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This paper presents an analysis of the departure process of a discrete-time 𝐺𝑒𝑜/𝐺/1 queue with randomized vacations. By using
probability decomposition techniques and renewal process, the expression of expected number of departures during time interval
(0
+

, 𝑛
+

] is derived.The relation among departure process, server state process, and service renewal process is obtained.The relation
displays the decomposition characteristic of the departure process. Furthermore, the approximate expansion of the expected
number of departures is gained. Since the departure process also often corresponds to an arrival process for a downstream queue
in queueing network, it is hoped that the results obtained in this paper may provide useful information for queueing network.

1. Introduction

Since discrete-time queues with vacation schedule are more
suitable for its applicability in the performance analysis of
telecommunication systems, it has gained extended attention.
For an excellent survey of earlier works on vacation models
as well as its applications, interested readers can refer to [1–
5]. Keilson and Servi (1986) [6] introduced another type of
important vacation—Bernoulli vacations in which, after each
service completion, the server takes a vacation with proba-
bility 𝑝 or continues its busy period (if there are customers
in the system) with probability 1 − 𝑝. Following the work
of Keilson and Servi, much further research on queueing
system with Bernoulli vacations was done in [7–10]. On this
base, Ke and Chu (2006) [11] develop an interesting vacation
discipline from actual situation, where the server takes at
most 𝐽 vacations repeatedly until at least one customer is
found waiting in the queue upon the server returns from
a vacation. In the subsequent research of [12–14], Ke and
Huang extend the vacation discipline to the randomized
vacation policy with at most 𝐽 vacations where the server
takes another vacationwith probability𝑝 or remains dormant
within the system with probability 1 − 𝑝 if no customer is
found waiting in the queue while the server returns from a
vacation; otherwise, the server starts to serve the customers

immediately if there are some customers waiting for service at
the end of the vacation.This pattern does not terminate until
the server has taken 𝐽 successive vacations. Wang (2010) [15]
andWang et al. (2011) [16] introduce the randomized vacation
policy to the discrete-time 𝐺𝑒𝑜/𝐺/1 queue. Such a modified
vacation discipline has potentially applications in practical
systems [13], for example, in some stochastic production and
inventory control systems such as production to orders.

This is a continuation of work by Wang et al.(2011) [16]
and Luo et al. (2013) [17] where they study the queue size
distribution for 𝐺𝑒𝑜/𝐺/1 with randomized vacation and at
most 𝐽 vacations by using different methods, respectively.
Instead of studying the queue size distribution studied in
[16, 17], this paper considers another theme—the departure
process in that discrete-time model. The investigation of
departure process in a queueing system is primarily moti-
vated by the need to analyze queueing network models, in
which the departure process of an upstream queue is the
arrival process of the downstream queue. Burke (1956) [18]
has proven that the departure process of a 𝑀/𝑀/𝑠 queue is
a Bernoulli process. However, it is also well known that if
one goes beyond the exponential assumption, unfortunately,
the departure process does not become renewal and no
exact results of departure process are known for FCFS
models. Motivated by the applications of queueing networks
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in manufacturing and communications, most of researchers
adopt approximate method; for example, Whitt (1983) [19]
proposes a two-moment theory by approximating the process
involved by renewal processes; Harrison and Dai (1989) [20]
approximate the queueing network model by a Brownian
network which they then solve exactly; Zhang et al. (2005)
[21] derive the departure process approximations via an exact
aggregate solution technique (called ETAQA); Ferng and
Chang (2000) [22] obtain the factorial moments and lag 𝑛

covariance of interdeparture times by proposing a matrix-
analytic approach; and so forth.

As far as we know, most of the previous works character-
ize the departure process by paying close attention to interde-
parture times. In this paper, being different from the previous
works, we aim at the transient departure number during an
arbitrary time interval (0+, 𝑛+]. Our objective is to present a
distinctive analysis of departure process for the discrete-time
queue, obtain the transient expression (𝑧-transformation) for
expected number of departures during the interval (0+, 𝑛+],
and subsequently discover the decomposition characteristic
of the departure process.

The remainder of the paper is organized as follows.
Section 2 presents the description of the model. Section 3
derives the transient expression for the server busy prob-
ability at arbitrary epoch 𝑛

+ by using 𝑧-transformation.
Section 4 gives the transient expression (𝑧-transformation)
for the expected number of departures during the arbitrary
interval (0+, 𝑛+], denoted by 𝑀

𝑖
(𝑛
+
). Section 5 gains the

approximate expansion of 𝑀
𝑖
(𝑛
+
). Finally, conclusions are

given in Section 7.

2. Model Description

Consider a discrete-time 𝐺𝑒𝑜/𝐺/1 queue with randomized
vacations. It is assumed that a potential customer arrives in
system during time interval (𝑛−, 𝑛) and a potential departure
takes place during time interval (𝑛, 𝑛+) (LAS-DA) and the
input of customers is a Bernoulli process with parameter
𝜆 (0 < 𝜆 < 1). Denoting the interarrival time by 𝜏,
then 𝑃{𝜏 = 𝑗} = 𝜆(1 − 𝜆)

𝑗−1, 𝑗 ≥ 1. Customers are
served according to FCFS discipline and the service times
for an accepted customer, denoted by 𝜒, are independent and
identically distributed (i.i.d.) random variables with common
probability mass function (p.m.f.) 𝑔

𝑗
= 𝑃{𝜒 = 𝑗}, 𝑗 ≥ 1,

probability generating function (P.G.F.) 𝐺(𝑧) = ∑
∞

𝑗=1
𝑔
𝑗
𝑧
𝑗,

and mean service time 𝐸[𝜒] = 𝛼. After all the customers
in the queue are served exhaustively, the server operates a
randomized vacation policy with at most 𝐽 vacations. As
soon as the system becomes empty, the server immediately
takes a vacation, denoted by 𝑉, with p.m.f. V

