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This paper presents a neural network assisted entry guidance law that is designed by applying Bézier approximation. It is shown that
a fully constrained approximation of a reference trajectory can be made by using the Bézier curve. Applying this approximation,
an inverse dynamic system for an entry flight is solved to generate guidance command. The guidance solution thus gotten ensures
terminal constraints for position, flight path, and azimuth angle. In order to ensure terminal velocity constraint, a prediction of
the terminal velocity is required, based on which, the approximated Bézier curve is adjusted. An artificial neural network is used
for this prediction of the terminal velocity. The method enables faster implementation in achieving fully constrained entry flight.
Results from simulations indicate improved performance of the neural network assisted method. The scheme is expected to have
prospect for further research on automated onboard control of terminal velocity for both reentry and terminal guidance laws.

1. Introduction

In the past half century, entry guidance law has been of
particular interest for research. One of the reasons for
this growing importance is the rise in missions to other
planets, which is further emphasized by recent endeavor
for prompt global strike capability. Although present day
guidance technologies are able to attain very high precision
in conventional guided munitions, the same cannot be said
for planetary entry vehicles. This is partly because in entry
guidance certain path constraints are considered, which are
not considered for conventional munition guidance. These
path constraints cannot be violated in entry flight; as such,
their satisfaction is the primary concern in such guidance.
Due to this unavoidable reason, some terminal constraints
seem to have been compromised in many entry guidance
laws. However, with the growing requirement for terminally
more accurate entry mission, there is a need to address these
terminal constraints with much more weightage. With this
in mind, an entry guidance law is presented, which, under
a wide range of uncertainty, appears to be able to satisfy
terminal constraints in position, velocity, and angular states
as well as comply with the hard path constraints.

Entry guidance law was first successfully applied in
the Apollo program [1, 2], which was a reference tracking
method. Thenceforth, an array of guidance techniques based
on reference tracking has followed [1, 3–10]. Essentially, these
methods are applications of different optimal control laws,
such as linear quadratic regulator (LQR) [4, 5], state depen-
dent Riccati equation (SDRE) [6], feedback linearization [7,
11], and pseudospectral control laws [9, 10]. These methods
strictly follow an offline trajectory without consideration
for onboard regulation of terminal states. As a result, it is
preferred to have a guidance law that is capable of addressing
unforeseen requirements for vehicle trajectory and it terminal
states. From this necessity, an alternate category of guidance
laws was developed.Thesemethods predict the terminal state
and correct the control command accordingly. Suchmethods
are categorized as “predictor-corrector” guidance laws [12–
16]. A number of entry guidance laws have been designed
using similar principle and these differ from each other in
their method of the prediction and subsequent derivation
of guidance correction. Although this genre of guidance law
eliminates the need for precomputed reference profile, it lacks
robustness due to difficulty in enforcing path constraints.
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Moreover, the onboard prediction process is computationally
engaging.

With future planetary entry and global payload deliv-
ery mission in consideration, neither precomputed profile
tracking nor predictor-corrector guidance law seems capa-
ble enough in achieving a multiconstrained entry flight.
Guidance laws that depend on a precomputed profile are
assumed to be more susceptible to error in the presence of
atmospheric and aerodynamic uncertainty. However, in such
guidance laws path constraints can be easily satisfied. On the
other hand, predictor-corrector guidance laws could be sug-
gested to be more autonomous, yet involve highly demand-
ing onboard computation. Under these circumstances, it is
believed that a guidance law would be better suited for future
requirements if it involved a simple computational method
for onboard modification of an offline profile that complies
with path constraints. This paper presents a guidance law
that is designed to work in such manner. The proposed
law uses a three-dimensional Bézier curve in approximating
the vehicle trajectory. It is shown that this approximation
significantly simplifies both offline reference generation and
onboard trajectory correction. The properties of Bézier curve
are employed to enforce initial and terminal states and
path constraints. This constrained approximation is then
used in generating the guidance command. The solution
thus attained readily satisfies terminal position and angular
constraints. However, for the satisfaction of terminal velocity
constraint, the method requires to predict the terminal
velocity under disturbance. At a previous work as reported
in [17], the prediction was made using a full state simulation.
In this paper, a neural network is utilized for the online
prediction of the terminal velocity. This significantly reduces
the total runtime of the guidance law. There is every hope
that the entry guidance law presented here could not only aid
in achieving higher accuracy in planetary landing missions
but also prove to be significant in the development of global
payload delivery vehicles.

2. Problem Statement

The focus of the paper is to present a guidance law for
atmospheric entry flight. An atmospheric entry flight usually
starts at an altitude of 120 km and terminates at around 25 to
30 km. However, from the literature it can be seen that the
majority of the guidance laws are designed to actively guide
the entry vehicle from 55 to 50 km down to 30 to 25 km,
which is due to the ineffectiveness of control measure over
the altitude of 60 km. Some of the guidance methods adopt
a quasiequilibrium glide (QEG) flight under the assumption
of the quasiequilibrium glide condition (QEGC) [13, 18,
19]. This condition defines a feasible flight corridor in the
altitude-velocity space. Flight within this corridor has been
mathematically found to ensure satisfaction of the associated
path constraints. Adopting the same conditions, the guidance
law is formulated to guide an entry vehicle from an altitude of
50 km and hand it over to terminal area energy management
(TAEM) system at an altitude of 25 km.

