 if and only
if for all𝑀 ∈ 𝑅(𝑁,𝑀):¬𝑀[𝑡⟩.

A transition 𝑡 is said to be live at a marking𝑀 if and only
if for each 𝑀


∈ 𝑅(𝑁,𝑀), 𝑡 is not dead at 𝑀. A Petri net

(𝑁,𝑀
0
) is live if and only if each transition of it is live at𝑀

0
.

A net 𝑁 is structurally live if and only if there is an initial
marking𝑀

0
such that (𝑁,𝑀

0
) is live.

A net𝑁 = (𝑃, 𝑇, 𝐹) is amarked graph if and only if for all
𝑝 ∈ 𝑃: |∙𝑝| = |𝑝

∙
| = 1.

A net𝑁 = (𝑃, 𝑇, 𝐹) is a free-choice net if and only if for all
𝑝
1
, 𝑝
2
∈ 𝑃: (𝑝∙

1
∩ 𝑝

∙

2
̸= 0 ∧ 𝑝

1
̸= 𝑝
2
) ⇒ |𝑝

∙

1
| = |𝑝

∙

2
| = 1.

2.2. WF-Nets

Definition 2 (WF-net). A net𝑁 = (𝑃, 𝑇, 𝐹) is a WF-net if

(1) 𝑁 has two special places 𝑖 and 𝑜 where 𝑖 ∈ 𝑃 is called
source place if ∙𝑖 = 0 and 𝑜 ∈ 𝑃 is called sink place if
𝑜

∙
= 0;

(2) 𝑁𝐸 = (𝑃, 𝑇 ∪ {𝑏}, 𝐹 ∪ {(𝑏, 𝑖), (𝑜, 𝑏)}) is strongly
connected where 𝑏 ∉ 𝑇.

In Definition 2,𝑁𝐸 is called the trivial extension of 𝑁.

Definition 3 (soundness of WF-net). Let 𝑁 = (𝑃, 𝑇, 𝐹) be a
WF-net,𝑀

0
= 𝑖, and𝑀

𝑑
= 𝑜.𝑁 is sound if

(1) for all𝑀 ∈ 𝑅(𝑁,𝑀
0
):𝑀
𝑑
∈ 𝑅(𝑁,𝑀);

(2) for all𝑀 ∈ 𝑅(𝑁,𝑀
0
):𝑀 ≥ 𝑀

𝑑
⇒ 𝑀 = 𝑀

𝑑
;

(3) for all 𝑡 ∈ 𝑇, ∃𝑀 ∈ 𝑅(𝑁,𝑀
0
):𝑀[𝑡⟩.

This definition was given in the early work of van der
Aalst [34], and later he showed that the second requirement
is implied by the first one [22]. Generally, 𝑀

0
= 𝑖 and

𝑀
𝑑

= 𝑜 are called initial and target markings of a WF-
net, respectively. Additionally, a safe (resp., bounded)WF-net
means that the WF-net is safe (resp., bounded) at its initial
marking. van der Aalst also proved that the soundness of a
WF-net is equal to the liveness and boundedness of its trivial
extension at the initial marking [25].

A subclass of nets called inte-organizational workflow
nets (IWF-nets for short) [15] are often used to model the
composition of web services, interorganizational business
processes, or some other concurrent systems in which mul-
tiple processes interact via sending/receiving messages. An
IWF-net describes the synchronous and/or asynchronous
communication among multiple partners (each partner is
modeled by a basicWF-net) [15, 35].The following definition
considers the asynchronous communication only.

Definition 4 (IWF-net). A net 𝑁 = (𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑚
, 𝑃
𝐶
, 𝐹
𝐶
)

is an IWF-net if

(1) 𝑁
1

= (𝑃
1
, 𝑇
1
, 𝐹
1
), . . ., and 𝑁

𝑚
= (𝑃
𝑚
, 𝑇
𝑚
, 𝐹
𝑚
) are

pairwise disjoint WF-nets where 𝑚 ≥ 2 and these
WF-nets are called basic;

(2) 𝑃
𝐶
is a finite set of channel places such that𝑃

𝐶
∩𝑃
𝑗
= 0

for each 𝑗 ∈ N
𝑚
;

(3) 𝐹
𝐶
⊆ (𝑃
𝐶
×⋃

𝑚

𝑗=1
𝑇
𝑗
) ∪ (⋃

𝑚

𝑗=1
𝑇
𝑗
×𝑃
𝐶
) is a set of arcs by

which channel places connect with the 𝑚 basic WF-
nets;

(4) for all 𝑐 ∈ 𝑃
𝐶
, ∃𝑗, 𝑘 ∈ N

𝑚
: 𝑗 ̸= 𝑘 ∧

∙
𝑐 ⊆ 𝑇

𝑗
∧ 𝑐

∙
⊆

𝑇
𝑘
∧

∙
𝑐 ̸= 0 ∧ 𝑐

∙
̸= 0.

Example 5. Figures 1(a) and 1(b) are two IWF-nets whose
basic WF-nets (see Figures 1(c) and 1(d)) are the same but
interactions are different.

From the fourth item of Definition 4 it is known that
each channel place is used only by two fixed basic WF-nets.
In other words, two different basic WF-nets cannot send
messages into the same channel place; similarly, two different
basic WF-nets cannot take messages from the same channel
place either. Certainly, two different basic WF-nets may use
multiple channel places to communicate.

