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Clustering data has a wide range of applications and has attracted considerable attention in data mining and artificial intelligence.
However it is difficult to find a set of clusters that best fits natural partitionswithout any class information. In this paper, amethod for
detecting the optimal cluster number is proposed. The optimal cluster number can be obtained by the proposal, while partitioning
the data into clusters by FCM (Fuzzy c-means) algorithm. It overcomes the drawback of FCM algorithm which needs to define the
cluster number 𝑐 in advance. The method works by converting the fuzzy cluster result into a weighted bipartite network and then
the optimal cluster number can be detected by the improved bipartite modularity. The experimental results on artificial and real
data sets show the validity of the proposed method.

1. Introduction

Clustering is the unsupervised classification of data points
into groups or clusters, such that samples in the same group
are similar to each other, while patterns in different groups are
dissimilar. In past decades, a number of clustering algorithms
have been proposed, attempting to classify the given data set
into groups by using different similarities. Generally, these
algorithms can be classified into three cases: hard (crisp)
cluster, soft (fuzzy) cluster, and possibilistic clustering [1–3].
The classical clustering algorithms should be 𝑐-means and
fuzzy 𝑐-means and their various improved versions. However,
these algorithms require the user to specify the number 𝑐,
of clusters which the user does not usually know in advance
or may not want to specify. As a consequence, the clustering
result often depends on the choice of parameter. Therefore
a very challenging problem in cluster analysis is the cluster
validity problem in the literatures, which consists of finding
the optimal value for 𝑐.

In fact, clustering validation is a technique to find a set of
clusters that best fits natural partitions (number of clusters)
without any class information. Based on FCM algorithm and
bipartite network, in this paper, a method for finding the
optimal cluster number 𝑐 is suggested. A weighted bipartite
network is first constructed by using of membership matrix

and centers of each clusters obtained by FCM algorithm.
Then the bipartite modularity of the bipartite network is
extended to the case of the weighted bipartite network.
Last, the optimal cluster number 𝑐 is obtained by optimal
community structures. To validate the effectiveness of the
proposed method, one has done the experiments on seven
artificial data sets and seven real data sets. As a result, the
optimal cluster number 𝑐 has been detected for most of data
sets.

2. Related Works
2.1. Some Cluster Validity Indices. The purpose of clustering
algorithm is to divide the given data set 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}

into groups𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑐
. The partition matrix𝑈 of size 𝑐 ×

𝑛 may be represented as 𝑈 = [𝑢
𝑖𝑗
], 𝑖 = 1, 2, . . . , 𝑐 and 𝑗 =

1, 2, . . . , 𝑛, where 𝑢
𝑖𝑗
is themembership of sample𝑥

𝑗
to cluster

𝑋
𝑖
. In the case of crisp partitioning, the following condition

should be satisfied: 𝑢
𝑖𝑗
= 1 if 𝑥

𝑗
∈ 𝑋
𝑖
; otherwise, 𝑢

𝑖𝑗
= 0 [4].

Formally, the goal of clustering analysis can be repre-
sented as follows:

𝑐

⋃

𝑖=1

𝑋
𝑖
= 𝑋,

𝑋
𝑖
̸= 0, 𝑖 = 1, 2, . . . , 𝑐,

𝑋
𝑖
∩ 𝑋
𝑗
= 0, 𝑖 = 1, 2, . . . , 𝑐, 𝑗 = 1, 2, . . . , 𝑛.

(1)
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In the case of fuzzy clustering, the membership 𝑢
𝑖𝑗
is in

interval [0, 1]. The crisp clustering may be viewed as a special
case of fuzzy clustering.

No matter what, we take crisp partitioning method or
fuzzy clustering algorithm to separate data set into groups,
the generated partitionsmay not reflect the desired clustering
of the data because of inappropriate choice of algorithmic
parameters. Thus, it is a key problem how to determine the
cluster number 𝑐, especially for real data sets. Clustering is
an unsupervised classification process and therefore it has
no a priori information of a data set. That is to say that
user has no prior knowledge about the number of classes.
For two-dimensional data or data set with small size, it is
possible to visually verify the validity of the results. However,
the visualization of the data set in high dimensional space
or with huge size would be difficult. Thus it is difficult to
partition the given data set into clusters which best fit the
natural distribution of the data set.