2.1. Trajectory Dynamics. For the trajectory dynamics, a
point mass vehicle model over a round earth is adopted. The
rotating earth effects can be assumed to be compensated by
the feedback nature of the guidance law. Thus, the three-
degree-of-freedom (3DOF) dynamics of a point mass entry
vehicle model (in a geodetic coordinate frame) can be
described through the following equations of motion:

̇𝑟 = V sin 𝛾, (1)

̇

𝜃 =

(V cos 𝛾 sin𝜓)
(𝑟 cos𝜑)

, (2)

�̇� =

V cos 𝛾 cos𝜓
𝑟

, (3)

V̇ =
𝐷

𝑚

− 𝑔 sin 𝛾, (4)

̇𝛾 =

𝐿 cos𝜎
(𝑚V)

− (

𝑔 cos 𝛾
V

) + (

V cos 𝛾
𝑟

) , (5)

̇
𝜓 =

𝐿 sin𝜎
(𝑚V cos 𝛾)

+

V cos 𝛾 sin𝜓 tan𝜑
𝑟

. (6)

In the above equations, the position of the vehicle is defined
by the parameters 𝑟, 𝜃, and𝜑which denote the radial distance,
longitude, and latitude, respectively. Vehicle dynamics is
represented by V (velocity inm/sec), 𝛾 (flight path in radians),
and𝜓 (azimuth angle in radians).Theother terms𝑚,𝑔,𝐿, and
𝐷 stand for vehicle mass (kg), gravitational acceleration, lift,
and drag, respectively.The aerodynamic forces are defined as

𝐿 = 0.5𝜌V2𝑆ref𝑐𝑙,

𝐷 = 0.5𝜌V2𝑆ref𝑐𝑑,
(7)

where 𝜌 is atmospheric density and 𝑐

𝑙
and 𝑐

𝑑
are the coeffi-

cients of lift and drag, respectively.

2.2. QuasiequilibriumGlide Condition. In the QEG flight, the
vertical component of acceleration and the flight path angle
are assumed to be small. Under this supposition, setting 𝛾 = 0

and 𝑑𝛾/𝑑𝑡 = 𝜀 (very small) in (5) gives the following QEG𝐶
expression:

𝐿 cos𝜎
(𝑚V)

− (

𝑔 cos 𝛾
V

) + (

𝑉 cos 𝛾
𝑟

) = 𝜀. (8)

The above expression of the QEGC is valid within a specific
range of altitude and velocity. Smooth transition to this
condition requires the satisfaction of another condition,
which involves the slopes of the trajectories before and after
the transition.Mathematically, it can be stated as in (9), where
𝑑𝑟/𝑑V is the slope of entry trajectory and 𝑑𝑟/𝑑V|QEGC is the
slope of a QEG flight trajectory. Once (9) is satisfied for a very
small positive value of 𝛿

0
(𝛿

0
> 0), the transition to QEG is

expected to be smooth and feasible. Consider
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The slope of a QEG trajectory (𝑑𝑟/𝑑V |QEG𝐶) is expressed as
follows where𝐻

𝑠
is the scale altitude:

𝑑𝑟

𝑑V















QEGC
=

V𝐻
𝑠
(2𝑚 cos 𝛾 + 𝑐

𝑙
𝜌𝑆ref𝑟 cos𝜎)

2

𝑚𝑔 cos 𝛾 (2𝑚𝐻

𝑠
cos 𝛾 + 𝑐

𝑙
𝜌𝑆ref𝑟
2 cos𝜎)

. (10)

The entry from an altitude of 120 km begins with a fixed angle
of attack and a zero bank angle (a higher bank angle brings
trajectory closer to heat rate constraint).The condition of (10)
is evaluated onboard and once it is satisfied (at an altitude of
around 50 km), the transition is made to the guidance law.
The guidance law is then tasked to guide the vehicle from
transition point to the TAEM entry point.

2.3. Path Constraints. Although in the presented problem a
QEG flight is adopted, the associated path constraints cannot
be assumed to be satisfied under disturbances. Therefore,
additional measure is required to ensure satisfaction of the
path constraints. The associated path constraints are heating
rate, normal aerodynamic load factor, and dynamic pressure.
These are expressed as

̇

𝑄 = 𝐶
√
𝜌V3.5 ≤ ̇

𝑄max,

𝑛 =

𝐿

(𝑚𝑔)

≤ 𝑛max,

𝑞 = 0.5𝜌V2 ≤ 𝑞max,

(11)

where the maximum allowable limits of heat rate (𝑄max),
normal load (𝑛max), and dynamic pressure (𝑞max) are all
specified and the term 𝐶 in (11) is a given constant.