𝑗
= 𝑃{𝑉 =

𝑗}, 𝑗 ≥ 1 and P.G.F. V(𝑧). If there is no customer in the
system when the server returns from the vacation, the server
takes another vacationwith probability 𝜃 or remains dormant
within the system with probability 𝜃 = 1 − 𝜃. Otherwise, the
server starts to serve the customers immediately if there are
some customers waiting for service at the end of vacation.
This pattern repeats until the server has taken 𝐽 successive
vacations. If the system remains empty at the end of the 𝐽th

Arrival Arrival

n
− n n

+
(n + 1)

−
n + 1 (n + 1)

+

Departure
Departure
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Figure 1: Various time epochs in a late arrival system with delayed
access (LAS-DA).

vacation, the server keeps idle in the system until a next
customer arrives, who evokes immediately service for the
arrival. Furthermore, various stochastic processes involved in
the system are assumed to bemutually independent. Tomake
it clear, the various time epochs at which events occur are
shown in a self-explanatory figure (see Figure 1).

3. Server Busy Probability at
an Arbitrary Epoch 𝑛

+

Denoting by 𝑏 the length of server busy period evoked by
only one customer with P.G.F. 𝐵(𝑧), then it follows the lemma
which is also obtained by Bruneel and Kim (1993) [1].

Lemma 1. In 𝐺𝑒𝑜/𝐺/1 queue, for |𝑧| < 1, 𝐵(𝑧) is the root of
the following equation:

𝐵 (𝑧) = 𝐺 [𝑧 − 𝑧𝜆 (1 − 𝐵 (𝑧))] ,

𝐸 [𝑏] =
𝛼

1 − 𝜌
, 𝜌 < 1,

(1)

where 𝜌 = 𝜆𝛼.
Let 𝑏<𝑖> be the length of server busy period evoked by

𝑖 customers; thus 𝑏<𝑖> can be expressed as 𝑏<𝑖> = ∑
𝑖

V=1 𝑏V,
where 𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑖
are independent of each other and have the

identical distribution as 𝑏. So the P.G.F. of 𝑏<𝑖> is given by𝐵𝑖(𝑧).
Denote by 𝑁(𝑛

+
) the queue length at arbitrary epoch 𝑛

+.
Let 𝜉(𝑛+) = 1 be the server busy state; that is, the server is busy
at epoch 𝑛

+. Define 𝐴
𝑖
(𝑛
+
) = 𝑃{𝜉(𝑛

+
) = 1 | 𝑁(0

+
) = 𝑖} with

𝑧-transform 𝑎
𝑖
(𝑢) = ∑

∞

𝑛=0
𝐴
𝑖
(𝑛
+
)𝑢
𝑛, |𝑢| < 1; thus the following

expression of 𝑎
𝑖
(𝑢) holds.

Theorem 2. In 𝐺𝑒𝑜/𝐺/1 queue with randomized vacations,
for |𝑢| < 1 and 𝑖 ≥ 1, one has

𝑎
0
(𝑢) = ((1 − 𝜆𝑢) [1 − (𝜃V (𝜆𝑢))

𝐽

]

× [V (𝑢) − V (𝜆𝑢𝐵 (𝑢) + 𝜆𝑢)]

+𝜆𝑢 (1 − 𝐵 (𝑢)) ⋅ 𝑦 (𝑢) )

× ((1 − 𝑢) [(1 − 𝜆𝑢) ⋅ 𝑥 (𝑢) − 𝜆𝑢𝐵 (𝑢) ⋅ 𝑦 (𝑢)])
−1

,

𝑎
𝑖
(𝑢) =

1 − 𝐵
𝑖

(𝑢)

1 − 𝑢
+ 𝐵
𝑖

(𝑢) ⋅ 𝑎
0
(𝑢) ,

(2)
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and conditioning on 𝜌 < 1, the steady state probability is given
by

lim
𝑛→∞

𝐴
0
(𝑛
+

) = lim
𝑛→∞

𝐴
𝑖
(𝑛
+

) = 𝜌, (3)

where

𝑥 (𝑢) = 1 − 𝜃V (𝜆𝑢)

− [1 − (𝜃V (𝜆𝑢))
𝐽

] [V (𝜆𝑢𝐵 (𝑢) + 𝜆𝑢) − V (𝜆𝑢)]

𝑦 (𝑢) = (1 − 𝜃) V (𝜆𝑢) + [𝜃V (𝜆𝑢)]
𝐽

[1 − V (𝜆𝑢)] .
(4)

Proof. In consideration that the input process is Bernoulli
process, the ending points of a server busy period and a
vacation are all renewal points and the system is going
between server busy state and unoccupied state (vacation
state or potential server idle state). To derive the expressions
of 𝑎
𝑖
(𝑢), the following notations are introduced:

𝑆
𝑚
=

𝑚

∑

𝑘=1

𝜏
𝑘
, 𝑆

0
= 0,

𝑉
<𝑖>

=

𝑖

∑

𝑘=1

𝑉
𝑘
, 𝑉

<0>

= 0,

(5)

where 𝜏
1
, 𝜏
2
, . . . , 𝜏

𝑚
denote the interarrival times of the

Bernoulli process with rate 𝜆. 𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑖
represent the

vacations which are i.i.d. random variables with the same
distribution as 𝑉. By using renewal process theory and
techniques of probability decomposition, it gets

𝐴
0
(𝑛
+

)