Notice that Definition 1 uses a 3-tuple to represent a net
while Definition 4 uses an (𝑚+2)-tuple to represent an IWF-
net. In fact, if an IWF-net is also represented by a 3-tuple
(𝑃, 𝑇, 𝐹), then 𝑃 = 𝑃

1
∪ ⋅ ⋅ ⋅ ∪ 𝑃

𝑚
∪ 𝑃
𝐶
, 𝑇 = 𝑇

1
∪ ⋅ ⋅ ⋅ ∪ 𝑇

𝑚
,

and 𝐹 = 𝐹
1
∪ ⋅ ⋅ ⋅ ∪ 𝐹

𝑚
∪ 𝐹
𝐶
. For convenience, an IWF-net is

represented by a (𝑚+2)-tuple. When no confusion is caused,
𝑇 is used to represent the set of all transitions of an IWF-net;
that is, 𝑇 = 𝑇

1
∪ ⋅ ⋅ ⋅ ∪ 𝑇

𝑚
. For all 𝑗 ∈ N

𝑚
, denote 𝑖

𝑗
and 𝑜
𝑗
by

the source and sink places of𝑁
𝑗
, respectively.

Definition 6 (compatibility of IWF-net). Let 𝑁 =

(𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑚
, 𝑃
𝐶
, 𝐹
𝐶
) be an IWF-net,𝑀

0
= 𝑖
1
+𝑖
2
+⋅ ⋅ ⋅+𝑖

𝑚
,

and𝑀
𝑑
= 𝑜
1
+ 𝑜
2
+ ⋅ ⋅ ⋅ + 𝑜

𝑚
.𝑁 is compatible if

(1) for all𝑀 ∈ 𝑅(𝑁,𝑀
0
):𝑀
𝑑
∈ 𝑅(𝑁,𝑀);

(2) for all𝑀 ∈ 𝑅(𝑁,𝑀
0
):𝑀 ≥ 𝑀

𝑑
⇒ 𝑀 = 𝑀

𝑑
;

(3) for all 𝑡 ∈ 𝑇, ∃𝑀 ∈ 𝑅(𝑁,𝑀
0
):𝑀[𝑡⟩.

For instance, Figure 1(a) is compatible but Figure 1(b) is
not. In fact, if two special places 𝑖 and 𝑜 and two special
transitions 𝑡

𝑖
and 𝑡
𝑜
are added to an IWF-net such that ∙𝑡

𝑖
=

{𝑖} ∧ 𝑡

∙

𝑖
= {𝑖
1
, . . . , 𝑖

𝑚
} ∧

∙
𝑡
𝑜
= {𝑜
1
, . . . , 𝑜

𝑚
} ∧ 𝑡

∙

𝑜
= {𝑜}, then this

new net is a WF-net by Definition 2. Particularly, it is easy to
prove that the original IWF-net is compatible if and only if the
newWF-net is sound.Therefore, an IWF-net may be thought
of as a specialWF-net and the definitions of compatibility and
soundness are equal. In this paper, an IWF-net is sometimes
called a WF-net directly.

For convenience, the trivial extension of an IWF-net is
that a transition is added to the IWF-net such that the outputs
of the transition are exactly all source places and the inputs
of the transition are exactly all sink places. 𝑀

0
and 𝑀

𝑑
in

Definition 6 are called the initial and target markings of 𝑁,
respectively.

If a WF-net is also a free-choice net, then it is called free-
choice WF-net (FCWF-net for short).

3. SIWF-Nets

This section defines a subclass of IWF-nets named simple
interorganizational workflow nets (SIWF-nets for short).
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i1 i2

a1,1 a2,1 a2,3

a1,2 a2,2 a2,4

c1

c2

c3

c4

c5t1,3 t1,5 t2,6

o1
o2

t1,2

t1,1 t2,1

a1,3

t2,4

t1,4 t2,2 t2,3
t2,5

(a)
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t1,5 t2,6

a1,3
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t2,2 t2,3 t2,5

o2

(d)

Figure 1: (a) A compatible SIWF-net; (b) an incompatible SIWF-net; and ((c)-(d)) two sound acyclic FCWF-nets.

Definition 7 (SIWF-net). 𝑁 = (𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑚
, 𝑃
𝐶
, 𝐹
𝐶
) is a

simple IWF-net (SIWF-net) if
(1) 𝑁 is an acyclic IWF-net;
(2) for all 𝑗 ∈ N

𝑚
:𝑁
𝑗
is a sound FCWF-net;

(3) for all 𝑐 ∈ 𝑃
𝐶
: |∙𝑐| = |𝑐

∙
| = 1.

In fact, Figures 1(a) and 1(b) are two SIWF-nets that have
the same basic FCWF-nets as shown in Figures 1(c) and 1(d).

Obviously, three constraints simplify an IWF-net.
First, it is acyclic. As we all know, if an IWF-net has a

siphon that does not contain any source place, then the IWF-
net is unsound (because all transitions associated with the
siphon are dead at the initial marking) and this siphon must
contain a circuit. Therefore, an SIWF-net is required to be
acyclic, which guarantees that each siphon includes at least
one source place.

Second, each basic WF-net is sound and free-choice. For
an IWF-net combined by multiple basic WF-nets via a group
of channel places, what this paper pays more attention to is
the interaction among these basic WF-nets. Therefore, we
suppose that these basic WF-nets are sound. In addition,
FCWF-nets can not only model many basic structures of
workflow, such as AND-split, AND-join, OR-split, and OR-
join, but also own a nice property (i.e., their soundness is
decidable in polynomial time [25]). Since an SIWF-net is

acyclic, each basic FCWF-net of it is also acyclic. Therefore,
SIWF-net cannot model an iterative structure.