2.4. Terminal Constraints. Terminal constraints are set as
restrictions on the vehicle’s position, angle, and velocity as per
the requirements for TAEM,where termswith the superscript
“𝑑” denote desired values and those with subscript “𝑓”
represent actual terminal values:

𝑟

𝑓
− 𝑟

𝑑
≈ 0, 𝜃

𝑓
− 𝜃

𝑑
≈ 0, 𝜑

𝑓
− 𝜑

𝑑
≈ 0,

𝛾

𝑓
− 𝛾

𝑑
≈ 0, V

𝑓
− V𝑑 ≈ 0, 𝜓

𝑓
− 𝜓

𝑑
≈ 0.

(12)

2.5. Physical Constraints. Besides the constraints of entry
flight and TAEM requirement, the flight vehicle is assumed to
have limitations on the control parameters.The vehicle needs
to be guided within the following limitations:

𝛼min ≤ 𝛼

𝑐
≤ 𝛼max, 𝜎min ≤ 𝜎

𝑐
≤ 𝜎max. (13)

3. Guidance Law Design

The reason for using a Bézier approximation is to facilitate an
inverse solution of the entry dynamics. The inverse problem
approach is essentially the core of this method. Exposition
of the method comprises the inverse dynamics formulation
followed by the techniques for the Bézier approximation and
the enforcement of constraints.

3.1. Inverse Dynamics Formulation. The first step in the inve-
rse approach is to derive an expression for the control param-
eters (angle of attack 𝛼 and bank angle 𝜎) from the vehicle
dynamics. In order to apply a Bézier approximation, the
inverse formulation is carried out by removing dependency
on time (𝑡), that is, obtaining a latitude dependent system of
dynamic equations, as in the following:

𝑟


=

𝑟 tan 𝛾
cos𝜓

, (14)

𝜃


= tan𝜓sec𝜑, (15)

V =
𝑟 (𝐷 − 𝑚𝑔 sin 𝛾)
(𝑚V cos 𝛾 cos𝜓)

, (16)

𝛾


=

(𝑟𝐿 cos𝜎 − 𝑟𝑚𝑔 cos 𝛾 + 𝑚V2 cos 𝛾)
(𝑚V2 cos 𝛾 cos𝜓)

,

(17)

𝜓


=

𝑟𝐿 sin𝜎
(𝑚V2 cos 𝛾 cos𝜓)

+ tan𝜓 tan𝜑. (18)

From (17) and (18), expressions for the acceleration com-
mands can be found as

𝑎

𝑦
= (𝛾

 cos𝜓 +

𝑟𝑔

V2
+ 1)(

𝑚V2 cos 𝛾
𝑟

) , (19)

𝑎

𝑧
= (𝜓


− tan𝜓 tan𝜑)(

𝑚V2cos2𝛾 cos𝜓
𝑟

) , (20)

where

𝛾


= cos2𝛾(𝑟 cos𝜓 − 𝑟


𝜓

 sin𝜓 −

𝑟

2 cos𝜓
𝑟

) , (21)

𝜓


= cos2𝜓 (𝜃

 cos𝜑 − 𝜃


𝜑

 sin𝜑) . (22)

Analysis of (19) and (20) indicate that the guidance command
of the vehicle depends on the shape of the trajectory, through
the terms 𝜃 and 𝜑

. This deduction leads to the opinion
that the guidance commands can be solved explicitly if the
derivative of an approximation of the entry trajectory is
available.

3.2. Approximation of Entry Trajectory Using the Bezier Curve.
In the presentedmethod, the entry trajectory is approximated
by a Bézier curve. This is because the derivative of this
approximation can be easily obtained which is shown in
the formulation. Theoretically an entry trajectory can be
described precisely using a Bézier curve. However, the degree
of the curve depends on the entry trajectory. For some
trajectories a 2nd-order or 3rd-order curve may suffice,
whereas a curve with a higher degree of freedom may be
required for other entry trajectories. As such, the degree
of the curve depends on the trajectory profile. The method
proposed in this paper is applicable only for a Bezier curve of
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3rd degree. As such, for curveswith higher degree of freedom,
the trajectory needs to be partitioned into 3rd degree Bézier
curves.