To find the optimal cluster number 𝑐, the researchers
proposed some validity indices based on fuzzy cluster result
obtained by FCM algorithm. Once the partition is obtained
by a clustering method, the validity function can help us to
validate whether it accurately presents the structure of the
data set or not. In Table 1, some popular validity indices are
listed. The earliest proposed fuzzy cluster validity functions
associated with FCM are the partition coefficient (PC) and
partition entropy (PE) [5, 6]. NPC and NPE, modification
of the PC and PE, proposed by Dunn and Roubens [7,
8] in succession. These indices only use the membership
values and have the advantage of being easy to compute.
Considering the compactness and separation of data set,
Fukuyama and Sugeno [9] and Xie and Beni [10] proposed
FS and XB indices, respectively. Kwon extended Xie and
Beni’s index to eliminate its tendency to monotonically
decrease by introducing a punishing function in Xie and
Benis original validity index [11]. Based on the concepts of
hypervolume and density, Gath and Geva [12] put forward
the fuzzy hypervolume validity FHV.The introduction of the
concepts of fuzzy compactness and fuzzy separation to the
traditional validity indices allows Zahid et al. to propose a
novel index to evaluate the fitness of partitions produced by
fuzzy clustering algorithms [13]. Wu and Yang use the factors
from a normalized partition coefficient and an exponential
separation measure for each cluster and then pool these two
factors to create the PCAES validity index [14]. They also
discussed the problem that the validity indexes face in a noisy
environment. By solving themaximum value of PBMF index,
Pakhira et al. [15] measured the goodness of clustering on
different partitions of a data set.

In general, an optimal cluster number 𝑐 can be found
by solving maximum or minimum of theses indices, respec-
tively, to produce the best clustering performance for the data
set𝑋.

2.2. The Bipartite Network. Networks have attracted a burst
of attention in the last decade, with applications to natural,
social, and technological networks. To understand the nature
of a complex system, a common approach is to map the
interconnected objects in the complex system to a complex

network and study the structure of the complex network.
Many real-world networks display natural bipartite structure.
Examples include the actors-films network and the papers-
scientists network [16, 17]. Because one-mode projection of
bipartite networks will bring some drawbacks and affect the
properties of the networks, it is an important problem to
directly analyze the original bipartite networks. In bipartite
networks, there are two nonoverlapping sets of nodes called
top nodes and bottom nodes. The edges only connect a pair
of vertices which belong to different sets.

One of the common characteristics of many bipartite
networks is their community structures which are seen as
groups of nodes within which connections are dense and
between which connections are sparse. Although the notion
of community structure is straightforward, construction of
an efficient algorithm for identification of the community
structure in a bipartite network is highly nontrivial. A num-
ber of algorithms for detecting the communities have been
developed, each of them attempts to uncover a reasonable
good partition of the network. To measure the division
quality of a network, various modularity functions have
been suggested. Using the modularity, the quality of any
assignment of vertices to modules can be assessed. Guimerà
et al. [18] proposed a projection based method. It transforms
the bipartite network into an one-mode network and uses
method for one-mode network to discover communities.
They strikingly demonstrated that the analysis of a projection
can give incorrect results in a model network. It will affect
the properties including the community structures of the
networks. Barber [19] extended the Newmans modularity
to bipartite network and proposed a method searching
communities by minimizing the modularity. The algorithm
is based on the idea that the modules in the two parts of the
network are dependent, with each part mutually being used
to induce the vertices for the other part into the modules.
To resolve communities in bipartite networks, Xu et al. [20]
proposed anMDL21 criterion for identifying a good partition
of a bipartite network. Recently, a newmeasurement for com-
munity extraction from bipartite networks is proposed which
is a straightforward generalization of Newman’s modularity
[21].