Finally, Definition 7 considers the most simple case of
using a message channel; that is, for a fixed channel place,
a message is sent into it by firing a unique transition and
the message is taken away from it by firing another unique
transition. Certainly, a transition may use multiple channel
places.

It is worthy to note that this paper does not require an
SIWF-net to observe the patterns proposed in [16] although
these patterns can make an SIWF-net much simpler.

Although SIWF-nets seem simple, they can model many
interaction cases except for iterative structure. Indeed, iter-
ative structure is sometimes frustrating. Some scholars
consider limited iterations so that they can be unfolded
into iteration-free structures [8]. Therefore, it is valuable to
explore efficient decision methods for SIWF-nets. Next, a
novel one is given.

4. Sufficient and Necessary Condition
for Compatibility of SIWF-Nets

This section gives a net-structure-based condition to decide
compatibility for SIWF-nets. First, some concepts related to
the net structures are defined.
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Figure 2: ((a)-(b)) All 𝑇-components of the FCWF-net in Figure 1(c); and ((c)–(f)) all 𝑇-components of the FCWF-net in Figure 1(d).

Definition 8 (𝑇-component of FCWF-net). Let𝑁 = (𝑃, 𝑇, 𝐹)

be an acyclic FCWF-net.Denote 𝑖 ∈ 𝑃 and 𝑜 ∈ 𝑃 by the source
and sink places of𝑁, respectively. Then𝑁


= (𝑃


, 𝑇


, 𝐹


) is a

𝑇-component of𝑁 if𝑁 is a subnet of𝑁 such that

(1) 𝑃 = ∙𝑇 ∪ 𝑇

∙; that is, for all 𝑡 ∈ 𝑇

, the preset and
postset of 𝑡 in𝑁 are the same as the preset and postset
of it in𝑁, respectively;

(2) 𝑖 ∈ 𝑃


∧ 𝑜 ∈ 𝑃


∧ |𝑖

∙
∩ 𝑇


| = |

∙
𝑜 ∩ 𝑇


| = 1;

(3) for all 𝑝 ∈ 𝑃


\ {𝑖, 𝑜}: |𝑝∙ ∩ 𝑇


| = |

∙
𝑝
∩ 𝑇


| = 1.

Example 9. Figure 2 shows all 𝑇-components of the two
FCWF-nets in Figures 1(c) and 1(d).

Notice that because of for all 𝑡 ∈ 𝑇

: ∙𝑡 ∪ 𝑡

∙
⊆ 𝑃


∧

for all 𝑝 ∈ 𝑃

: |∙𝑝| = |𝑝

∙
| = 1, there always exists a path

in 𝑁

 from 𝑖 to 𝑥 for any node 𝑥 of 𝑁

. Therefore, if a
transition is added to a 𝑇-component such that its input is
exactly the sink place and its output is exactly the source
place, then a marked graph is produced. This shows that the
definition of 𝑇-component coincides with the traditional one
in [26]. Therefore, a sound acyclic FCWF-net is covered by
𝑇-components according to the conclusion in [26]. Here, an
FCWF-net is covered by 𝑇-components if and only if for each
transition there is a 𝑇-component containing it. In addition,
a complete transition sequence of a sound acyclic FCWF-net
corresponds to a 𝑇-component. Here, a transition sequence
is complete if and only if the marking 𝑀

𝑑
= 𝑜 reached from

𝑀
0
= 𝑖 by firing it. van der Aalst proved that a sound FCWF-

net is safe [25]. Therefore, each transition of a 𝑇-component
occurs once and only once and each place of it is marked once
and only once when the corresponding complete transition
sequence is fired.Notice that a𝑇-componentmay correspond
to multiple complete transition sequences due to the parallel
structure (see the examples in Figures 2(c)–2(f)).

Definition 10 (cap of FCWF-net). Let 𝑁 = (𝑃, 𝑇, 𝐹) be an
acyclic FCWF-net and let 𝑖 be its source place. Then 𝑁


=

(𝑃


, 𝑇


, 𝐹


) is a cap of𝑁 if𝑁 is a subnet of𝑁 such that

(1) 𝑃 = ∙𝑇 ∪ 𝑇

∙; that is, for all 𝑡 ∈ 𝑇

, the preset and
postset of 𝑡 in𝑁 are the same as the preset and postset
of it in𝑁, respectively;

(2) for all 𝑝 ∈ 𝑃

: |∙𝑝| ≤ 1 ∧ |𝑝

∙
| ≤ 1 in𝑁

;

(3) for all 𝑡 ∈ 𝑇

, there is a path from 𝑖 to 𝑡 in𝑁

.

Example 11. Figure 3 shows all caps related to the 𝑇-
component in Figure 2(f).

Obviously, each 𝑇-component is a cap that represents
some complete transition sequences. The subnet only con-
taining the source place is also viewed as a cap that reflects the
empty transition sequence. Next it is shown that for a sound
acyclic FCWF-net each cap is a prefix of some 𝑇-component.

Lemma 12. A sound acyclic FCWF-net is covered by 𝑇-
components and for each cap there exists a 𝑇-component such
that the cap is a subnet of the 𝑇-component.

