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We provide sufficient conditions for the nonexistence of global positive solutions to the nonlocal evolution equation u,,(x,t) =
(J * u—u)xt)+uf(x1), (x,1) € RN x (0,00), (u(x,0),u,(x,0)) = (uy(x),u,(x)), x € RY, where J : RY — R,,p > 1,and

(upruy) € LI (RV;R,)x L}

loc loc
of proof is based on a duality argument.

1. Introduction

In [1], Garcia-Melidn and Quirds considered the nonlocal
diffusion problem:

u, (x,t) = (J *u—u)(xt)+uf (x,1),
(x,1t) € RN x (0,00), (1)

u(x,0)=u,(x), xe€ RY,

where J : RN — R, is a compactly supported nonnegative
function with unit integral, p > 1, and u, € L'(R™;R,) n
L®(RY; R,). Equation (1) may model a variety of biological,
epidemiological, ecological, and physical phenomena involv-
ing media with properties varying in space [2, 3]; similar
equations appear, for example, in Ising systems with Glauber
dynamics [4]. In [1] the authors proved that (1) has a critical
exponent:

p.=1+ %, (2)
which is the Fujita exponent for the classical nonlinear heat
equation v, = Au + u? [5]. More precisely, they proved that
if1 < p < p., the solution blows up in finite time for any
nonnegative and nontrivial initial data u, € L'(RN;R,) n
L®(RN;R,); if p > p,, there exist global solutions for small

(RM; R, ). Next, we deal with global nonexistence for certain nonlocal evolution systems. Our method

initial data u, € L'(R™;R,) n L°(RN;R,). Very recently,
Yang [6] considered the nonlinear coupled nonlocal diffusion
system:
u, (x,t) = (J * u—u) (x,t) + v (x,t),
(x,1) € RN x (0, 00),
v (6, t) = (J # v=v) (x,1) +ul (x,1), 3)
(x,1) € RN x (0, 00),
(u (x> 0))V(x’ 0)) = (uO (x),VO (x))7 X € RN)
where p,q > 1and (4, v) € L°(RY;R,) x L°(R™; R,).
Equation (3) can serve as a model for the processes of heat
diffusion and combustion in two-component continua with

nonlinear heat conduction and volumetric release [7]. In this
case, Yang established that the critical Fujita curve is given by

* 2
(pq) :1+Nmax{p+1,q+l}, (4)

which is also the Fujita curve for the coupled heat system v, =
Au +vP and v, = Av+uf, obtained by Escobedo and Herrero

(8].
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In this paper, we are first concerned with the following
evolution problem:

Uy (1) = (J * u—u) (1) +uf (x,1),
(x,t) € RN % (0,00), (5)
(1 (x,0), 1, (x,0)) = (1 (x),1; (x)), xe€R",

where J : RN — R,, p > 1,and (up, ;) € Lj, (RV;R,) x
L}OC(RN ;R,). We provide a sufficient condition for the
nonexistence of global positive solutions to (5). Next, we
consider the following two systems:

utt(x)t) = (]*u_u)(x’t)+vp(x>t),
(x,1) € RN x (0, 00),

vy (o t) = (J = v—v)(x,1) +ul (x,1),

N (6)
(x,t) e R™ x (0,00),
w(x,0),v(x,0) = (4 (x), v, (x)), xeRY,
(u; (%,0), v, (x,0)) = (14 (%), v, (%)), x¢€ RY,
Uy () = (J # v—v) (x,t) +uf (x,1),
(x,1) € RY x (0,00),
Vi (X,t) = (] * u_u) (xrt) +v1 (x:t)’
(7)

(x,1) € RN x (0, 00),
(u(x,0),v(x,0) = (1, (x), v, (x)), xeRY,
(1, (%,0),v, (x,0)) = (u; (x),v, (x)), xeRY,

where p,q > 1. For each system, we find a bound on N
leading to the absence of global nontrivial solutions. Our
method of proof is based on a duality argument developed
by Mitidieri and Pokhozhaev [9, 10].

2. Main Results

Through this paper, R, = [0,00),Q = RY x (0,00), and J :
RY — R, is a continuous function satisfying the following
conditions:

(J1) J is symmetric; that s, J(z) = J(-z), forevery z € RY.
(02) [on J(2)dz = 1.
(J3) A(J) = [ J(@)l2l? dz < co.