= 𝑃 {𝜉 (𝑛
+

) = 1 | 𝑁 (0
+

) = 0} = 𝑃 {𝜏 ≤ 𝑛
+

; 𝜉 (𝑛
+

) = 1}

=

𝐽

∑

𝑖=1

𝑃 {𝜏 ≤ 𝑛
+

; 𝜉 (𝑛
+

) = 1; 𝑉
<𝑖−1>

< 𝜏 ≤ 𝑉
<𝑖>

}

+ 𝑃 {𝜉 (𝑛
+

) = 1; 𝜏 ≤ 𝑛
+

; 𝑉
<𝐽>

< 𝜏}

=

𝐽

∑

𝑖=1

𝜃
𝑖−1

𝑃 {𝜉 (𝑛
+

) = 1; 𝑉
<𝑖>

≤ 𝑛
+

; 𝑉
<𝑖−1>

< 𝜏 ≤ 𝑉
<𝑖>

}

+

𝐽

∑

𝑖=2

𝜃
𝑖−2

(1 − 𝜃) 𝑃 {𝜉 (𝑛
+

) = 1; 𝜏 ≤ 𝑛
+

; 𝑉
<𝑖−1>

< 𝜏}

+ 𝜃
𝐽−1

𝑛

∑

𝑖=1

𝑃 {𝜏 = 𝑖} 𝑃 {𝑉
<𝐽>

< 𝑖} ⋅ 𝐴
1
((𝑛 − 𝑖)

+

) .

(6)

In the first item of (6), the “𝑉<𝑖> ≤ 𝑛
+
; 𝑉
<𝑖−1>

<

𝜏 ≤ 𝑉
<𝑖>” means that the epoch 𝑛 locates behind the 𝑖th

vacation and the first customer arrives in system during
the 𝑖th vacation. So there would be some other potential

customers arriving during the time interval [𝜏, 𝑉<𝑖>]. As a
result, the first item of (6) is equal to

𝐽

∑

𝑖=1

𝜃
𝑖−1

∞

∑

𝑚=1

𝑃 {𝜉 (𝑛
+

) = 1; 𝑉
<𝑖>

≤ 𝑛
+

; 𝑉
<𝑖−1>

< 𝜏;

𝜏 + 𝑆
𝑚−1

≤ 𝑉
<𝑖>

< 𝜏 + 𝑆
𝑚
}

=

𝐽

∑

𝑖=1

𝜃
𝑖−1

∞

∑

𝑚=1

𝑃 {𝜉 (𝑛
+

) = 1; 𝑉
<𝑖>

≤ 𝑛
+

; 𝑉
<𝑖−1>

< 𝜏;

(𝜏 − 𝑉
<𝑖−1>

) + 𝑆
𝑚−1

≤ 𝑉

< (𝜏 − 𝑉
<𝑖−1>

) + 𝑆
𝑚
}

=

𝐽

∑

𝑖=1

𝜃
𝑖−1

∞

∑

𝑚=1

𝑛

∑

𝑘=𝑖−1

𝑃 {𝑉
<𝑖−1>

= 𝑘}

×

𝑛−𝑘

∑

𝑙=1

𝑃 {𝑉 = 𝑙} ⋅ 𝑃 {𝜏 > 𝑘} (
𝑙

𝑚
)𝜆
𝑚

𝜆
𝑙−𝑚

⋅ 𝐴
𝑚
((𝑛 − 𝑘 − 𝑙)

+

) .

(7)

One should note that the item of “(𝜏 − 𝑉
<𝑖−1>

)” in the above
equation represents the remaining interarrival time at the
ending epoch of the (𝑖 − 1)th vacation. Based on the “lack of
memory property” of the Bernoulli process, the “(𝜏−𝑉<𝑖−1>)”
has the same distribution as 𝜏 under the condition of𝑉<𝑖−1> =
𝑘 (𝑘 = 𝑖 − 1, 𝑖, . . .).

The second item of (6) is given by

𝐽

∑

𝑖=2

𝜃
𝑖−2

(1 − 𝜃)

𝑛

∑

𝑘=1

𝑃 {𝜏 = 𝑘} 𝑃 {𝑉
<𝑖−1>

< 𝑘} ⋅ 𝐴
1
((𝑛 − 𝑘)

+

) .

(8)

Multiplying (6) by 𝑢𝑛 and summing over 𝑛 after substituting
(7) and (8) into (6) gain

𝑎
0
(𝑢) =

1 − [𝜃V (𝜆𝑢)]
𝐽

1 − 𝜃V (𝜆𝑢)

⋅

∞

∑

𝑚=1

𝑚

∑

𝑙=1

𝑃 {𝑉 = 𝑚} 𝑢
𝑚

(
𝑚

𝑙
) 𝜆
𝑙

𝜆
𝑚−𝑙

𝑎
𝑙
(𝑢)

+ 𝑎
1
(𝑢) ⋅

𝜆𝑢 (1 − 𝜃) V (𝜆𝑢)

1 − 𝜆𝑢

⋅

1 − [𝜃V (𝜆𝑢)]
𝐽−1

1 − 𝜃V (𝜆𝑢)

+ 𝑎
1
(𝑢) ⋅

𝜆𝑢 ⋅ 𝜃
𝐽−1

[V (𝜆𝑢)]
𝐽

1 − 𝜆𝑢

.

(9)
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For 1 ≤ 𝑖, it gets

𝐴
𝑖
(𝑛
+

) = 𝑃 {𝜉 (𝑛
+

) = 1; 𝑏
<𝑖>

> 𝑛
+

}

+ 𝑃 {𝜉 (𝑛
+

) = 1; 𝑏
<𝑖>

≤ 𝑛
+

} = 1 −

𝑛

∑

𝑘=𝑖

𝑃 {𝑏
<𝑖>

= 𝑘}

+

𝑛

∑

𝑘=𝑖

𝑃 {𝑏
<𝑖>

= 𝑘}𝐴
0
((𝑛 − 𝑘)

+

) .