Mathematically, a Bézier curve is defined as a parametric
curve 𝑃(𝜏) that is a polynomial function of the parameter 𝜏 ∈

[0, 1]. The matrix form of expression for a Bézier curve is

𝑃 (𝜏) = [𝜏

𝑛
, 𝜏

𝑛−1
, . . . , 𝜏, 1] [𝑁] [𝑃0

, 𝑃

1
, . . . , 𝑃

𝑛−1
, 𝑃

𝑛
]

𝑇

, (23)

where𝑃
𝑖
(𝑖 = 0, 1, . . . , 𝑛−1) are the control points of the curve,

𝑛 is the number of these points, and [𝑁] is a basis matrix
which depends on the degree of the curve and is expressed
[20] as
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(
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𝑛
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0
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𝑛
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𝑛
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(

𝑛

1

)(

𝑛 − 2

𝑛 − 2

) (−1)
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...
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(

𝑛

0

)(

𝑛

1
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1
(

𝑛

1

)(

𝑛 − 1

0

) (−1)

0
⋅ ⋅ ⋅ 0

(

𝑛

0

)(

𝑛

0
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0
0 ⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (24)

The degree of a Bézier curve depends on the number of points
(i.e., control points)which are used to define it. Figure 1 shows
Bézier curves of third degree where the control points are 𝑃

0
,

𝑃

1
,𝑃
2
, and𝑃

3
. Only defining these control points complete the

Bézier curve. Bézier curves can be of any number of degrees.
The more the number of degrees is, the more flexible the
curve is. In the method of this paper, a third-degree curve
(defined by 4 control points) is selected.

In the proposed work, the entry trajectory is approxi-
mated by a Bezier curve in a local 3D coordinate system. As
such, two coordinate transformations are required, first from
the geodetic to the earth-centered-earth-fixed, and then to
the local coordinate frame as shown in (25) [21]. Consider

{

{

{

𝑥

𝑒

𝑦

𝑒

𝑧

𝑒

}

}

}

= 𝑟

{

{

{

cos𝜑 sin 𝜃
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cos𝜑 cos 𝜃

}

}

}

,

{

{

{

𝑥

𝑦

𝑧

}

}

}

=

{

{

{

− sin 𝜃
0

cos 𝜃
0

0

− cos𝜑
0
cos 𝜃
0

− cos𝜑
0
sin 𝜃
0

− sin 𝜃
0

− sin𝜑
0
cos 𝜃
0

− sin𝜑
0
sin 𝜃
0

cos𝜑
0

}

}

}

×

{

{

{

𝑥

𝑒
− 𝑥

0

𝑦

𝑒
− 𝑦

0

𝑧

𝑒
− 𝑧

0

}

}

}

.

(25)

After the above transformations, the vehicle trajectory can be
represented as three Bézier curves as shown in Figure 5, each
being projections of it on the planes 𝑥𝑦, 𝑦𝑧, and 𝑧𝑥:

𝑥 (𝜏) = [𝜏

3
, 𝜏

2
, 𝜏, 1] [

3
𝑁
] [𝑃𝑥

0
, 𝑃𝑥

1
, 𝑃𝑥

2
, 𝑃𝑥

𝑓
]

𝑇

,

𝑦 (𝜏) = [𝜏

3
, 𝜏

2
, 𝜏, 1] [

3
𝑁
] [𝑃𝑦

0
, 𝑃𝑦

1
, 𝑃𝑦

2
, 𝑃𝑦

𝑓
]

𝑇

,

𝑧 (𝜏) = [𝜏

3
, 𝜏

2
, 𝜏, 1] [

3
𝑁
] [𝑃𝑧

0
, 𝑃𝑧

1
, 𝑃𝑧

2
, 𝑃𝑧

𝑓
]

𝑇

,

(26)

where 3
𝑁

is the Bézier basis matrix of third order, and the
term 𝜏 and the end control points 𝑃

𝑥0
, 𝑃
𝑥𝑓
, 𝑃
𝑦0
, 𝑃
𝑦𝑓
, 𝑃
𝑧0
, and

𝑃

𝑧𝑓
can be defined using the properties of a Bézier curve:

𝜏 =

(𝑧 − 𝑧

0
)

(𝑧

𝑓
− 𝑧

0
)

, (27)

𝑃𝑥

0
= 𝑥

0
, 𝑃𝑥

𝑓
= 𝑥

𝑓
= 𝑥

𝑑
,

𝑃𝑦

0
= 𝑦

0
, 𝑃𝑦

𝑓
= 𝑦

𝑓
= 𝑦

𝑑
,

𝑃𝑧

0
= 𝑧

0
, 𝑃𝑧

𝑓
= 𝑧

𝑓
= 𝑧

𝑑
.

(28)

The approximated Bézier curve and its control points are
shown in Figure 2 along with their projections. According to
the properties of a Bézier curve, the interior control points
𝑃

1
and 𝑃

2
lie on the tangents of the curve at points 𝑃

0
and

𝑃

𝑓
. From the projection on the 𝑥𝑦 plane, it is evident that the

interior control points satisfy the initial and terminal flight
path angle constraints through 𝑥 and 𝑦 coordinates, whereas
the constraints of azimuth angle are satisfied through the
𝑧 coordinate. As such, defining the coordinates of 𝑃

1
and

𝑃

2
completes the approximation of a constrained trajectory.

However, these points need to be defined such that these
remain on the tangent lines. This, as explained in Figure 3,
ensures that the boundary conditions for flight path angle and
azimuth angle are met.