The following lemmas will be used later.
Lemmal. Leta,b,e > 0 and p > 1. Then
ab < eaf + c,bP 7Y, (8)

wherec, = (p—1)p ' (ep) /7Y,
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Lemma 2 (see [11]). Let X, Y, A, B, C, and D be nonnegative
functions and let o; and 0;, i = 1,2, 3, be positive reals such that
o, <ap,0,<0,,0,,0; 21, and a;0; < «,0,. If

X% < AX® + BY?,
9)
Y9 < cx*® + DY,
then

X“lel <L |:A“191/(°‘1*“z) + D9193/(91*‘92)Bel
(10)
+ (BGIC

>

0, )“191/(0‘191‘0‘393) ]

for some constant L > 0.

2.1. A Nonexistence Result for (5). The definition of solutions
we adopt for (5) is as follows.

Definition 3. Let (uy,u,) € L' (RY; R,) x L' (RY; R,). We

loc loc

say that u is a global weak solution to (5) if u € LfOC(Q; R,),
Jxuc L}OC(Q; R,), and

J up(pdxdt+J uy (x) ¢ (x,0) dx
Q RN
:j uq)ndxdt-j Jxu-uwedcd (1)
Q Q

+ J o (x) @ (x,0) dx,
R

for every regular test function ¢ > 0 with (-, > T) = 0.
Our first main result is given by the following theorem.

Theorem 4. Suppose that one of the following conditions hold:

N=1<p (12)
or
NZZ)
N+1 (13)
1<p< .
P N-1

Then (5) admits no global weak solutions other than the trivial
one.

Proof. Suppose that u is a nontrivial global weak solution to
(5). As a test function, we take

P =& (¢ (1), wneQ )

where R > 0 is large enough,

2
x|

€ (x) = exp <_—) xeR”, (15)
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w> l,and¢: R, — [0, 1] is given by

1 if0<o<l,
¢(0) = (16)
0 ifo=2.
From the definition of ¢, clearly we have
0 (x,0)=0, xe¢ RY, 17)
which yields
J uy (x) @, (x,0)dx = 0. (18)
RN
Writing

o= e

and applying Lemma 1, we obtain

@ )dxdt  (19)

JQ u, dxdt <e jQ uPodxdt
(20)
+ G JQ 9"’ r |(Ptt|p dxdt,

for some & > 0, where p' = p/(p — 1). On the other hand,
! ! U ! — 2
oo ol da = o' [ exp(“EL)
Q Q R

o (YD) acar,
R R

where

(21)

h(o) = (w-1)¢' (o) +¢(0)¢" (o), o=0. (22)

Using the change of variable x = Ry and t = Rs, we obtain

JQ q,—p’/p l%lP' dxdt = of RN JQ exp (— |y|2)

(23)

g2 () | ()| dy dis.

The above equality with (20) yields
JQ up, dxdt <e JQ uPodxdt + clRNH_zP’, (24)

for some constant ¢; > 0. Next, we have
J (J % u) pdx dt
Q

(25)

B JOO JRN (JRN J(x=y)u(yt) dy)cp(x,t) dx dt.

0

Using the symmetry of ] and Fubini’s theorem, we obtain
J (J = u)pdxdt
Q

B LOO JRN (JRN J(x=y)u(yt) dy) ¢ (x, 1) dx dt
[ [
[

j ]*go udxdt
Q

(y-x)u(y.t)d ) (x,t)dxdt (26)

(y=x)g (v 0)dx ) u (1.1) dy

Therefore,
j (]*u—u)(pdxdt:J (J*@-@)udxdt. (27)
Q Q

Using the property (J1), we obtain

(J*9—9)(xt)

- ()= nEa0d-Ew)

(28)

¢* (5) (JRNJ(y -x) & (y)dy - & (x))

R

t

8 (1) (], 7 @8 x+ 2 dz - ).

By the property (J2) and the definition of ¢, we have

Urg-p)wn=¢"(3)] 1@

(e -E@)dz=¢*(5) [ @

|x + 2I° |xI*
P\ - —exp| - o dz
w(t |xI*
=¢ (E)eXp(_F)JRN](Z) (29)
2 2
'(eXP(W)—1>dz:‘P(x:t)

|@

(w32 (o)) Y




The property (J3) and the inequality e* > x + 1 yield
(J*9-9)(xt)

_(P (X> t) ul
z—5 IRN ] (z) <2;xizi + |z|2> dz (30)
_Z9let)

2 jRN J(2)|z1>dz = ~A(J)R ¢ (x,1).