Proof. Let 𝜎 be a complete transition sequence, that is, 𝑖[𝜎⟩𝑜.
Because the FCWF-net is sound, it is safe for the initial
marking 𝑀

0
= 𝑖 (see [25]). Because it is acyclic, each

transition in 𝜎 occurs once only. Therefore, the transitions in
𝜎 and their preset and postset directly form a 𝑇-component.
Because the FCWF-net is sound, for each transition there
exists a complete transition sequence containing it, thereby
a 𝑇-component containing it. Therefore, the FCWF-net is
covered by 𝑇-components.

For each cap an enabled transition sequence 𝜎 is obtained
such that 𝜎 contains all transitions of the cap and each
transition of the cap occurs in 𝜎 once and only once. Because
the acyclic FCWF-net is sound and safe, there exists a
complete transition sequence 𝜎

 such that 𝜎 is a prefix of
𝜎

. Therefore, the cap is a subnet of the 𝑇-component that
corresponds to 𝜎

.

In fact, an acyclic FCWF-net is also sound if it is
covered by 𝑇-components and for each cap there exists a 𝑇-
component containing it. Because this conclusion is not used
in the proofs of other conclusions and only Lemma 12 is used,
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Figure 3: All caps related to the 𝑇-component in Figure 2(f).
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Figure 4: ((a)-(b)) 𝑇-components of the SIWF-net in Figure 2(a); and ((c)-(d)) 𝑇-components of the SIWF-net in Figure 2(b).

the related proof is not described any more, which is very
similar to the proof of the sufficiency of Theorem 20. This
paper only gives the following conclusion that may be seen
as a special case of Theorem 20.

Theorem 13. An acyclic FCWF-net is sound if and only if
(1) it is covered by 𝑇-components;
(2) for each cap there exists a 𝑇-component such that the

cap is a subnet of the 𝑇-component.

Definition 14 (𝑇-component of SIWF-net). Let𝑁 = (𝑁
1
, 𝑁
2
,

. . . , 𝑁
𝑚
, 𝑃
𝐶
, 𝐹
𝐶
) be an SIWF-net. Then 𝑁


= (𝑁



1
, 𝑁



2
, . . . ,

𝑁



𝑚
, 𝑃



𝐶
, 𝐹



𝐶
) is a 𝑇-component of𝑁 if

(1) for all 𝑗 ∈ N
𝑚
, 𝑁
𝑗
= (𝑃



𝑗
, 𝑇



𝑗
, 𝐹



𝑗
) is a 𝑇-component of

𝑁
𝑗
= (𝑃
𝑗
, 𝑇
𝑗
, 𝐹
𝑗
) and is called basic;

(2) 𝑃
𝐶
= ⋃

𝑚

𝑗=1
(

∙
𝑇



𝑗
∪𝑇

∙

𝑗
)∩𝑃
𝐶
where ∙𝑇

𝑗
and 𝑇

∙

𝑗
represent

the preset and postset of 𝑇
𝑗
in𝑁, respectively;

(3) 𝐹
𝐶
= ⋃

𝑚

𝑗=1
((𝑃



𝐶
× 𝑇



𝑗
) ∪ (𝑇



𝑗
× 𝑃



𝐶
)) ∩ 𝐹

𝐶
;

(4) for all 𝑐 ∈ 𝑃



𝐶
: |∙𝑐| = |𝑐

∙
| = 1 in𝑁

.

Example 15. The SIWF-net in Figure 1(a) has two and only
two 𝑇-components as shown in Figures 4(a) and 4(b). The
SIWF-net in Figure 1(b) also has two and only two 𝑇-
components as shown in Figures 4(c) and 4(d).

A 𝑇-component of an SIWF-net includes one and only
one 𝑇-component of each basic FCWF-net. Additionally, all
channel places connected to those basic 𝑇-components are
also in the 𝑇-component of the SIWF-net and must satisfy
the closure property (i.e., if the input transition of a channel
place is in this 𝑇-component, then its output transition must
also be in this 𝑇-component, and vice versa). From the above
examples it can be seen that not every basic 𝑇-component
is contained in a 𝑇-component of the SIWF-net. That is to
say, some behaviors of some basic WF-nets are inhibited.
For an example of the SIWF-net in Figure 1(a), there are
no 𝑇-components containing the basic 𝑇-component in
Figure 2(c).

If a transition is added to a 𝑇-component of an SIWF-
net such that its inputs are exactly all sink places and its
outputs are exactly all source places, then the new net is a
marked graph. This marked graph is strongly connected and
each circuit contains a source place. Therefore, this marked
graph is live and safe at the initial marking 𝑀

0
= 𝑖
1
+ 𝑖
2
+

⋅ ⋅ ⋅ + 𝑖
𝑚
(see [33]). Therefore, a 𝑇-component of an SIWF-

net corresponds to some complete transition sequence, and
any complete transition sequence (i.e., it results in the target
marking 𝑀

𝑑
) corresponds to a 𝑇-component. However,

an incompatible SIWF-net must include some incomplete
transitions sequences (i.e., they do not lead to 𝑀

𝑑
). There-

fore, the following structure is used to reflect all enabled
transition sequences.
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Figure 5: (a) A cap of the SIWF-net in Figure 1(b), which is a subnet of the 𝑇-component in Figure 4(c); (b) a cap of the SIWF-net in
Figure 1(b), which is not a subnet of the 𝑇-component in Figures 4(c) or 4(d); and ((c)-(d)) not caps of the SIWF-net in Figure 1(b).