3. The Fuzzy 𝑐-Means Clustering Algorithm

The most commonly used fuzzy clustering method should
be fuzzy 𝑐-means algorithm. The purpose of fuzzy clustering
is to divide the data set into 𝑐 distinct clusters. The fuzzy 𝑐-
means (FCM) algorithm is proposed by Dunn [22] and then
extended by Bezdek [23]. Formally, the FCM algorithm can
be expressed as follows.

Let 𝑋 = {𝑥
1
, . . . , 𝑥

𝑛
} be a data set with 𝑛 points in 𝑃-

dimensional feature space 𝑅𝑃, 𝑋 ⊂ 𝑅
𝑃. The FCM clustering

algorithm partitions 𝑋 into 1 < 𝑐 < 𝑛 fuzzy groups by
minimizing objective function 𝐽

𝑚
which is the weighted sum

of squared errors within groups and is defined as follows:

𝐽
𝑚
(𝑈,𝑋) =

𝑛

∑

𝑗=1

𝑐

∑

𝑖=1

𝑢
𝑚

𝑖𝑗






𝑥
𝑗
− V
𝑖







2

𝐴
, 1 < 𝑚 < ∞, (2)
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Table 1: Some validity indices based on FCM algorithm.

Name and reference Index

Bezdek [5] PC = 1
𝑛

𝑛

∑

𝑗=1

𝐶

∑

𝑖=1

𝑢
2

𝑖𝑗

Bezdek [6] PE = −1
𝑛

𝑛

∑

𝑗=1

𝐶

∑

𝑖=1

𝑢
𝑖𝑗
log (𝑢

𝑖𝑗
)

Dunn [7] NPC = 𝐶 × PC − 1
𝐶 − 1

=

(𝑐/𝑛)∑
𝑛

𝑗=1
∑
𝐶

𝑖=1
𝑢
2

𝑖𝑗
− 1

𝐶 − 1

Roubens [8] NPE = 𝑛 × PE
𝑛 − 𝐶

=

−∑
𝑛

𝑗=1
∑
𝐶

𝑖=1
𝑢
𝑖𝑗
log (𝑢

𝑖𝑗
)

𝑛 − 𝐶

Fukuyama and Sugeno [9] FS = 𝐽
𝑚
−

𝑛

∑

𝑗=1

𝐶

∑

𝑖=1

𝑢
𝑚

𝑖𝑗





𝑐
𝑖
− 𝑐





2

Gath and Geva [12] FHV =
𝐶

∑

𝑖=1

√det(
∑
𝑛

𝑗=1
𝑢
𝑚

𝑖𝑗
(𝑥
𝑗
− 𝑐
𝑖
) (𝑥
𝑗
− 𝑐
𝑖
)

𝑇

∑
𝑛

𝑗=1
𝑢
𝑚

𝑖𝑗

)

Xie and Beni [10] XB =
𝐽
𝑚

𝑛min
𝑖 ̸= 𝑗






𝑐
𝑖
− 𝑐
𝑗







2

Bensaid et al. [24] BSC =
𝐶

∑

𝑖=1

(

∑
𝑛

𝑗=1
𝑢
𝑖𝑗






𝑥
𝑗
− 𝑐
𝑖







2

∑
𝑛

𝑗=1
𝑢
𝑖𝑗
∑
𝐶

𝑘=1





𝑐
𝑖
− 𝑐
𝑘






2
)

Kwon [11] 𝐾 =

𝐽
𝑚
+ (1/𝑐)∑

𝐶

𝑖=1





𝑐
𝑖
− 𝑐





2

min
𝑖 ̸= 𝑗






𝑐
𝑖
− 𝑐
𝑗







2

Wu and Yang [14] PCAES =
𝐶

∑

𝑖=1

(

∑
𝑛

𝑗=1
𝑢
2

𝑖𝑗

min
1≤𝑖≤𝐶

∑
𝑛

𝑗=1
𝑢
2

𝑖𝑗

− exp(
−𝐶min

𝑘 ̸= 𝑖





𝑐
𝑖
− 𝑐
𝑘






2

∑
𝐶

𝑙=1





𝑐
𝑙
− 𝑐





2
))