From this, we have
_ j J *u—-u)pdxds < A(J) R I wpdxde.  (31)
Q Q
Writing
I wpdx dt = I up 2% dx d, (32)
Q Q
using Holder’s inequality and Lemma 1, we obtain

—J (J+xu—-u)edxdt < A(])
Q

1/p 1/p
-R_2<j up(pdxdt> <J (pdxdt>
Q Q

< 5[ Wodxdt+csA() R I pdxdt
Q Q

S(SJ up<pdxdt+c5A(])Pl (33)
Q

R (JRN exp ( _52 ) dx) (LOO 4 <1_t2> dt)

S(SJ upcpdxdt+c5A(])P’
Q

g2 <JRN exp (_ |y|2) dx) <JOOO ¢“ (s) ds) ,

for some § > 0. We get

—J- (J*u—-u)edxdt
Q
(34)
SSJ wPodxdt + o, RN
Q

for some constant ¢, > 0. Consequently, it follows from (11),
(18), (24), and (34) that

(1-e-9) JQngodxdtS (¢ +02)RN+1_2P,. (35)
For ¢ = § = 1/4, we obtain
JQ uPodxdt < cRNH*zp’, (36)

where ¢ = 2(¢; + ¢,). Observe that if one of conditions (12)
or (13) is satisfied, then N + 1 — 2p < 0. In this case, letting
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R — oo in the above inequality and using the monotone
convergence theorem, we obtain

J uf dxdt =0, (37)
Q
which is a contradiction. The proof is finished. O

2.2. A Nonexistence Result for System (6). The definition of
solutions we adopt for (6) is as follows.

Definition 5. Let (u;,v;) € L' (RY; R,) x L' (RY; R,),i=

loc loc

0, 1. We say that the pair (u,v) is a global weak solution to
6) if (,v) € LY (QR,) X L (QR,), (J * u] »v) €

loc loc

L%OC(Q; IR+) X Ll (Q, R+), and

loc

vagodxdt+j u; (x) @ (x,0)dx
Q RY
:J u(pttdxdt—J (J*u-u)pdxdt (38)
Q Q
+J uy (x) @, (x,0) dx;
RN
J uq(pdxdt+J v, (x) ¢ (x,0)dx
Q RN
:J V(pttdxdt—J (Jxv-v)pdxdt (39)
Q Q

+ J vy (x) @, (x,0) dx,
[RN
for every regular test function ¢ > 0 with (-, > T) = 0.
We have the following result.

Theorem 6. Let p,q > 1. Suppose that

I<N<14—2 1max{p+1,q+l}. (40)

pa-

Then (6) admits no global weak solutions other than the trivial
one.

Proof. Suppose that (1, v) is a nontrivial global weak solution

to (6). As a test function, we take the function ¢ defined by
(14). From the definition of ¢, we have

J Uy (x) @, (x,0)dx = J Vo (%)@, (x,0)dx =0. (41
RN RN

Writing
JQ ug,, dx dt = JQ (u(pl/q) (go_l/qgott) dxdt  (42)

and using Holder’s inequality, we obtain

J ue,, dx dt
Q

1/q , ) 1/q
< (J uq(pdxdt> <J- @ g, dxdt) ,
Q Q

(43)
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where q' = q/(q — 1). On the other hand, from (23), we have

J (P_q,/q |(ptt|q’ dx d = o RN*1724 J exp (— |y|2)
o Q (44)

¢ () 1 (5)|7 dy ds,
which yields

) 1/q
J ug,, dx dt < ¢ RN/ 2 (J ulpdx dt) ,  (45)
Q Q
for some constant ¢; > 0. Using (33), we obtain

—J (Jxu-u)pdxdt < A())
Q

1/q 1/q'
-R‘2<J uqq;dxdt) (J (pdxdt) <A()
Q Q
1/q
-R72<J u'dexdt)
Q
AT
.(JRN exp( e )dx) (46)
00 wlt l/q'
(J (@) =40
) 1/q
L R2HN+D/q J' P4
( o (D) x)

([ won)” (foma)”

which yields

—J (J*u—-u)pdxdt
Q
(47)
) 1/q
< cZR_2+(N+1)/q <J quodxdt> ,
Q

for some constant ¢, > 0. As consequence, from (38), (45),
and (47), it follows that