Definition 16 (cap of SIWF-net). Let 𝑁 =

(𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑚
, 𝑃
𝐶
, 𝐹
𝐶
) be an SIWF-net. Then

𝑁


= (𝑁



1
, 𝑁



2
, . . . , 𝑁



𝑚
, 𝑃



𝐶
, 𝐹



𝐶
) is a cap of𝑁 if

(1) for all 𝑗 ∈ N
𝑚
, 𝑁
𝑗

= (𝑃



𝑗
, 𝑇



𝑗
, 𝐹



𝑗
) is cap of 𝑁

𝑗
=

(𝑃
𝑗
, 𝑇
𝑗
, 𝐹
𝑗
);

(2) 𝑃
𝐶
= ⋃

𝑚

𝑗=1
(

∙
𝑇



𝑗
∪𝑇

∙

𝑗
)∩𝑃
𝐶
where ∙𝑇

𝑗
and 𝑇

∙

𝑗
represent

the preset and postset of 𝑇
𝑗
in𝑁, respectively;

(3) 𝐹
𝐶
= ⋃

𝑚

𝑗=1
((𝑃



𝐶
× 𝑇



𝑗
) ∪ (𝑇



𝑗
× 𝑃



𝐶
)) ∩ 𝐹

𝐶
;

(4) for all 𝑐 ∈ 𝑃



𝐶
: |𝑐∙| = 1 ⇒ |

∙
𝑐| = 1 in𝑁

.

Example 17. Figure 5(a) is a cap of the SIWF-net in
Figure 1(b), which is a subnet of the 𝑇-component in
Figure 4(c). Although Figure 5(b) is also a cap of the SIWF-
net in Figure 1(b), there are no 𝑇-components containing it.
Figure 5(c) is not a cap of the SIWF-net in Figure 1(b) because
the input transition of the channel place 𝑐

5
is not in the subnet;

that is, it does not fulfill the fourth condition in Definition 16.
Figure 5(d) is not a cap of the SIWF-net in Figure 1(b) because
𝑐
5
, as the output of 𝑡

2,5
and the input of 𝑡

1,5
, is not in the

subnet; that is, it does not satisfy the second condition of
Definition 16.

Notice that each 𝑇-component of an SIWF-net is also a
cap of the SIWF-net and each cap of an SIWF-net contains
one and only one cap of each basic FCWF-net.

Lemma 18. Let 𝑁 = (𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑚
, 𝑃
𝐶
, 𝐹
𝐶
) be an SIWF-

net.
(1) For each enabled transition sequence 𝜎 in (𝑁, 𝑖

1
+ 𝑖
2
+

⋅ ⋅ ⋅ + 𝑖
𝑚
) (i.e., (𝑖

1
+ 𝑖
2
+ ⋅ ⋅ ⋅ + 𝑖

𝑚
)[𝜎⟩), there is a cap

𝑁


= (𝑁



1
, 𝑁



2
, . . . , 𝑁



𝑚
, 𝑃



𝐶
, 𝐹



𝐶
) of 𝑁 such that the cap

is a subnet produced by the transitions in 𝜎 as well as
their pre- and postsets.

(2) For each cap𝑁 = (𝑁



1
, 𝑁



2
, . . . , 𝑁



𝑚
, 𝑃



𝐶
, 𝐹



𝐶
) of𝑁, there

exists an enabled transition sequence 𝜎 in (𝑁, 𝑖
1
+ 𝑖
2
+

⋅ ⋅ ⋅ + 𝑖
𝑚
) such that each transition in 𝜎 occurs once and

only once in 𝜎 and the transitions in 𝜎 are just those in
𝑁



𝑗
.

Proof. (1) Because 𝜎 is an enabled transition sequence in
(𝑁, 𝑖
1
+ 𝑖
2
+ ⋅ ⋅ ⋅ + 𝑖

𝑚
), 𝜎 ↾ 𝑁

𝑗
is also an enabled transition

sequence in (𝑁
𝑗
, 𝑖
𝑗
) for each 𝑗 ∈ N

𝑚
where 𝜎 ↾ 𝑁

𝑗

is the projection of 𝜎 over the transitions of 𝑁
𝑗
. By the

proof of Lemma 12 it is known that there is a cap 𝑁



𝑗
of 𝑁
𝑗

corresponding to 𝜎 ↾ 𝑁
𝑗
. Because each transition 𝑡 in 𝜎 is

fired, each channel place, which is an input of 𝑡, must be an
output of some transition 𝑡

 where 𝑡 is fired earlier than 𝑡 in
𝜎. Therefore, the transitions of 𝜎 and their preset and postset
can form a subnet of𝑁 and this subnet satisfies the conditions
in Definition 16.

(2) Because the cap 𝑁


= (𝑁



1
, 𝑁



2
, . . . , 𝑁



𝑚
, 𝑃



𝐶
, 𝐹



𝐶
) is

acyclic and each place that has no inputs (i.e., the source
places) is marked, there are enabled transitions in (𝑁


, 𝑖
1
+

𝑖
2
+⋅ ⋅ ⋅+𝑖

𝑚
). One of these enabled transitions is selected to fire

and then delete this fired transition as well as its input places.
Then, the new Petri net is also acyclic and each place that has
no inputs is also marked. By doing the above operations until
the net has no transitions, a transition sequence is obtained
that satisfies the conditions of the lemma.

Definition 19 (covered). An SIWF-net is covered by 𝑇-
components if for each transition of it there is a𝑇-component
of it containing the transition.