The potential of adjusting a Bézier curve, while keeping
the end points and directions unchanged, is very significant.
This means that if a flight trajectory can be approximated as a
Bézier curve, then it is possible to adjust its flight by moving
the interior control points along the end tangents, thus
keeping end points and directions unchanged. In order to
avail this technique, parameters 𝑘

1
and 𝑘

2
termed as “Bézier

Parameter” are introduced. These parameters are used to
regulate movement of the interior control points along their
line of tangency. Figure 4 illustrates the Bézier parameters. In
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Figure 1: Bézier curves of third degree and their control polygons.

the figure, 𝑃
𝑚
is the intersection point of the tangent lines

𝑃

0
𝑃

𝑚
and 𝑃
𝑓
𝑃

𝑚
. Representation of Bézier parameter 𝑘

1
as the

ratio of (𝑃
1
− 𝑃

0
) and (𝑃

𝑚
− 𝑃

0
) facilitates sliding of 𝑃

1
on the

tangent line 𝑃
𝑚
𝑃

0
with changing values of 𝑘

1
. Thus, if only 𝑘

2

is changed, control points 𝑃
0
, 𝑃
1
, 𝑃
𝑓
and tangent lines 𝑃

0
𝑃

𝑚

and 𝑃

𝑓
𝑃

𝑚
stay unchanged in their position and direction.

Mathematically, the Bezier parameters can be defined as

𝑘

1
=

(𝑃

𝑥1
− 𝑃

𝑥0
)

(𝑃

𝑥𝑚
− 𝑃

𝑥0
)

, 𝑘

2
=

(𝑃

𝑥2
− 𝑃

𝑥𝑚
)

(𝑃

𝑥𝑓
− 𝑃

𝑥𝑚
)

. (29)

Using the Bézier parameters, the following equations can be
derived for the intersection point and interior control points:

𝑃

𝑦𝑚
=

tan 𝛾
0
tan 𝛾
𝑓

tan 𝛾
𝑓
− tan 𝛾

0

(𝑃

𝑥𝑓
− 𝑃

𝑥0
+

𝑃

𝑦𝑓

tan 𝛾
𝑓

−

𝑃

𝑦0

tan 𝛾
0

) ,

𝑃

𝑥𝑚
= 𝑃

𝑥0
+

(𝑃

𝑦𝑚
− 𝑃

𝑦0
)

tan 𝛾
0

,

𝑃

𝑥1
= 𝑘

1
(𝑃

𝑥𝑚
− 𝑃

𝑥0
) + 𝑃

𝑥0
,

𝑃

𝑥2
= 𝑘

2
(𝑃

𝑥𝑓
− 𝑃

𝑥𝑚
) + 𝑃

𝑥𝑚
,

𝑃

𝑦1
= 𝑃

𝑦0
+ (𝑃

𝑥1
− 𝑃

𝑥0
) tan 𝛾

0
,

𝑃

𝑦2
= 𝑃

𝑦𝑓
+ (𝑃

𝑥2
− 𝑃

𝑥𝑓
) tan 𝛾

𝑓
,

𝑃

𝑧1
= 𝑃

𝑧0
− (𝑃

𝑥1
− 𝑃

𝑥0
) tan𝜓

0
,

𝑃

𝑧2
= 𝑃

𝑧𝑓
+ (𝑃

𝑥𝑓
− 𝑃

𝑥2
) tan𝜓

𝑓
.

(30)

For a terminally constrained flight, it is thus possible to
complete the approximation provided that appropriate val-
ues of the parameters 𝑘

1
and 𝑘

2
are known. These val-

ues can be obtained through optimization. The trajectory
can then be represented by the initial and terminal states
(𝑃
0
, 𝑃

𝑓
, 𝛾

0
, 𝜓

0
, 𝛾

𝑓
, 𝜓

𝑓
) and the Bézier parameters (𝑘

1
, 𝑘

2
).

With the approximated Bezier curve available, the first and

second derivatives of the entry vehicle’s position vectors
𝑥(𝜏), 𝑦(𝜏), and 𝑧(𝜏) can be found as follows:

𝑑𝑥

𝑑𝜏

= [3𝜏

2
2𝜏 1 0] [

3
𝑁
] [
𝑃

𝑥0
𝑃

𝑥1
𝑃

𝑥2
𝑃

𝑥𝑓]

𝑇

,

𝑑𝑦

𝑑𝜏

= [3𝜏

2
2𝜏 1 0] [

3
𝑁
] [
𝑃

𝑦0
𝑃

𝑦1
𝑃

𝑦2
𝑃

𝑦𝑓]

𝑇

,

𝑑𝑧

𝑑𝜏

= [3𝜏

2
2𝜏 1 0] [

3
𝑁
] [
𝑃

𝑧0
𝑃

𝑧1
𝑃

𝑧2
𝑃

𝑧𝑓]

𝑇

,

𝑑

2
𝑥

𝑑𝜏

2
= [6𝜏 2 0 0] [

3
𝑁
] [
𝑃

𝑥0
𝑃

𝑥1
𝑃

𝑥2
𝑃

𝑥𝑓]

𝑇

,

𝑑

2
𝑦

𝑑𝜏

2
= [6𝜏 2 0 0] [

3
𝑁
] [
𝑃

𝑦0
𝑃

𝑦1
𝑃

𝑦2
𝑃

𝑦𝑓]

𝑇

,

𝑑

2
𝑧

𝑑𝜏

2
= [6𝜏 2 0 0] [

3
𝑁
] [
𝑃

𝑧0
𝑃

𝑧1
𝑃

𝑧2
𝑃

𝑧𝑓]

𝑇

.