(10)

Multiplying (10) by 𝑢𝑛 and summing over 𝑛 yield

𝑎
𝑖
(𝑢) =

1 − 𝐵
𝑖

(𝑢)

1 − 𝑢
+ 𝐵
𝑖

(𝑢) ⋅ 𝑎
0
(𝑢) . (11)

Solving the simultaneous equations (9) and (11) leads to the
expression of 𝑎

𝑖
(𝑢) provided inTheorem 2.

Applying the Final Value Theorem (see [23]), it has
lim
𝑛→∞

𝐴
𝑖
(𝑛
+
) = lim

𝑢→1
−

(1 − 𝑢) ⋅ 𝑎
𝑖
(𝑢). By using Lemma 1,

the stable result of𝐴
𝑖
(𝑛
+
) given inTheorem 2 is obtained.

Remark 3. By assuming 𝑃{𝑉 = 0} = 1, the model considered
here becomes a special case where the vacation disappears.
We can easily derive the corresponding expression of 𝑎

𝑖
(𝑢) in

classical 𝐺𝑒𝑜/𝐺/1 queueing model without vacation policy.
Consider the following:

𝑎
0
(𝑢) =

𝜆𝑢 (1 − 𝐵 (𝑢))

(1 − 𝑢) [(1 − 𝜆𝑢) − 𝜆𝑢𝐵 (𝑢)]

,

𝑎
𝑖
(𝑢) =

1 − 𝐵
𝑖

(𝑢)

1 − 𝑢
+ 𝐵
𝑖

(𝑢) ⋅ 𝑎
0
(𝑢) ,

lim
𝑛→∞

𝐴
0
(𝑛
+

) = lim
𝑛→∞

𝐴
𝑖
(𝑛
+

) = 𝜌.

(12)

Onemay note here that the steady state of𝐴
0
(𝑛
+
) has nothing

to do with the vacation policy.

4. Expected Number of Departures during
the Arbitrary Time Interval (0+, 𝑛+]

Consider a renewal process driven by a list of service times
{𝜒
𝑖
, 𝑖 ≥ 1} defined in Section 1. Let

𝑈
𝑛
=

𝑛

∑

𝑖=1

𝜒
𝑖
, 𝑈

0
= 0,

𝐷 (𝑛
+

) = sup {𝑛 : 𝑈
𝑛
≤ 𝑛
+

} .

(13)

Thus, 𝐷(𝑛
+
) is a renewal process and denotes the number

of departures during time interval (0+, 𝑛+] contained in the
service process {𝜒

𝑖
, 𝑖 ≥ 1}. Let 𝑀(𝑛

+
) = 𝐸[𝐷(𝑛

+
)] be

the renewal function of 𝐷(𝑛
+
) with 𝑧-transform 𝑚(𝑢) =

∑
∞

𝑛=0
𝑀(𝑛
+
)𝑢
𝑛.

Lemma 4. For |𝑢| < 1, it has

𝑚(𝑢) =
𝐺 (𝑢)

(1 − 𝑢) [1 − 𝐺 (𝑢)]
, lim

𝑛→∞

𝑀(𝑛
+
)

𝑛
=

1

𝛼
, (14)

where 𝐺(𝑢) is the P.G.F. of distribution of service time {𝜒
𝑖
, 𝑖 ≥

1} and 𝛼 = 𝐸[𝜒
𝑖
].

Proof. One has

𝑀(𝑛
+

) = 𝐸 [𝐷 (𝑛
+

)] =

∞

∑

𝑘=0

𝑘𝑃 {𝐷 (𝑛
+

) = 𝑘}

=

∞

∑

𝑘=0

𝑘𝑃 {𝜒
1
+ ⋅ ⋅ ⋅ + 𝜒

𝑘
≤ 𝑛
+

< 𝜒
1
+ ⋅ ⋅ ⋅ + 𝜒

𝑘+1
}

=

∞

∑

𝑘=0

𝑛

∑

𝑚=𝑘

𝑘𝑃 {𝜒
1
+ ⋅ ⋅ ⋅ + 𝜒

𝑘
= 𝑚}𝑃 {𝜒

𝑘+1
> (𝑛 − 𝑚)

+

} .

(15)

Taking 𝑧-transform on both sides of the above equation
yields the expression of𝑚(𝑢). Applying the essential renewal
theorem (see [24]), it gets

lim
𝑛→∞

𝑀(𝑛
+
)

𝑛
=

1

𝐸 [𝜒
𝑖
]
=

1

𝛼
. (16)

On this basis, we begin to consider the expected number
of departures during an arbitrary time interval (0+, 𝑛+] in the
queue system. For this aim, some additional notations are
developed as follows:

𝐷(𝑛
+

) = {The number of departures during

general time interval (0+, 𝑛+]} ,

𝑀
𝑖
(𝑛
+

) = 𝐸 [𝐷 (𝑛
+

) | 𝑁 (0
+

) = 𝑖] , 𝑛, 𝑖 ≥ 0.

(17)

So,𝑀
𝑖
(𝑛
+
) represents the expected departures during (0+, 𝑛+]

with the initial state of𝑁(0
+
) = 𝑖. One has the following:

𝑇
𝑖
(𝑛
+

) = 𝐸 {The number of departures during

(0
+

, 𝑏
<𝑖>

] ; 𝑏
<𝑖>

≤ 𝑛
+

} ,

𝑊
𝑖
(𝑛
+

) = 𝐸 {The number of departures during

(0
+

, 𝑛
+

] ; 𝑏
<𝑖>

> 𝑛
+

} , 𝑖 = 1, 2, . . . ,

𝑡
𝑖
(𝑢) =

∞

∑

𝑛=0

𝑇
𝑖
(𝑛
+

) 𝑢
𝑛

, 𝑤
𝑖
(𝑢) =

∞

∑

𝑛=0

𝑊
𝑖
(𝑛
+

) 𝑢
𝑛

,

(18)

where 𝑏<𝑖> denotes the length of a server busy period evoked
by 𝑖 customers waiting for service.