Zahid et al. [13] ZSC =
∑
𝐶

𝑖=1





𝑐
𝑖
− 𝑐





2

/𝐶

∑
𝐶

𝑖=1
(∑
𝑛

𝑗=1
𝑢
𝑚

𝑖𝑗






𝑥
𝑗
− 𝑐
𝑖







2

/∑
𝑛

𝑗=1
𝑢
𝑖𝑗
)

−

∑
𝐶−1

𝑖=1
∑
𝐶

𝑙=𝑖+1
(∑
𝑛

𝑗=1
(min (𝑢

𝑖𝑗
, 𝑢
𝑙𝑗
))

2

/∑
𝑛

𝑗−1
min(𝑢

𝑖𝑗
, 𝑢
𝑙𝑗
))

∑
𝑛

𝑗=1
(max

1≤𝑖≤𝐶
𝑢
𝑖𝑗
)

2

/∑
𝑛

𝑗=1
max
1≤𝑖≤𝐶

𝑢
𝑖𝑗

Pakhira et al. [15] PBMF = ( 1
𝐶

×

∑
𝑛

𝑗=1
𝑢
𝑖𝑗






𝑥
𝑗
− 𝑐







∑
𝑛

𝑗=1
∑
𝐶

𝑖=1
(𝑢
𝑖𝑗
)
𝑚 



𝑥
𝑗
− 𝑐
𝑖







× 𝐶
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𝑐
𝑖
− 𝑐
𝑗






)

2

Chen and Linkens [25] 𝑃 =

1

𝑛

𝑛

∑

𝑗=1

max
𝑖

(𝑢
𝑖𝑗
) −

∑
𝐶−1

𝑖=1
∑
𝐶

𝑘=𝑖+1
((1/𝑛)∑

𝑛

𝑗=1
min (𝑢

𝑖𝑗
, 𝑢
𝑘𝑗
))

∑
𝐶−1

𝑖=1
𝑖

Bouguessa and Wang [26] SCG =
trace (∑𝐶

𝑖=1
∑
𝑛

𝑗=1
𝑢
𝑚

𝑖𝑗
(𝑐
𝑖
− 𝑐) (𝑐

𝑖
− 𝑐)
𝑇

)

∑
𝐶

𝑖=1
trace (∑𝑛

𝑗=1
𝑢
𝑚

𝑖𝑗
(𝑥
𝑗
− 𝑐
𝑖
) (𝑥
𝑗
− 𝑐
𝑖
)

𝑇

/∑
𝑛

𝑗=1
𝑢
𝑚

𝑖𝑗
)

where 𝑐 = (1/𝑛)∑𝑛
𝑗=1
𝑥𝑗 in above indices.
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and subject to

𝑢
𝑖𝑗
∈ [0, 1] ,

𝑐

∑

𝑖=1

𝑢
𝑖𝑗
= 1, (3)

where 𝑈 = [𝑢
𝑖𝑗
]
𝑐×𝑛

is a fuzzy partition matrix composed
of the degree of membership of data point 𝑥

𝑗
to 𝑖th cluster;

(V
1
, V
2
, . . . , V

𝑐
) is a vector of unknown cluster prototype

(centers), V
𝑖
∈ 𝑅
𝑃. A norm matrix 𝐴 defines a measure of

similarity between a data point and the cluster prototypes.
The parameter 𝑚 controls the fuzziness of membership of
each datum. The cluster centroids and the respective mem-
bership functions, which are solutions of the constrained
optimization problem in (2) are given by the following
equations:

𝑢
𝑖𝑗
=

1

∑
𝑐

𝑘=1
(






𝑥
𝑗
− V
𝑖





𝐴
/






𝑥
𝑗
− V
𝑘





𝐴
)

2/(𝑚−1)
,

1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑗 ≤ 𝑛,

(4)

V
𝑖
=

∑
𝑛

𝑗=1
𝑢
𝑚

𝑖𝑗
𝑥
𝑗

∑
𝑛

𝑗=1
𝑢
𝑚

𝑖𝑗

, 1 ≤ 𝑖 ≤ 𝑐. (5)

Equations (4) and (5) constitute an iterative optimization
procedure.