(31)

Using the above equations, the previously unknown terms of
(20) and (21) can then be found using the following relations:

𝑟


=

(𝑑𝑦/𝑑𝜏)

(𝑑𝑧/𝑑𝜏)

, 𝜃


=

(𝑑𝑥/𝑑𝜏)

(𝑑𝑧/𝑑𝜏)

, 𝜑


=

(𝑑𝑧/𝑑𝜏)

(𝑑𝑧/𝑑𝜏)

,

𝑟


=

{(𝑑

2
𝑦/𝑑𝜏

2
) − (𝑑𝑦/𝑑𝜏) (𝑑

2
𝑧/𝑑𝜏

2
) / (𝑑𝑧/𝑑𝜏)}

(𝑑𝑧/𝑑𝜏)

2
,

𝜃


=

{(𝑑

2
𝑥/𝑑𝜏

2
) − (𝑑𝑥/𝑑𝜏) (𝑑

2
𝑧/𝑑𝜏

2
) / (𝑑𝑧/𝑑𝜏)}

(𝑑𝑧/𝑑𝜏)

2
.

(32)

3.3. Enforcement of Constraints. In the formulation presented
so far, the constraints of terminal position are addressed
through (28). The constraints on flight path and azimuth
angles are dealt through (30). The normal load constraint is
imposed on the acceleration command as follows:

𝑎

𝑦
=

𝑎

𝑦
𝑛max𝑔

√𝑎

2

𝑦
+ 𝑎

2

𝑧

,

𝑎

𝑧
=

𝑎

𝑧
𝑛max𝑔

√𝑎

2

𝑦
+ 𝑎

2

𝑧

,

if
√𝑎

2

𝑦
+ 𝑎

2

𝑧

𝑔

≥ 𝑛max.

(33)

From the above acceleration commands, the angle of attack
and bank angle commands can be found:

𝛼

𝑐
= 𝑓

−1
(𝑐

𝑙
) = 𝑓

−1
(

𝑚𝑎

𝑦

(𝑞𝑆ref)
) ,

𝜎

𝑐
= tan−1 (

𝑎

𝑧

𝑎

𝑦

) .

(34)

Heat rate and dynamic pressure constraints (11) are trans-
formed into an angle of attack constraint by employing
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QEGC. The lower limits on the angle of attack angle ensure
satisfaction of the constraints:

𝛼

𝑞

min = 𝑓

−1
(𝑐

𝑞

𝑙min
) = 𝑓

−1
𝑚V (𝑔/V + 𝜀 − V/𝑟)

𝑞max𝑆ref
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Figure 4: Bézier parameter representation.

𝛼

𝑄

min = 𝑓

−1
(𝑐

𝑄

𝑙min
) = 𝑓

−1
2𝑚𝐶

2V5 (𝑔/V + 𝜀 − V/𝑟)
̇

𝑄

2

max𝑆ref
. (35)

The final control command may then be obtained as follows:

𝛼

𝑐
=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝛼max if 𝛼
𝑐
> 𝛼max

𝛼min if 𝛼
𝑐
< 𝛼min

𝛼

𝑞

min if 𝛼
𝑐
< 𝛼

𝑞

min

𝛼

𝑄

min if 𝛼
𝑐
< 𝛼

𝑄

min.

𝜎

𝑐
=

{

{

{

{

{

𝜎

𝑐
if 𝜎min ≤ 𝜎

𝑐
≤ 𝜎max

𝜎max if 𝜎
𝑐
> 𝜎max

𝜎min if 𝜎
𝑐
> 𝜎max.

(36)

The control command thus obtained complies with all path
and boundary constraints except that of velocity. For velocity
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2
.

constraint, a technique is proposed. In this approach, a
relation between terminal velocity and the parameter 𝑘

2
is

found, which is then used for adjusting 𝑘
2
as per the velocity

requirement.The details regarding this method are explained
in the following section.

4. Guidance Method Implementation

The guidance method is implemented in two steps. The
first part is the parameter optimization process where the
Bézier parameters 𝑘

1
and 𝑘

2
are obtained off board. The

onboard implementation then follows, which includes a
neural network assisted module for velocity control. The
details of the complete method are explained here.