Theorem 20. An SIWF-net 𝑁 = (𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑚
, 𝑃
𝐶
, 𝐹
𝐶
) is

compatible if and only if

(1) it is covered by 𝑇-components;

(2) for each cap there exists a 𝑇-component such that the
cap is a subnet of the 𝑇-component.

Proof. (⇒) Let 𝜎 be a complete transition sequence, that is,
(𝑖
1
+ 𝑖
2
+ ⋅ ⋅ ⋅ + 𝑖

𝑚
)[𝜎⟩(𝑜

1
+ 𝑜
2
+ ⋅ ⋅ ⋅ + 𝑜

𝑚
). Then, for all 𝑗 ∈ N

𝑚
,

𝜎 ↾ 𝑁
𝑗
is a complete transition sequence of (𝑁

𝑗
, 𝑖
𝑗
) where

𝜎 ↾ 𝑁
𝑗
is the projection of 𝜎 over the transitions of 𝑁

𝑗
.

By Lemma 12 it is known that 𝜎 ↾ 𝑁
𝑗
corresponds to a 𝑇-

component of 𝑁
𝑗
. Additionally, all channel places have no

tokens after firing 𝜎 because 𝑁 is compatible. Therefore, a
channel place as an output of 𝜎 must be an input of 𝜎, and
vice versa. Therefore, all transitions of 𝜎 and their preset and
postset form a 𝑇-component of 𝑁 by Definition 14. Because
𝑁 is sound, for each transition there is a complete transition
sequence containing it, thereby a𝑇-component containing it.
Therefore,𝑁 is covered by 𝑇-components.
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Figure 6: (a) An incompatible SIWF-net; ((b)-(c)) two 𝑇-components of (a); (d) a cap of (a); and (e) another incompatible SIWF-net.

By the second conclusion in Lemma 18 it is known
that, for each cap 𝑁


= (𝑁



1
, 𝑁



2
, . . . , 𝑁



𝑚
, 𝑃



𝐶
, 𝐹



𝐶
) of 𝑁,

there exists an enabled transition sequence 𝜎 in (𝑁, 𝑖
1
+

𝑖
2
+ ⋅ ⋅ ⋅ + 𝑖

𝑚
) such that the transitions in 𝜎 are exactly

those in 𝑁



𝑗
. Because 𝑁 is compatible, there is a complete

transition sequence 𝜎

 such that 𝜎 is a prefix of 𝜎

. By
the first conclusion in Lemma 18 we can construct a cap
𝑁

 for 𝜎

. Obviously, 𝑁 is a subnet of 𝑁

 and 𝑁

 is
a 𝑇-component.

(⇐) (by contradiction) It is assumed that𝑁 is incompat-
ible. Then, by Definition 6 we know that one of the following
three cases must take place: Case (1) ∃𝑡 ∈ 𝑇, for all 𝑀 ∈

𝑅(𝑁, 𝑖
1
+ 𝑖
2
+ ⋅ ⋅ ⋅ + 𝑖

𝑚
):¬𝑀[𝑡⟩; or Case (2) there is a marking

𝑀 ∈ 𝑅(𝑁, 𝑖
1
+ 𝑖
2
+ ⋅ ⋅ ⋅ + 𝑖

𝑚
) that marks not only all sink places

but also some channel places; or Case (3) there is marking
𝑀 ∈ 𝑅(𝑁, 𝑖

1
+ 𝑖
2
+ ⋅ ⋅ ⋅ + 𝑖

𝑚
) that does not mark all sink places

but all transitions are dead.
Case 1 does not hold: because 𝑁 is covered by 𝑇-

components, for each transition there is a 𝑇-component
containing it. By Lemma 18 it is known that for each 𝑇-
component there is an enabled transition sequence that
contains all transitions of the𝑇-component.Therefore, for all
𝑡 ∈ 𝑇, ∃𝑀 ∈ 𝑅(𝑁, 𝑖

1
+ 𝑖
2
+ ⋅ ⋅ ⋅ + 𝑖

𝑚
):𝑀[𝑡⟩.

Case 2 does not hold either: let enabled transition
sequence 𝜎 lead to a marking that marks all sink places
as well as some channel places. By the first conclusion in
Lemma 18 it is known that there is a cap 𝑁

 corresponding
to 𝜎. Because each sink place is marked after firing 𝜎, 𝑁
contains one𝑇-component of each basic FCWF-net and these
marked channel places have no outputs in 𝑁

. By the given
condition it is known that for 𝑁

 there must exist a 𝑇-
component of𝑁 such that𝑁 is a subnet of the𝑇-component.
To produce such a 𝑇-component 𝑁, we must add some
𝑇-components of some basic FCWF-nets into 𝑁

 in order
to make those marked channel places have output, which
makes the required “𝑇-component” 𝑁 containing multiple
basic 𝑇-components that are from the same basic FCWF-net.
This does not satisfy the requirements of the definition of 𝑇-
component; that is, a 𝑇-component of an SIWF-net contains
one and only one basic𝑇-component of each basic FCWF-net
(see Definition 14).

Case 3 holds neither: let 𝜎 be an enabled transition
sequence leading to a marking at which some sink places
are not marked but all transitions have been dead. Similar to
the analysis of Case 2, it is known that, for the cap related
to 𝜎, there are no 𝑇-components containing it. If there is a
𝑇-component containing the cap, then there must exist an
enabled transition sequence 𝜎

 such that 𝜎 corresponds to

the 𝑇-component and 𝜎 is a prefix of 𝜎. This contradicts that
all transitions are dead after firing 𝜎.