The FCM algorithm is executed in the following steps

Step 1. Given a preselected 𝑐 clustering centroids (V
1
,

V
2
, . . . , V

𝑐
) and fuzzy factor 𝑚 (𝑚 > 1), initialize the fuzzy

partition matrix 𝑈.

Step 2. Calculate the fuzzy clustering centroid V
𝑖
using (5).

Step 3. Use (4) to update the fuzzy membership matrix 𝑈.

Step 4. If the improvement in 𝐽
𝑚
(𝑈,𝑋) is less than a certain

threshold (𝜀), then stop; otherwise, go to Step 2.

4. The Improved Bipartite Modularity and
the Proposed Method

4.1. The Bipartite Modularity. Very recently, Murata [21]
introduced a bipartite modularity to assess the partitioning
quality of a given bipartite network. Murata’s bipartite mod-
ularity can be depicted as follows.

Suppose 𝐺 is an unweighted bipartite network, whose
vertices 𝑉 is divided into two disjoint sets, 𝑉𝑡 and 𝑉𝑏, such
that every edge in the network connects a node from one
set from the other. Here, a bipartite network is denoted as
𝐺 = (𝑉

𝑡
, 𝑉
𝑏
, 𝐸) and top nodes and bottom nodes are called

as 𝑉𝑡 and 𝑉𝑏, respectively. Conveniently, we denote the top
nodes by 𝑋-vertices {𝑥

1
, . . . , 𝑥

𝑛
}, and 𝑌-vertices the bottom

nodes {𝑦
1
, . . . , 𝑦

𝑝
}.

Let us suppose that 𝑀 is the number of edges in a
bipartite network. Consider a particular division of the
bipartite network into 𝑋-vertex communities and 𝑌-vertex
communities, and the numbers of the communities are 𝐿𝑡
and 𝐿𝑏, respectively.𝑉𝑡

𝑖
and𝑉𝑏

𝑗
are the individual community

that belong to the sets 𝑉𝑡 = {𝑉𝑡
1
, 𝑉
𝑡

2
, . . . , 𝑉

𝑡

𝐿
𝑡} and 𝑉𝑏 = {𝑉𝑏1 ,

𝑉
𝑏

2
, . . . , 𝑉

𝑏

𝐿
𝑏}, respectively.𝐴(𝑖, 𝑗) is an adjacency matrix of the

network whose element (𝑖, 𝑗) is equal to 1 if vertices 𝑖 and 𝑗
are connected and is equal to 0 otherwise.

Under the condition that the vertices of 𝑉
𝑙
and 𝑉

𝑠
are

different types (which means (𝑉
𝑙
∈ 𝑉
𝑡
∧ 𝑉
𝑠
∈ 𝑉
𝑏
) ∨ (𝑉

𝑙
∈

𝑉
𝑏
∧ 𝑉
𝑠
∈ 𝑉
𝑡
)), 𝑒
𝑙𝑚

(the fraction of all edges that connect
vertices in 𝑉

𝑙
to vertices in 𝑉

𝑠
) and 𝑎

𝑖
(its row sums) are

defined as follows:

𝑒
𝑙𝑚
=

1

2𝑀

∑

𝑖∈𝑉𝑙

∑

𝑗∈𝑉𝑠

𝐴 (𝑖, 𝑗) ,

𝑎
𝑖
= ∑

𝑗

𝑒
𝑖𝑗
=

1

2𝑀

∑

𝑖∈𝑉𝑙

∑

𝑗∈𝑉𝑠

𝐴 (𝑖, 𝑗) .

(6)

The bipartite modularity 𝑄
𝐵
is defined as

𝑄
𝐵
= ∑

𝑖

(𝑒
𝑖𝑗
− 𝑎
𝑖
𝑎
𝑗
) , 𝑗 = max

𝑘

(𝑒
𝑖𝑘
) . (7)

High𝑄
𝐵
value indicates strong community structure in a

bipartite network.

4.2. The Proposed Method. For the given data set, the FCM
algorithm with a proper distance norm is employed to
partition it into clusters. After we have obtained the mem-
bership degree matrix, one can construct a weighted bipartite
network whose top nodes consist of all clustering centers and
bottom nodes are made up of all samples. The membership
degrees can be thought as its weighted edges. Obviously, it
will produce a fully connected bipartite network.