4.1. Parameter Optimization. The parameter optimization
process is aimed at obtaining the parameters 𝑘

1
and 𝑘

2

for representing a feasible trajectory. This process is similar

w1

b1

x
y
z
�
𝛾
𝜓

�f

w2

b2

Input
vector

vector
Hidden layer Output layer

Output

Figure 7: Architecture of feed forward network.

to trajectory optimization, which is used in profile track-
ing guidance. The difference is that the proposed method
searches for a feasible and constrained trajectory in terms
𝑘

1
and 𝑘

2
. Additionally, the search space in the proposed

technique is significantly limited. For instance, for a QEG
trajectory, a search space in the range of [0.4∼1] is found
to be adequate. Within these ranges, guesses are made for
the values of 𝑘

1
and 𝑘

2
. Using these guess values and the

boundary conditions, an inverse solution can be obtained.
This solution is in turn checked against the terminal velocity
constraint. Once this requirement is fulfilled, the optimiza-
tion process is terminated. An illustration of the process is
shown in Figure 5.

4.2. Adjustment of 𝑘
2
. Satisfaction of the terminal velocity

constraint is ensured by adjusting the parameter 𝑘
2
.The effect

of 𝑘
2
on the terminal velocity is explained in Figure 6. The

adjustment is made by using a polynomial expression of 𝑘
2

with respect to V
𝑓
. This polynomial expression as in (37) can

be generated during the parameter optimization:

𝑘

adjust
2nominal

= 𝑎V2
𝑓
+ 𝑏V
𝑓
+ 𝑐. (37)

The polynomial in (37) can be used for a nominal flight only.
In the case of a perturbed flight, the polynomial relation is
supposed to vary. Analyses of several cases indicate that the
change in the resulting terminal velocity due to perturbation
remains almost the same for all values of 𝑘

2
. Following this

deduction, the relation in (38) is used for adjusting 𝑘
2
, where
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V
𝑓𝑛

and V
𝑓𝑝

are the terminal velocities for the nominal and
perturbed cases:

𝑘

adjust
2

= 𝑎(2V
𝑓𝑛

− V
𝑓𝑝
)

2

+ 𝑏 (2V
𝑓𝑛

− V
𝑓𝑝
) + 𝑐.

(38)

Using the above relation, a desired terminal velocity can be
maintained through 𝑘

2
adjustment given that V

𝑓𝑝
is known.

For this, a neural network is used to predict terminal velocity
in the presence of perturbations.

4.3. Neural Network. Artificial neural networks (ANN) are
inspired by the biological neural systems.These networks are
composed of artificial neurons which are designed to receive
input and generate activation signal which in turn triggers an
output. A network of these artificial neurons can be trained
to solve complex problems. In several research on entry
guidance methods [22, 23], application of ANN has been
made. In the present work, an ANN is used for predicting
terminal velocity based on the current state. For this purpose,
a two-layer feed forward back propagation network is used.
The ANN is designed to receive vehicle states as input and
return terminal velocity as the output. Architecture of the
ANN is shown in Figure 7. As in a biological brain, ANNs
learn through training. In order to train the ANN, a set
of training data is required. In the proposed method, the
training data set consists of current state parameters and
the corresponding terminal velocity outputs. For generating
the data, a number of simulations with nominal values
of 𝑘

1
and 𝑘

2
were performed for different perturbations.

Based on this training, the ANN provides prediction of the
terminal velocity and accordingly 𝑘

2
is adjusted. Employing

ANN can substantially reduce the time needed for onboard
computation of terminal velocity.

4.4. Onboard Guidance Law Implementation. The onboard
implementation starts with inputs of initial state, terminal
state, and the optimized Bézier parameters. A flow chart of
the process is shown in Figure 8. At every guidance cycle,
the control points are recalculated for the current position,
which are then used to solve the inverse system. In brief, the
following steps are performed.

(1) From the current state (𝑟, 𝜃, 𝜑, 𝛾, 𝜓), the control points
𝑃

𝑥0
, 𝑃

𝑦0
, 𝑃

𝑧0
are defined.
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Figure 11: Simulation results. (a) Altitude, (b) velocity, (c) flight path angle, and (d) azimuth angle.
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Figure 13: Control history from the simulations. (a) Angle of attack
profile and (b) bank angle profile.

(2) Using the stored values of 𝑘
1
and 𝑘

2
, the interior

control points are calculated.

(3) The acceleration commands are obtained and the path
constraints are applied.

(4) At specified intervals, the terminal velocity is pre-
dicted using the ANN, and if necessary, 𝑘

2
is adjusted

accordingly.
5. Guidance Law Evaluation

Performance and robustness of the guidance law have been
evaluated through simulations of full nonlinear dynamics
for Lockheed-Martin’s CAV-H vehicle [24]. It is a typical
hypersonic high lift entry vehicle with a weight of 907 kg and
a reference area of 0.4839m2. The aerodynamic model of the
vehicle was taken from [25]. In the evaluation, a nominal
profile is selected and simulations are carried out considering
atmospheric disturbances, model uncertainties (lift and drag
coefficients), and initial state perturbations.