Example 21. Figure 1(a) is compatible. It is easy to verify that
it is covered by𝑇-components (see Figures 4(a) and 4(b)) and
each cap is contained in a 𝑇-component.

Example 22. Figure 1(b) is incompatible. Although it is cov-
ered by 𝑇-components (see Figures 4(c) and 4(d)), there
is a cap (e.g., the cap in Figure 5(b)) such that any 𝑇-
component does not contain it. This example corresponds to
Case 3 in the proof of “⇐” of Theorem 20. The example in
Figure 6(a) shows Case 2 in the proof of “⇐” of Theorem 20.
It has two 𝑇-components as shown in Figures 6(b) and
6(c), but it is incompatible because it has a cap, just as
shown in Figure 6(d), which is not a subnet of any 𝑇-
component. Figure 6(e) demonstrates Case 1 in the proof
of “⇐” of Theorem 20 in which the transition 𝑡

3
is dead

at the initial marking.

Definition 23 (maximal cap of SIWF-net). A cap of an SIWF-
net is maximal if there are no other caps properly containing
it.

Example 24. Figure 5(b) is a maximal cap of Figure 1(b) and
each of Figures 6(b)–6(d) is a maximal cap of Figure 6(a).

Notice that each 𝑇-component is a maximal cap. There-
fore, the following conclusion is drawn.

Corollary 25. An SIWF-net is compatible if and only if

(1) it is covered by 𝑇-components;

(2) each maximal cap is a 𝑇-component.

Proof. (⇒) By Theorem 20 it is known that a compatible
SIWF-net is covered by 𝑇-components. If a maximal cap
is not a 𝑇-component, then there are no 𝑇-components
containing the maximal cap by the definition of maximal
(see Definition 23), thereby making the SIWF-net incom-
patible by Theorem 20. Therefore, each maximal cap is a 𝑇-
component.

(⇐) For each cap, there is a maximal cap containing
it. Therefore, for each cap there exists a 𝑇-component
containing it. Therefore, the SIWF-net is compatible by
Theorem 20.

In fact, the decision conditions in Theorem 20 and
Corollary 25 can be sharpened and a simpler one is obtained;
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that is, the first conditions in Theorem 20 and Corollary 25
can be removed.

Lemma 26. If each maximal cap of an SIWF-net is a 𝑇-
component, then the SIWF-net is covered by 𝑇-components.

Proof. (by contradiction) Assume that the SIWF-net is not
covered by 𝑇-components; that is, there exists a transition
𝑡 that does not belong to any 𝑇-component. Because each
maximal cap is a 𝑇-component (i.e., for each cap there exists
a 𝑇-component containing it), 𝑡 does not belong to any cap.
Thus, one of the following two cases must exist.

Case 1. If 𝑃
𝐶
∩

∙
𝑡 ̸= 0 (i.e., 𝑡 has input channel places), then for

all 𝑡 ∈ ∙(𝑃
𝐶
∩

∙
𝑡): 𝑡 does not belong to any cap either. This is

because if ∃𝑡 ∈ ∙(𝑃
𝐶
∩

∙
𝑡): 𝑡 belongs to some cap, then there

is a maximal cap containing 𝑡

 (by Definition 23); thereby a
𝑇-component containing 𝑡

 exists (by the given condition);
thus the 𝑇-component has to contain 𝑡 (by the fourth item of
Definition 14).

Case 2. If 𝑃
𝐶
∩

∙
𝑡 = 0 (i.e., 𝑡 has no input channel places), then

for all 𝑡 ∈ ∙∙𝑡: 𝑡 does not belong to any cap either (notice that
𝑡 and 𝑡

 are in the same FCWF-net). The following two cases
are used to explain the reason.

Case 2.1 (∙𝑡 = {𝑝}). If there is 𝑡 ∈ ∙𝑝 such that there is a
cap containing 𝑡

, then we know by the second conclusion
in Lemma 18 that there is an enabled transition sequence
containing 𝑡

. Thus, place 𝑝 is marked after firing 𝑡

, which
leads to 𝑡 being enabled. Therefore, it is known by the first
conclusion in Lemma 18 that there is a cap containing 𝑡. This
contradicts the assumption that no cap contains 𝑡. Therefore,
for all 𝑡 ∈ ∙𝑝: 𝑡 does not belong to any cap.

Case 2.2 (|

∙
𝑡| > 1). It is known by the free-choice property

that for all 𝑝 ∈

∙
𝑡:𝑝∙ = {𝑡}. If there is 𝑡 ∈ ∙∙𝑡 such that there is

a cap containing 𝑡

, then there must exist a 𝑇-component 𝑁
containing 𝑡

 (by the given condition). Let 𝑝 ∈ 𝑡

∙ and 𝑝

∙
=

{𝑡}.Then, it is known byDefinition 14 that 𝑡must belong to𝑁.
This also contradicts the assumption that 𝑡 does not belong
to any 𝑇-component. Therefore, for all 𝑡 ∈ ∙∙𝑡: 𝑡 does not
belong to any cap.

The above cases indicate that if 𝑡 does not belong to any
cap, then there must exist a transition, as the input transition
of some input place of 𝑡, that does not belong to any cap either.
Because the set of transitions is finite and the SIWF-net is
acyclic, we finally find a transition such that (1) it has no input
channel places, (2) only some source place is its input, and
(3) it does not belong to any cap. However, this transition as
well as its input and output forms a cap. A contradiction takes
place. Therefore, the SIWF-net is covered by 𝑇-components
if each maximal cap of an SIWF-net is a 𝑇-component.