' 1/q
J Vo dxdt < C, RN/ <J ulpdx dt) , (48)
Q Q
where C, = ¢, + ¢,. Similarly, we have
) p
J wlodxdt < C,R>* N/ <J vodx dt) , (49)
Q Q

for some constant C, > 0. Combining (48) with (49), we
obtain

1-1/pq
(J vpgpdxdt> < CRM,
Q
(50)

1-1/pq
<I ulpdx dt) < CRY,
Q

5
for some constant C > 0, where
N+1
A=-2-2+ -1),
1 p pd (ap-1)
N (51)
+
h=2- 2 Nty )
? p P

Observe that (40) is equivalent to A; < 0,7 = 1, 2. Under this
condition, letting R — 00 in (50), we get

j VP dx dt =j W dxdt =0, (52)
Q Q

which is a contradiction. O

Remark 7. Taking u = v and p = ¢q in Theorem 6, we obtain
the result given by Theorem 4 for (5).

2.3. A Nonexistence Result for System (7). The definition of
solutions we adopt for (7) is as follows.

Definition 8. Let (u;,v;) € L1 _(R™;R,) x L} (RY;R,),i =

loc loc

0, 1. We say that the pair (1, v) is a global weak solution to (6)
if (w,v) € IV (QR) XL (QR,),u 2 0,v # 0,(J xu,] =

loc loc

v) € L, (QR,) x L}, (QR,), and
J Wodxdt + J 1y (%) ¢ (x,0) dx
Q RY
:J u(pttdxdt—J (Jx=v-v)pdxdt (53)
Q Q
+ J uy (x) @, (x,0) dx;
RN
J vipdxdt + J- v, (%) ¢ (x,0)dx
Q RY
:J V(pttdxdt—J (J*u-u)pdxdt (54)
Q Q

+ J v (%) @, (x,0) dx,
RN

for every regular test function ¢ > 0 with ¢(-,t > T) = 0.
We have the following result.
Theorem 9. Let p,q > 1. If
1 < N < max{0,,0,}, (55)

where

1 1 2 1
@1:min{p+ q+1 pg+2p+ }

p-1g-1" pg-1
(56)
1 1 2 1
@2:mm{p+ a+l pa+2q+ }
p-lq-1 pg-1

then (7) admits nonglobal weak solutions.



Proof. As before, we argue by contradiction. Suppose that
(u,v) is a nontrivial global weak solution to (7). As a test
function, we take the function ¢ defined by (14). From (45),
we have

, 1/p
J ug,, dx dt < ¢ RNV/P 2 <I ufo dxdt) . (57)
Q Q
From (47), we have

—J (J*xv—v)epdxdt
Q

a (58)
< czR_2+(N+1)/q, <J vipdx dt> :
Q
Using (53), (57), and (58), we get
) 1/p
J uPodxdt < clR(NH)/P - (J up(pdxdt>
Q Q
(59)
, 1/q
+ R N*D/a (J vipdx dt) .
Q
Similarly, using (54), (57), and (58), we get
, 1/q
J Vg dx dt < d, RNV (j Vipdx dt>
Q Q
(60)
, 1/p
+ dzR’“(N”)/P (J' uPodx dt> .
Q
Here, ¢;, d;, i = 1,2, are some positive constants. Set
1/p
X = <J upgodxdt) ,
Q
(61)
1/q
Y = (J vq(pdxdt> ;
Q
we obtain from (59) and (60) the following system:
xP < CIR(N+1)/p'—2X N %R—2+(N+1)/q’Y
’ ' (62)
Yq < d2R72+(N+1)/p X + le(N+1)/q 72Y'
Using Lemma 2, we obtain
XM < c(RM + R +RY), (63)
where
-1
Py = n(p-1)-2p,
q-1
A =(N+1)(q-1)-2,
) (64)
%A3 =-2g+(N+1)(gq-1)

(N (p-1)-2p
-2

Mathematical Problems in Engineering

Similarly. we have
YP‘Z < C(Rﬂl + R*2 4 RHs) , (65)
where
-1
Ty =(N+1)(g-1)-24
p
-1
pT#z =(N+1)(p-1)-2p,

(66)
pq-1

prq

py=-2p+(N+1)(p-1)

. (N+1)(2—1)-2q_

It is not difficult to observe that condition (55) is equivalent
tod; <0,i=1,2,3,ory; <0,i =1,2,3.Inboth cases, letting
R — oo in (63) or in (65), we obtain XY = 0, which is a
contradiction. O
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