5.1. Nominal Profile and Perturbations. A nominal trajectory
was generated for the desired boundary conditions using
the off board parameter optimization process. The specified
boundary conditions and the obtained Bézier parameters are
shown in Table 1.

5.2. Neural Network Design. The ANN for the prediction of
the terminal velocity was set up using the neural network
toolbox ofMATLAB.A two-layer feed forward back propaga-
tion network was used with 1000 neurons and it was trained
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Figure 14: Path constraint plot for the runs. (a) Dynamic pressure remains within 110 kPa, (b) heating rate stays within 1.5MW/m2, and (c)
the normal load is within 1 g.
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Table 1: Nominal profile and Bézier parameters.

Nominal profile
Parameter Initial position Terminal position
Altitude 50 km 25 km
Velocity 7500m/sec 2630m/sec
Flight path angle −0.001∘ −0.6∘

Azimuth angle 0∘ 0∘

Parameters 𝑘

1
𝑘

2

Bézier parameters 0.848 0.717

for 1000 cases. Comparison of the ANN result with actual
simulation data indicated 99% accuracy as shown in Figure 9.
It should be mentioned that accuracy of ANN prediction
depends on the number of neurons.

5.3. Polynomial for Terminal Velocity Control. The polyno-
mial expression of 𝑘

2
with respect to V

𝑓
. was generated during

parameter optimization. The obtained coefficients for the
polynomial were 𝑎 = 2.32 × 10

−7, 𝑏 = −0.0024, and 𝑐 =

5.46. Figure 10 shows the effect of the Bézier parameters (𝑘
1

and 𝑘

2
) on the terminal velocity. The plots indicate that the

Table 2: The perturbations in Monte Carlo run.

Parameter Value
Range ±1.5 km
Altitude ±1.5 km
Cross range ±1.5 km
Aerodynamic modelling ±10%
Velocity ±75m/sec
Flight path angle ±0.06∘

Azimuth angle ±0.06∘

Atmospheric modelling ±10%

Table 3: Monte Carlo simulation results.

Parameter Miss distance Δ𝛾

𝑓
Δ𝜓

𝑓
ΔV
𝑓

Maximum 159m 0.002∘ 0.02∘ 19.8m/sec
Mean 0.22m 0.0001∘ 0.002∘ 5.01m/sec
Std. deviation 4.54m 0.001∘ 0.003∘ 7.23m/sec

increase in the value of 𝑘
1
increases the range of achievable

terminal velocity.Within this range, an increase in 𝑘
2
reduces

the terminal velocity.

5.4. Simulation Results. Simulations were carried out for 500
cases with normally distributed errors in the initial state and
random ±10% error in aerodynamic and atmospheric mod-
eling. The perturbation specifications are shown in Table 2.
Independent randomvariableswith normal distributionwere
used tomodel the initial perturbations.The dispersion ranges
shown in Table 2 are three standard deviation (3𝜎) values.

The state plots from the 500 cases are shown in Figure 11.
The terminal errors in the state have been plotted in Figure 12.
For ease of understanding, the statistical result has been given
in Table 3.
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Graphical representation of the terminal error statistics
is shown in Figure 13. Considering the results, the proposed
method seems effective in meeting terminal constraints
under perturbations and uncertainties.

Attack and bank angle profiles corresponding to the
Monte Carlo simulation are plotted in Figure 13, with an
indication of the nominal control profile. The plot shows
smooth control history. The plots of dynamic pressure, heat
flux, and normal load are shown in Figure 14.The simulations
were carried out with themaximumvalue of these constraints
set as 200 k Pa, 2MW/m2, and 2 g, respectively. The results
show for all the cases that the constraints were met with
adequate margin remaining.

The result shown in Figure 11 shows the terminal velocity
error to be within 25m/sec, which suggests high precision.
This accuracy is possible due to the technique used for
maintaining the terminal velocity constraint. Figure 15 shows
the plot of terminal velocity errors for the 500 cases run
with (red colored) and without (cyan colored) adjustment of
𝑘

2
. The adjustment appears to have achieved a remarkable

reduction in the velocity error.

6. Conclusions

In this paper, an inverse guidance law is presented.The central
aspect of the method is the representation of a constrained
trajectory using a Bézier curve. In the formulation, the
approximation is made by using two proposed parameters.
These parameters are derived from the Bézier control points
and are utilized for ensuring boundary constraints. The
method also employs ANN for predicting and controlling
terminal velocity.The proposed method is evaluated through
a 500-run simulation considering perturbations in the initial
state, and error in aerodynamic and atmospheric modelling.
The results indicate that the guidance scheme performs
remarkably in satisfying terminal and path constraints. The
presented method is however limited to trajectories with
limited curvature variation. Further research on use of a
higher degree Bézier curve and a faster parameter optimiza-
tion process can increase the method’s applicability in global
payload delivery systems as well as future planetary missions.
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