Example 1. If one partitions the given data set described in
Figure 1(a) by FCM algorithm for 𝑐 = 3, a membership
degree matrix is obtained. In terms of the idea mentioned
above, aweighted bipartite networkwill easily be constructed.
The top nodes consist of three clustering centers and bottom
nodes aremade up of ten samples.Thenumbers in Figure 1(b)
stands for the weights on each edge in network.

In this case, the bipartite modularity defined in (7) can
not be used to measure the quality of partitioning network
because the 𝑄

𝐵
in (7) is only useful to the unweighted

bipartite network.Therefore, it is necessary to improve𝑄
𝐵
so

as to deal with weighted bipartite network.
If we define

𝐿
𝑡
= 𝐿
𝑏
= 𝐶, 𝑉

𝑡

𝑖
= {V
𝑖
} ,

𝑉
𝑏

𝑗
= {𝑥
𝑖
| 𝑢
𝑗𝑖
= max
𝑘

(𝑢
𝑘𝑖
)} ,

𝑀 = 𝐶∑

𝑖=1

𝑛

∑

𝑗=1

𝑢
𝑗𝑖
,

(8)

one can successfully extend the bipartite modularity 𝑄
𝐵
to

the weighted bipartite network which is constructed by FCM
algorithm.

In what follows, an algorithm on how to partition a given
data into ideal groups is described.

Input: data set 𝑆; threshold 𝜀 (used in FCM algo-
rithm);
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(a)

0.1323 0.9716 0.8906 0.0362 0.0061
0.0866 0.0282 0.9471 0.0429 0.0054

0.8334 0.0215 0.0805 0.0546 0.0091
0.8787 0.9461 0.0360 0.0787 0.0096
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Figure 1: The data set and a weighted bipartite network.

Table 2: Fourteen artificial and real data sets.

(a) Seven artificial data sets

Dataset Clusters Attributes Nodes
elliptical 2 10 10 2 500
spherical 2 5 5 2 250
spherical 2 6 6 2 300
spherical 3 4 4 3 400
st900 2 9 9 2 900
y 10 14 14 10 480
y 2 3 3 2 300

(b) Seven real data sets

Dataset Clusters Attributes Nodes
bupa 7 2 2 7 345
glass 9 6 6 9 214
ionosphere 32 2 2 32 351
iris 4 3 3 4 150
pima 8 2 2 8 768
wall-following 4 4 4 4 5456
wbcd 8 2 2 8 699

Output: the optimal clustering result.
Step 1: execute FCM algorithm for the given data set;
Step 2: construct a weighted bipartite network by
matrix of membership degree 𝑈 and clustering cen-
troids V

𝑖
according to (8).

Step 3: calculate the improved bipartite modularity
𝑄
𝐵
.

From 𝑐 = 2 to 𝑐max, repeat the above process. Among these
values, it is easy to find the maximum value of𝑄

𝐵
. Generally,

𝐶max is unknown. Conventionally, one can take 𝐶max = √𝑛
which is widely used in clustering analysis.

5. Experiments

To validate the introducedmethod, we would like to test it on
seven artificial data sets [27–29] and seven well-known real

Table 3: Indices comparable for data sets.

DataSet Clusters 𝑄
𝐵

PC NPC PE NPE
elliptical 2 10 10 10 2 10 2 2
spherical 2 5 5 5 2 4 2 2
spherical 2 6 6 6 6 6 6 6
spherical 3 4 4 4 4 4 4 4
st900 2 9 9 9 2 9 2 2
y 10 14 14 15 12 12 15 15
y 2 3 3 3 2 3 2 2
bupa 6 2 2 2 2 2 2 2
glass 9 6 6 4 2 2 2 2
ionosphere 32 2 2 2 2 2 2 2
iris 4 3 3 3 2 2 2 2
pima 8 2 2 3 2 2 2 3
wall-following 4 4 4 4 2 4 2 2
wbcd 8 2 2 2 2 2 2 2

data sets [30, 31] which are widely used to test the validity
of various indices and clustering algorithm. Meanwhile, we
also compare the results obtained by the proposal with those
achieved by a number of popular validation indices on these
data sets. The experimental platform is based on Windows
7 with Intel Core 2 Duo CPU T9550 @ 2.66GHz 2.67GHz
and 4.00GB memory. The clustering parameters 𝑚 and the
default minimum amount of improvement in FCM are taken
2.0 and 𝑒 − 5, respectively.