Theorem 5. Let 𝑚
𝑖
(𝑢) = ∑

∞

𝑛=0
𝑀
𝑖
(𝑛
+
)𝑢
𝑛, for |𝑢| < 1, 𝜌 < 1,

and 𝑖 ≥ 0; it has

𝑚
𝑖
(𝑢) = 𝑚 (𝑢) ⋅ (1 − 𝑢) 𝑎

𝑖
(𝑢) ,

lim
𝑛→∞

𝑀
𝑖
(𝑛
+
)

𝑛
=

{{

{{

{

𝜆, 𝜌 < 0

1

𝛼
, 𝜌 ≥ 1,

(19)

where 𝑎
𝑖
(𝑢) and 𝑚(𝑢) are determined by Theorem 2 and

Lemma 4, respectively.
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Proof. Since the arrival process is Bernoulli process, the
beginning and ending epochs of a server busy period or a
vacation are both renewal points.Thus, it can take probability
decomposition techniques on𝑀(𝑛

+
) by using 𝑏<𝑖>. Consider

𝑀(𝑛
+

) = 𝐸 [𝐷 (𝑛
+

)] = 𝐸 [𝐷 (𝑛
+

) ; 𝑏
<𝑖>

> 𝑛
+

]

+ 𝐸 [𝐷 (𝑛
+

) ; 𝑏
<𝑖>

≤ 𝑛
+

]

= 𝑊
𝑖
(𝑛
+

) + 𝐸 [𝐷 (𝑏
<𝑖>

) ; 𝑏
<𝑖>

≤ 𝑛
+

]

+

𝑛

∑

𝑘=𝑖

𝑃 {𝑏
<𝑖>

= 𝑘} 𝐸 [𝐷 ((𝑛 − 𝑘)
+

)]

= 𝑊
𝑖
(𝑛
+

) + 𝑇
𝑖
(𝑛
+

) +

𝑛

∑

𝑘=𝑖

𝑃 {𝑏
<𝑖>

= 𝑘}𝑀((𝑛 − 𝑘)
+

) .

(20)

Taking 𝑧-transform on both sides of the above equation and
applying Lemma 4 give

𝑡
𝑖
(𝑢) + 𝑤

𝑖
(𝑢) =

[1 − 𝐵
𝑖

(𝑢)] 𝐺 (𝑢)

(1 − 𝑢) [1 − 𝐺 (𝑢)]
. (21)

For𝑀
0
(𝑛
+
), by using the same method used for the solution

of 𝑎
𝑖
(𝑢) (𝑖 ≥ 0), it gets

𝑀
0
(𝑛
+

) = 𝐸 [𝐷 (𝑛
+

) | 𝑁 (0
+

) = 0] = 𝐸 [𝐷 (𝑛
+

) ; 𝜏 ≤ 𝑛
+

]

=

𝐽

∑

𝑖=1

𝐸 [𝐷 (𝑛
+

) ; 𝜏 ≤ 𝑛
+

; 𝑉
<𝑖−1>

< 𝜏 ≤ 𝑉
<𝑖>

]

+ 𝐸 [𝐷 (𝑛
+

) ; 𝜏 ≤ 𝑛
+

; 𝑉
<𝐽>

< 𝜏]

=

𝐽

∑

𝑖=1

𝜃
𝑖−1

𝐸 [𝐷 (𝑛
+

) ; 𝑉
<𝑖>

≤ 𝑛
+

; 𝑉
<𝑖−1>

< 𝜏 ≤ 𝑉
<𝑖>

]

+

𝐽

∑

𝑖=2

𝜃
𝑖−2

(1 − 𝜃) 𝐸 [𝐷 (𝑛
+

) ; 𝜏 ≤ 𝑛
+

; 𝑉
<𝑖−1>

< 𝜏]

+ 𝜃
𝐽−1

𝑛

∑

𝑖=1

𝑃 {𝜏 = 𝑖} 𝑃 {𝑉
<𝐽>

< 𝑖} ⋅ 𝑀
1
((𝑛 − 𝑖)

+

)

=

𝐽

∑

𝑖=1

𝜃
𝑖−1

∞

∑

𝑚=1

𝑛

∑

𝑘=𝑖−1

𝑃 {𝑉
<𝑖−1>

= 𝑘}

×

𝑛−𝑘

∑

𝑙=1

𝑃 {𝑉 = 𝑙} ⋅ 𝑃 {𝜏 > 𝑘} (
𝑙

𝑚
)𝜆
𝑚

𝜆
𝑙−𝑚

⋅ 𝑀
𝑚
((𝑛 − 𝑘 − 𝑙)

+

) +

𝐽

∑

𝑖=2

𝜃
𝑖−2

(1 − 𝜃)

×

𝑛

∑

𝑘=1

𝑃 {𝜏 = 𝑘} 𝑃 {𝑉
<𝑖−1>

< 𝑘}

⋅ 𝑀
1
((𝑛 − 𝑘)

+

) + 𝜃
𝐽−1

×

𝑛

∑

𝑖=1

𝑃 {𝜏 = 𝑖} 𝑃 {𝑉
<𝐽>

< 𝑖} ⋅ 𝑀
1
((𝑛 − 𝑖)

+

) .

(22)

Multiplying (22) by 𝑢𝑛 and summing over 𝑛 result in

𝑚
0
(𝑢) =

1 − [𝜃V (𝜆𝑢)]
𝐽

1 − 𝜃V (𝜆𝑢)

⋅

∞

∑

𝑚=1

𝑚

∑

𝑙=1

𝑃 {𝑉 = 𝑚} 𝑢
𝑚

(
𝑚

𝑙
) 𝜆
𝑙

𝜆
𝑚−𝑙

𝑚
𝑙
(𝑢)

+ 𝑚
1
(𝑢) ⋅

𝜆𝑢 (1 − 𝜃) V (𝜆𝑢)

1 − 𝜆𝑢

⋅

1 − [𝜃V (𝜆𝑢)]
𝐽−1

1 − 𝜃V (𝜆𝑢)
+ 𝑚
1
(𝑢)

⋅

𝜆𝑢 ⋅ 𝜃
𝐽−1

[V (𝜆𝑢)]
𝐽

1 − 𝜆𝑢

.