Theorem 27. An SIWF-net is compatible if and only if each
maximal cap is a T-component.

Proof. The necessity is derived directly by Corollary 25 and
the sufficiency directly by Corollary 25 and Lemma 26.

procedure IsT-component(𝑁,𝑁) {
𝑋 := {𝑝 ∈ 𝑁


| 𝑝

∙
= 0 in𝑁


};

𝑌 := {𝑡 ∈ 𝑁 | 𝑋[𝑡⟩};
if (𝑋 ̸= 𝑀

𝑑
∧ 𝑌 ̸= 0) then

for (each 𝑡 ∈ 𝑌) do {

𝑁


:= 𝑁


∪ {𝑡} ∪ 𝑡

∙
∪ (𝑡 × 𝑡

∙
) ∪ (

∙
𝑡 × 𝑡);

IsT-component(𝑁,𝑁);
};

else if (𝑋 ̸= 𝑀
𝑑
∧ 𝑌 = 0) then {

output(𝑁);
exit(0);
};

};

Procedure 1

Corollary 28. An SIWF-net is compatible if and only if for
each cap there is a T-component containing it.

Example 29. The SIWF-nets in Figures 1(b) and 6(a) are
incompatible because there exist maximal caps (see Figures
5(b) and 6(d)) that are not 𝑇-components. The SIWF-net in
Figure 6(e) is incompatible since each maximal cap of it is
not a 𝑇-component. Notice that the first two examples are
covered by 𝑇-components but the last one is not.

5. Algorithm to Solve the Compatibility
Problem for SIWF-Nets

Here a recursive algorithm is developed to solve the com-
pability problem for an SIWF-net based on the decision
conditions in Theorem 27 and Corollary 28. Let 𝑁 =

(𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑚
, 𝑃
𝐶
, 𝐹
𝐶
) be an SIWF-net, 𝑀

0
= {𝑖
1
, . . . , 𝑖

𝑚
}

the set of all source places, 𝑀
𝑑
= {𝑜
1
, . . . , 𝑜

𝑚
} the set of all

sink places, and 𝑁

 a cap of 𝑁. Notice that 𝑀
0
may be seen

as the most basic cap. See Procedure 1.
Please notice that𝑋means a reachable marking by firing

all transitions in𝑁

 and𝑌 records all transitions of𝑁 that are
enabled at𝑋.

𝑋 ̸= 𝑀
𝑑
∧𝑌 = 0 represents that after firing all transitions

in 𝑁

 the system reaches a marking such that it is not the
target marking and no transition is enabled at it. Therefore,
𝑋 ̸= 𝑀

𝑑
∧ 𝑌 = 0 means that the current cap is maximal but

not a 𝑇-component; that is, the SIWF-net is incompatible. In
this case, therefore, the program outputs this counterexample
and terminates early.

𝑋 ̸= 𝑀
𝑑
∧ 𝑌 ̸= 0 means that 𝑁 is still not maximal.

Therefore, for each bigger cap (i.e.,𝑁 := 𝑁


∪ {𝑡} ∪ 𝑡

∙
∪ (𝑡 ×

𝑡

∙
) ∪ (

∙
𝑡 × 𝑡)) this procedure is recursively called to do the

same decision. Please note that𝑁 ∪ {𝑡} ∪ 𝑡

∙
∪ (𝑡 × 𝑡

∙
) ∪ (

∙
𝑡 × 𝑡)

means that the enabled transition 𝑡 as well as all places and
arcs related to it in𝑁 is added to𝑁

.
𝑋 = 𝑀

𝑑
means that the current procedure will end

correctly and return the previous layer correctly.
Also please notice that if two transitions 𝑡

1
and 𝑡

2
in

𝑌 can be concurrently fired at 𝑋, then the procedure IsT-
component(𝑁,𝑁


) will be called twice where 𝑁 is the net
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generated by adding 𝑡
1
and 𝑡
2
as well as the related places and

arcs to𝑁. To avoid those repeated calls,𝑌 should be reduced
such that for those transitions that can be concurrently fired
at𝑋 only one is left in 𝑌. This operation can be completed in
polynomial time and is omitted here for the simplification of
this algorithm.

Therefore, when this procedure is called in a main proce-
dure, 𝑁 should be 𝑀

0
(i.e., it is the most basic cap). When

IsT-component(𝑁,𝑀
0
) is executed, the worst case is that all

maximal caps are 𝑇-components; that is, each maximal cap
is tested. The number of 𝑇-components grows exponentially
for the following very special example: an SIWF-net is
composed of 𝑚 basic FCWF-nets, each basic FCWF-net
has 𝑘 𝑇-components, and there are no channel places. The
SIWF-net has 𝑘

𝑚
𝑇-components. In practice, however, the

number of maximal caps of an SIWF-net does not increase
like the above example. If the number 𝑛 of maximal caps
grows polynomially but not exponentially, then the number
of recursively calling the procedure is polynomial, that is,
𝑂(|𝑇| ∗ 𝑛).

6. Conclusion

This paper gives a necessary and sufficient condition to decide
compatibility for a subclass of IWF-nets, which advances
the state-of-the-art in the area of deciding the compatibility
problem based on net structures. Future work may focus on
some bigger subclasses of IWF-nets in which each basic WF-
net may permit circuits.
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