The names of seven artificial data sets imply the dimen-
sion of the samples and the actual cluster numbers in the data
sets. For example, in the elliptical 2 10 data set, the samples
with 10 classes are in 2-dimensional space. The information
about seven artificial data sets and sevenwell-known real data
sets are listed in Table 2. The authors can also browse the
web page http://www.isical.ac.in/∼sanghami/data.html and
http://archive.igbmc.fr/projets/fcm/#datasets to see them in
detail.
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Figure 2: The scatter diagram of spherical 2 6 and the comparison of the proposal with the other four indices.
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Figure 3: The scatter diagram of y 2 3 and the comparison of the proposal with the other four indices.

The optimal cluster numbers detected by ourmethod and
the other four indices are listed in Table 3. As it can be seen
that 11 ideal optimal cluster numbers on 14 data sets can be
found. The data set spherical 2 6 and spherical 3 4 are well
separated so that the practical class numbers 6 and 4 can
be found by all indices. The fact that there are no apparent
borders among clusters for the rest of the artificial data sets
leads to produce the improper cluster numbers, especially
for y 2 3 and spherical 2 5. From Figure 2, one can find that
the distinct change of values of five indices occur when 𝑐 =

6. This case exactly corresponds to the natural distribution
of samples in spherical 2 6. The scatter diagram of y 2 3 in
Figure 3(a) shows that three clusters overlap each other. That
is to say that there is no clear borderline among these three
classes.Thus it is difficult to partition them into three clusters.
The correct cluster number 3 is discovered by ourmethod and
index NPC.

The selected seven real data sets are typical data sets
which are usually employed to test the validity of cluster-
ing/classifying algorithms or cluster index. The dimensions
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Figure 4: The comparison of the proposal with the other four indices on real data sets.
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of these data sets range from 4 to 32. That is to say that it is
impossible to estimate whether the obtained cluster results
are good or not by visualizing method. Furthermore, the
clusters of some data sets are heavily overlapped.Therefore, it
is difficult to detect the optimal cluster number of these seven
data sets by the validity index. More information about these
data sets can be found in [31].

In Figure 4, the comparison results are obtained by
the proposed method and other four indices on these real
data sets. It is easily to see that there exists the distinct
difference of 𝑄

𝐵
value between the maximum value and

others on bupa 6 2, ionosphere 32 2, wbcd 8 2, and wall-
following 4 4. Thus the optimal cluster numbers are unan-
imously detected by the proposed method. This is also true
for the other four indices except wall-following 4 4. The 𝑄

𝐵

value on iris 4 3, glass 9 6, and pima 8 2 are close to each
other when 𝑐 = 2, 𝑐 = 3, and 𝑐 = 4. This implies that it
is reasonable, while one partitions these three data sets into
2 or 3 or 4 clusters. Iris data set is a typical example where
there are three classes, but looking at the data without the
class information, one could also argue that there are two and
not three clusters. Fortunately, the optimal cluster number 3
is found for Iris data set. These examples also show that the
proposal is superior to other four indices.

6. Conclusions

In this paper, a method is proposed to detect an optimal clus-
ter number for a given data set without any class information.
The key idea of this paper is to convert the problem of detect-
ing the optimal cluster number on a data set into the one
of finding the optimum community structure in a weighted
bipartite network. One of the advantage of the introduced
method is to implement the automatic learning process of un-
supervised classifying algorithm. The experimental results
show the validity of the proposed method. The comparison
results indicate that our proposal is superior to the other
four indices which are only related to membership obtained
by FCM algorithm. However, nonspherical cluster of data
set and overlap structure will still affect the cluster results.
Therefore it is worthwhile to try to construct or propose new
method or index to find the optimal class structure of data
set.
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