(23)

For𝑀
𝑖
(𝑛
+
) (𝑖 ≥ 1), it has

𝑀
𝑖
(𝑛
+

) = 𝐸 [𝐷 (𝑛
+

) | 𝑁 (0
+

) = 𝑖]

= 𝐸 [𝐷 (𝑛
+

) ; 𝑛
+

< 𝑏
<𝑖>

] + 𝐸 [𝐷 (𝑛
+

) ; 𝑏
<𝑖>

≤ 𝑛
+

]

= 𝑊
𝑖
(𝑛
+

) + 𝐸 {The number of departures during

(0
+

, 𝑏
<𝑖>

] ; 𝑏
<𝑖>

≤ 𝑛
+

}

+ 𝐸 {The number of departures during

(𝑏
<𝑖>

, 𝑛
+

] ; 𝑏
<𝑖>

≤ 𝑛
+

}

= 𝑊
𝑖
(𝑛
+

) + 𝑇
𝑖
(𝑛
+

) +

𝑛

∑

𝑘=𝑖

𝑃 {𝑏
<𝑖>

= 𝑘}𝑀
0
((𝑛 − 𝑘)

+

) .

(24)

Taking 𝑧-transform on both sides of (24) and applying (21)
yield

𝑚
𝑖
(𝑢) =

[1 − 𝐵
𝑖

(𝑢)] 𝐺 (𝑢)

(1 − 𝑢) [1 − 𝐺 (𝑢)]
+ 𝐵
𝑖

(𝑢)𝑚
0
(𝑢) . (25)

Solving the simultaneous equations (23) and (25), it gets
the expression of 𝑚

𝑖
(𝑢) (𝑖 ≥ 0). From the expressions of

𝑚
𝑖
(𝑢) (𝑖 ≥ 0) given here, 𝑎

𝑖
(𝑢) (𝑖 ≥ 0) given by Theorem 2,

and𝑚(𝑢) given by Lemma 4, the relation among𝑚
𝑖
(𝑢), 𝑚(𝑢),

and 𝑎
𝑖
(𝑢) is established as follows:

𝑚
𝑖
(𝑢) = 𝑚 (𝑢) ⋅ (1 − 𝑢) 𝑎

𝑖
(𝑢) . (26)
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Applying Theorem 2 and Lemma 4, when condition 𝜌 < 1

holds, it has the following steady result:

lim
𝑛→∞

𝑀
𝑖
(𝑛
+
)

𝑛
= lim
𝑢→1

−

(1 − 𝑢)
2

𝑚
𝑖
(𝑢)

= lim
𝑢→1

−

(1 − 𝑢)
2

𝑚(𝑢) ⋅ lim
𝑢→1

−

(1 − 𝑢) 𝑎
𝑖
(𝑢)

= lim
𝑛→∞

𝑀(𝑛
+
)

𝑛
⋅ lim
𝑛→∞

𝐴 (𝑛
+

)

=

{{{

{{{

{

1

𝛼
⋅ 𝜌 = 𝜆, 𝜌 < 0

1

𝛼
⋅ 1, 𝜌 ≥ 1.

(27)

Thus, it finishes the proof of Theorem 5.

Remark 6. Conditioning on 𝑃{𝑉 = 0} = 1, we can obtain
the expected number of departures during an arbitrary time
interval (0+, 𝑛+] in classical𝐺𝑒𝑜/𝐺/1 queue without vacation.
Therefore

𝑚
0
(𝑢) = 𝑚 (𝑢) ⋅ (1 − 𝑢) 𝑎

0
(𝑢)

=
𝐺 (𝑢)

(1 − 𝑢) [1 − 𝐺 (𝑢)]
⋅

𝜆𝑢 (1 − 𝐵 (𝑢))

(1 − 𝜆𝑢) − 𝜆𝑢𝐵 (𝑢)

,

𝑚
𝑖
(𝑢) = 𝑚 (𝑢) ⋅ (1 − 𝑢) 𝑎

𝑖
(𝑢)

=
𝐺 (𝑢)

(1 − 𝑢) [1 − 𝐺 (𝑢)]
⋅ [

1 − 𝐵
𝑖

(𝑢)

1 − 𝑢
+ 𝐵
𝑖

(𝑢) ⋅ 𝑎
0
(𝑢)] ,

𝑖 ≥ 1.

lim
𝑛→∞

𝑀
𝑖
(𝑛
+
)

𝑛
=

{{{

{{{

{

1

𝛼
⋅ 𝜌 = 𝜆, 𝜌 < 0,

1

𝛼
⋅ 1, 𝜌 ≥ 1.

(28)

5. Approximate Expansion of the Expected
Number of Departures during (0

+

, 𝑛
+

]

In spite of the closed-form formula for 𝑚
𝑖
(𝑢) given by

Theorem 5, it seems impossible to get the expected departure
number during time interval (0+, 𝑛+] (𝑀

𝑖
(𝑛
+
)) by operating

inverse 𝑧-transform of 𝑚
𝑖
(𝑢). For the convenient calculation

of 𝑀
𝑖
(𝑛
+
), it is pretty necessary to conduct the approximate

expansion of𝑀
𝑖
(𝑛
+
). Firstly, we give Lemma 7 as follows.

Lemma 7. For 𝐸[𝜒2
𝑖
] < +∞ and 𝑛 → +∞, the following

approximate expansion of𝑀(𝑛
+
) holds

𝑀(𝑛
+

) −
𝑛

𝛼
≈

𝐸 [𝜒
2

𝑖
] + 𝛼

2𝛼2
− 1, (29)

where {𝜒
𝑖
, 𝑖 ≥ 1} are service times and 𝛼 = 𝐸[𝜒

𝑖
].

Proof. Let 𝑆
𝐷(𝑛
+

)+1
= ∑
𝐷(𝑛
+

)+1

𝑖=1
𝜒
𝑖
; thus 𝑆

𝐷(𝑛
+

)+1
denotes the

epoch immediately after the (𝐷(𝑛
+
)+1)th service completion.

Denote by 𝑋(𝑛
+

) the remain service time of a customer being
served at epoch 𝑛

+ with the corresponding steady state𝑋
+
=

lim
𝑛→∞

𝑋
(𝑛
+

) and the steady state distribution 𝑥
𝑖
= 𝑃{𝑋

+
=

𝑖}, 𝑖 ≥ 1, which has P.G.F.𝑋∗(𝑢) = ∑
∞

𝑖=1
𝑥
𝑖
𝑢
𝑖. From [25], it has

𝑋
∗

(𝑢) =
𝑢 [1 − 𝐺 (𝑢)]

𝛼 (1 − 𝑢)
,

𝐸 [𝑋
+
] =

𝑑𝑋
∗

(𝑢)

𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢=1

=

𝐸 [𝜒
2

𝑖
] + 𝛼

2𝛼
.

(30)

Since 𝑆
𝐷(𝑛
+

)+1
= 𝑛 + 𝑋

(𝑛
+

), 𝐸[𝑆
𝐷(𝑛
+

)+1
] = 𝑛 + 𝐸[𝑋

(𝑛
+

)
],

that is,

𝐸[

[

𝐷(𝑛
+

)+1

∑

𝑖=1

𝜒
𝑘

]

]

= 𝑛 + 𝐸 [𝑋
(𝑛
+

)

] ,

𝐸 [𝜒
𝑖
] (𝐸 [𝐷 (𝑛

+

)] + 1) = 𝑛 + 𝐸 [𝑋
(𝑛
+

)

] ,

𝛼 [𝑀 (𝑛
+

) + 1] = 𝑛 + 𝐸 [𝑋
(𝑛
+

)

] ,

𝑀 (𝑛
+

) −
𝑛

𝛼
=

𝐸 [𝑋
(𝑛
+

)
]

𝛼
− 1,

lim
𝑛→∞

[𝑀(𝑛
+

) −
𝑛

𝛼
] =

𝐸 [𝑋
+
]

𝛼
− 1 =

𝐸 [𝜒
2

𝑖
] + 𝛼

2𝛼2
− 1.

(31)

Therefore, conditioning on 𝐸[𝜒
2

𝑖
] < +∞ and 𝑛 → +∞,

Lemma 7 holds. Now the approximate expansion of 𝑀
𝑖
(𝑛
+
)

can be derived by the following theorem.

Theorem 8. For 𝐸[𝜒2
𝑖
] < +∞ and 𝜌 < 1, when 𝑛 → +∞,

one has

𝑀
𝑖
(𝑛
+

) ≈

{{{{{

{{{{{

{

𝜆𝑛 + 𝜌[

𝐸 [𝜒
2

𝑖
] + 𝛼

2𝛼2
− 1] , 𝜌 < 0,

𝑛

𝛼
+

𝐸 [𝜒
2

𝑖
] + 𝛼

2𝛼2
− 1, 𝜌 ≥ 1,

(32)

where 𝛼 = 𝐸[𝜒
𝑖
].

Proof. Let 𝑄(𝑛
+
) ∗ 𝑅(𝑛

+
) = ∑

𝑛

𝑘=0
𝑄(𝑘
+
) ∗ 𝑅((𝑛 − 𝑘)

+

)

be the fold product of 𝑄(𝑛
+
) and 𝑅(𝑛

+
). Let 𝑞(𝑢) =

𝑍[𝑄(𝑛
+
)] = ∑

∞

𝑛=0
𝑄(𝑛
+
)𝑢
𝑛 denote the 𝑧-transform of 𝑄(𝑛+);

then 𝑍[𝑄(𝑛
+
) ∗ 𝑅(𝑛

+
)] = 𝑍[𝑄(𝑛

+
)] ⋅ 𝑍[𝑅(𝑛

+
)] = 𝑞(𝑢) ⋅

𝑟(𝑢). Denote the converse 𝑧-transform of image function
𝑞(𝑢) by 𝑍−1[𝑞(𝑢)] = 𝑄(𝑛

+
). Applying Theorem 5 along with
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the limitation theory and the properties of 𝑧-transform (see
[23]), it gets

lim
𝑛→+∞

(𝑀
𝑖
(𝑛
+

) − 𝐴
𝑖
(𝑛
+

) ∗ 𝑍
−1

[(1 − 𝑢)𝑍(
𝑛

𝛼
)])

= lim
𝑢→1

−

(1 − 𝑢)𝑍 [𝑀
𝑖
(𝑛
+

) − 𝐴
𝑖
(𝑛
+

)

∗ 𝑍
−1

[(1 − 𝑢)𝑍(
𝑛

𝛼
)]]

= lim
𝑢→1

−

(1 − 𝑢) [𝑚
𝑖
(𝑢) − (1 − 𝑢)𝑍(

𝑛

𝛼
) ⋅ 𝑍 [𝐴

𝑖
(𝑛
+

)]]

= lim
𝑢→1

−

(1 − 𝑢) [(1 − 𝑢) 𝑎
𝑖
(𝑢)𝑚 (𝑢)

− (1 − 𝑢)𝑍(
𝑛

𝛼
) 𝑎
𝑖
(𝑢)]

= lim
𝑢→1

−

(1 − 𝑢) 𝑎
𝑖
(𝑢) [(1 − 𝑢)𝑚 (𝑢) − (1 − 𝑢)𝑍(

𝑛

𝛼
)]

= lim
𝑢→1

−

(1 − 𝑢) 𝑎
𝑖
(𝑢) lim
𝑢→1

−

[(1 − 𝑢)𝑚 (𝑢)

− (1 − 𝑢)𝑍(
𝑛

𝛼
)]

= lim
𝑛→∞

𝐴
𝑖
(𝑛
+

) lim
𝑛→∞

[𝑀(𝑛
+

) −
𝑛

𝛼
]

= 𝜌[

𝐸 [𝜒
2

𝑖
] + 𝛼

2𝛼2
− 1] .

(33)

Note that the final conclusion in (33) is based on Theorem 2
and (31).
Since

lim
𝑛→+∞

𝐴
𝑖
(𝑛
+
) ∗ 𝑍
−1

[(1 − 𝑢)𝑍 (𝑛/𝛼)]

𝑛

= lim
𝑢→1

−

(1 − 𝑢)
2

𝑍[𝐴
𝑖
(𝑛
+

) ∗ 𝑍
−1

[(1 − 𝑢)𝑍(
𝑛

𝛼
)]]

= lim
𝑛→+∞

(1 − 𝑢) 𝑎
𝑖
(𝑢) (1 − 𝑢)

2

𝑍(
𝑛

𝛼
)

= lim
𝑛→+∞

𝐴
𝑖
(𝑛
+

) ⋅ lim
𝑛→+∞

𝑛/𝛼

𝑛

= 𝜌 ⋅
1

𝛼
,

(34)

when 𝑛 → +∞ holds, it has

𝐴
𝑖
(𝑛
+

) ∗ 𝑍
−1

[(1 − 𝑢)𝑍(
𝑛

𝛼
)] ≈ 𝜌 ⋅

𝑛

𝛼
. (35)
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Figure 2: Effect of arrival rate and time interval on expected
departure number.

Substituting (35) into (33) yields

𝑀
𝑖
(𝑛
+

) ≈ 𝐴
𝑖
(𝑛
+

) ∗ 𝑍
−1

[(1 − 𝑢)𝑍(
𝑛

𝛼
)]

+ 𝜌[

𝐸 [𝜒
2

𝑖
] + 𝛼

2𝛼2
− 1]

≈

{{{{{

{{{{{

{

𝜆𝑛 + 𝜌[

𝐸 [𝜒
2

𝑖
] + 𝛼

2𝛼2
− 1] , 𝜌 < 1,

𝑛

𝛼
+

𝐸 [𝜒
2

𝑖
] + 𝛼

2𝛼2
− 1, 𝜌 ≥ 1.

(36)

6. A Numerical Experiment

Based on Theorem 8 given above, the expected departure
number can be calculated easily. It is one of the main
distinctive highlights in the work. For showing this high-
light, a numerical experiment concerning the calculation
for expected departure number (𝑀

𝑖
(𝑛
+
)) is carried out here

to illustrate the effect of arrival rate (𝜆) and time interval
((0+, 𝑛+]) on the expected departure number (see Figure 2).

In this numerical operation, some necessary parameters
are taken as follows: the service time is arbitrarily distributed
and the service rate is 1/𝛼 = 0.46; the top value of time
interval (0+, 𝑛+] is valued from 𝑛 = 10 to 𝑛 = 99; the
arrival process is a Bernoulli process and the arrival rate is
determined in the range of 𝜆 ∈ [0.1, 0.99] including the
special case of 𝜌 ≥ 1.

FromFigure 2, we can see the expected departure number
is increasing as the length of time interval increases. It is also
increasing when the customer improves the arrival rate until
it edges up to the service rate 1/𝛼. The expected departure
number stops increasing and maintains being unchangeable
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when the arrival rate is greater than the service rate; that is,
𝜌 ≥ 1. This is because the server will stay in a busy state
permanently conditioning on 𝜌 ≥ 1 and in this case the
departure rate is just equal to the service rate.

7. Conclusions

By using probability decomposition techniques and renewal
process, this paper presents an original analysis for the depar-
ture process in discrete-time queue with random vacation
policy. It gains the following conclusions.

(1) The conclusion lim
𝑛→∞

(𝑀
𝑖
(𝑛
+
)/𝑛) = 𝜆 given by

Theorem 5 shows that, conditioning on 𝜌 < 1, the
expected number of departures per unit time (called
departure rate) is identical with the input rate and has
nothing to dowith the service rate or server’s vacation
policy.

(2) From the relation given inTheorem 5, that is,𝑚
𝑖
(𝑢) =

𝑚(𝑢)[(1 − 𝑢)𝑎
𝑖
(𝑢)], one sees that the expected depar-

ture number is decomposed into two parts: one is
the server busy probability (𝐴

𝑖
(𝑛
+
)), and another is

the expected departure number during busy period.
That is to say, the expected number of departures
during arbitrary time interval (0+, 𝑛+] is affected by
both the service rate and the length of busy period.
Furthermore, from Theorems 2 and 5 and Lemma 4,
it implies that this decomposition still holds under
steady condition; that is,

lim
𝑛→∞

𝑀
𝑖
(𝑛
+
)

𝑛
= lim
𝑛→∞

𝑀(𝑛
+
)

𝑛
⋅ lim
𝑛→∞

𝐴
𝑖
(𝑛
+

) =
1

𝛼
⋅ 𝜌.

(37)

Our further investigation indicates that this decom-
position still holds in most of varieties of 𝐺𝑒𝑜/𝐺/1
with exhaustive service.

(3) The approximate expansion of 𝑀
𝑖
(𝑛
+
) given by

Theorem 8 provides a valid method to calculate the
expected departure number during arbitrary time
interval (0+, 𝑛+].
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